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Abstract: Poor cell engraftment rate is one of the primary factors limiting the effectiveness of cell
transfer therapy for cardiac repair. Recent studies have shown that the combination of cell-based
therapy and tissue engineering technology can improve stem cell engraftment and promote the
therapeutic effects of the treatment for myocardial infarction. This mini-review summarizes the recent
progress in cardiac tissue engineering of cardiovascular cells from differentiated human pluripotent
stem cells (PSCs), highlights their therapeutic applications for the treatment of myocardial infarction,
and discusses the present challenges of cardiac tissue engineering and possible future directions from
a clinical perspective.

Keywords: engineered cardiac tissue; myocardial infarction; stem cells

1. Introduction

Ischemic heart disease (IHD) is a leading cause of death worldwide and a major
contributor to the global health and economic burden. In 2017, there were a total of 126.5
million reported cases of IHD, 10.6 million newly diagnosed cases, and 8.9 million deaths
worldwide [1]. Although the current diagnosis and treatment of cardiovascular diseases
(CVDs) are well developed, IHD is still associated with high morbidity and mortality rates,
suggesting an urgent need to develop novel preventive and treatment strategies for IHD.

Ischemic heart disease causes myocardial infarction (MI), which results in the death
and loss of cardiomyocytes (CMs). Apoptosis, necrosis, and autophagy in CMs are the typ-
ical hallmarks of cardiac pathology in MI [2]. The loss of morpho-functionally competent
CMs in the infarcted myocardium results in a vicious cycle of left ventricular (LV) remodel-
ing and heart failure (HF) [3]. MI-induced HF has a significant impact on mortality [4]. In
fact, for patients with a history of MI, HF increases total mortality risk by three-fold and
cardiovascular mortality risk by four-fold.

The extent of cardiac tissue healing and regeneration after ischemic injury is limited.
Cell-based transfer therapy is currently being tested and has shown promising results for
reducing myocardial damage and the restriction of heart remodeling after MI [5]. However,
clinical studies have failed to show significant improvement thus far [6]. A growing body
of evidence suggests that the therapeutic benefits of cell implantation are mainly due to
the paracrine factors released by implanted cells instead of the engrafted cells, as only a
small portion of these cells survive in the infarcted myocardium [7]. Recent studies have
shown that the combination of cell-based therapy and tissue engineering technology can
improve stem cell engraftment, leading to increased therapeutic effects [8,9]. Engineered
cardiac tissue from the derivatives of human induced pluripotent stem cells (hiPSC) can
not only develop functional cardiac tissue for cell transfer therapy, but also can be used for
modeling heart disease and screening drugs in vitro [10,11].
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This mini-review will summarize the recent progress in tissue engineering of car-
diovascular cells from differentiated hPSCs and their therapeutic applications for the
treatment of MI. Finally, the review will also discuss the current challenges of cardiac tissue
engineering and possible future directions from a clinical perspective.

2. Types of Progenitor or Stem Cells Used for the Treatment of Myocardial Infarction

Cardiac tissue engineering aims to replace fibrotic scars by creating contractile and
functional heart tissues. A wide variety of stem cells, their derivatives, and progenitor
cells are currently being tested for these purposes. Stem cells can be divided into two
types according to their sources: embryonic stem cells (ESCs) and adult progenitor/stem
cells [12]. In terms of their differentiation capabilities, stem cells can be divided into
four main types: totipotent stem cells, PSCs, multipotent stem cells, and unipotent stem
cells [12]. The major progenitor/stem cells used in the field of cellular cardiomyoplasty
are myoblasts [13–15], mesenchymal stem cells [16–18], ESCs [19,20], and iPSCs [21–23].
The advantages and disadvantages of each cell type are summarized in Table 1. Since ESCs
and iPSCs can be differentiated into cardiovascular cells, including cardiac progenitor cells
(CPCs), CMs, endothelial cells (ECs), and smooth muscle cells (SMCs), these stem cells may
be used for cardiac tissue engineering and are being extensively investigated.

Table 1. Advantage and disadvantages of four types of cells used for cellular cardiomyoplasty.

Cell Types Advantages Disadvantages

Skeletal myoblasts

1. Easy to obtain
2. Easy to expand to get large number

of cells in vitro
3. Low ethical concerns
4. No risk of tumorigenicity

1. Risk of inducing ventricular
arrhythmias

2. Failure to transdifferentiate into
functional cardiomyocytes

Mesenchymal stem cells

1. Easy to obtain
2. Can be selected by defined cell

surface marker
3. Low ethical concerns

1. Limited cell quantity
2. Limited differentiation potential
3. Cells can only differentiate into

cardiomyocyte-like cells

Embryonic stem cells

1. Pluripotent stemness
2. Well characterized cell lines
3. Theoretically, they can be

differentiated into all somatic cells
found in the human body

1. Genetically unstable
2. Risk of tumorigenicity
3. Allogenic transplantation induces

immune rejection
4. Ethical issues

Induced pluripotent stem cells

1. Pluripotent stemness
2. Autologous transplantation avoids

immune rejection
3. No ethical concern
4. Theoretically, they can differentiate

into all somatic cells found in the
human body

5. Disease-specific cell lines for
disease modeling

1. Low induction efficiency
2. Genetically unstable
3. Risk of tumorigenicity
4. Disease-specific cell lines are not

suitable for autologous
transplantation

Mouse embryonic stem cells (mESCs) were established by two research teams led by
Martin Evans and Matthew Kaufman in 1981 [12]. On the other hand, human ESCs (hESCs)
were established by James Thomson in 1998 [12]. Mouse iPSCs (miPSCs) were established
by Yamanak in 2006 using octamer binding transcription factor 3/4, sex determining
region y-box 2, the cellular-myelocytomatosis viral oncogene, and kruppel-like factor 4
transcription factors from mouse fibroblasts [12]. The following year, Yamanak and James
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Thomson independently and simultaneously reported the establishment of hiPSCs from
human dermal fibroblasts [12]. Generally, miPSCs or hiPSCs are almost identical to their
counterpart, mESCs or hESCs.

PSCs are classified into two distinct states: naïve and primed pluripotent states. Naïve
PSCs include mESCs and miPSCs, while primed PSCs include mouse epiblast stem cells
(mEpiSCs), hESCs, and hiPSCs [24]. Although both naïve and primed PSCs are capable
of self-renewal and can differentiate into the three germ layers in vitro and in vivo, only
naïve PSCs can generate germline-competent chimeras in vivo [25].

Recent studies demonstrate that hiPSCs are a powerful tool for modeling diseases
and treating various human diseases, including cardiovascular diseases, degenerative
neuronal diseases, and diabetes, due to their unique advantage (Table 1). Like hESCs,
hiPSCs have self-renewal capabilities and differentiate into all somatic cells found in the
body regardless of their tissue of origin. hiSPCs are therefore being extensively explored to
develop functional tissues for the treatment of myocardial injury.

In the following section, we will discuss the ongoing progress of tissue engineering in
PSC reprogramming and differentiation and highlight the application of tissue engineering
using cardiovascular cells derived from hPSCs to treat MI in animal models.

3. Application of Tissue Engineering in PSC Reprogramming, Differentiation, and
Treatment of Myocardial Infarction

Biomaterial scaffolds, which mimic the natural extracellular matrix (ECM) environ-
ment, have been extensively investigated for the engineering of cardiac tissues for PSC
reprogramming, differentiation, and treatment of MI.

3.1. Tissue Engineering for the Regulation of PSC Reprogramming

Some biomaterials have been shown to improve reprogramming efficiency by chang-
ing epigenetic barriers. Downing et al. showed that the microgroove substrates increased
the reprogramming efficiency of fibroblasts into iPSCs [26]. Notably, micro-grooved sur-
faces increased histone H3 acetylation and methylation, overcoming epigenetic barriers in
reprogramming [26]. A study using tumor-initiating stem-like cells showed that a matrix
made of fibrin gel promoted H3K9 demethylation and Sox2 expression [27], both of which
are known to be involved in iPSC reprogramming [28,29].

An engineering technique, such as the clustered regularly interspaced short palin-
dromic repeats (CRISPR)/Cas9 system is sought as a preferred method for the repro-
gramming and genetic modification of PSCs [30,31]. CRISPR/Cas9-based gene activator
(CRISPRa), which has a high multiplexing capacity and direct targeting of endogenous
loci, has also been used for cellular reprogramming [32]. Weltner et al. showed that
using CRISPRa reduces the reprogramming efficiency of human dermal fibroblasts [32].
Moreover, Howden et al. developed a protocol that combined the CRISPR/Cas9 system
and the enhanced episomal-based reprogramming to simultaneously generate gene-edited
and passage-matched unmodified iPSC lines through the electroporation of human fibrob-
lasts [33]. Compared to human fibroblasts, erythroblasts are later found to be a better cell
candidate for simultaneous reprogramming and gene-editing using CRISPR/Cas9 [34].
These studies suggest that CRISPR/Cas9 technique may be a better option for iPSC repro-
gramming and gene editing.

3.2. Tissue Engineering for the Differentiation of PSCs into Cardiovascular Cells

Recent advances in tissue engineering allow for the designing of cellular structures or
the incorporation of molecules to control the mechanical force and the release of certain
factors that affect the differentiation of PSCs. Poh et al. developed a method to generate
germ layers from a single line of mESCs [35]. In this study, an embryoid colony formed
from a single mESC in 3D matrix, which was then cultured in 1 kPa collagen-1-coated
2D substrates. This resulted in the self-organization of the ectoderm, mesoderm, and
endoderm layers in vitro.
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We showed that a 3D environment promoted the differentiation of hiPSC into ECs
when hiPSCs were seeded into fibrinogen/thrombin scaffolds [36]. A 3D environment
upregulated the expression of p38 mitogen-activated protein kinase and extracellular signal-
regulated kinase 1/2 signaling pathways [37]. Thus, the use of U-46619, a prostaglandin
H2 analog that activates ERK1/2 and p38 MAPK signaling pathways, effectively increased
EC differentiation efficiency (>85%) [37].

When hiPSC-ECs were cultured in peptide-functionalized poly(ethylene glycol) (PEG)
hydrogels, polygonal vascular networks were formed [38]. Vascular networks with lumens
were stable for at least 14 days. A microcarrier (MC) suspension agitated platform has been
shown to differentiate hESCs and hiPSCs into CMs [39]. Agitation results in homogenous
and hydrodynamic shear stress, therefore inducing CM differentiation. The resulting
yield is 38.3% and 39.3% higher for Troponin T and myosin heavy chain, respectively,
than static culture control. Electrospun polylactide-glycolic acid/collagen (PLGA/Col)
scaffolds have been used to differentiate ESCs to CMs [40]. Better interaction and growth
of differentiated ESCs were observed on the PLGA/Col scaffolds relative to PLGA-only
scaffolds. On the other hand, a cryopreserved amniotic membrane has been shown to direct
the differentiation of hiPSC-derived cardiac progenitor cells to CMs in the presence of cy-
tokines [41]. Amniotic membranes increased the expression of cardiac transcription factors
and myofibril proteins, accelerated the intracellular calcium transients, and enhanced the
mitochondrial complexity formation in CMs. These studies suggest that some biomaterials
can be designed to provide PSCs with essential mechanical and chemical cues to direct
their differentiation.

3.3. Tissue Engineering Using PSC-Derived Cardiovascular Cells for the Treatment of MI

It has been established that poor cell engraftment rate is one of the primary factors
limiting the effectiveness of cell transfer therapy for cardiac repair. The low engraftment
rate can be improved by combining the technique with cardiac tissue engineering, in
which cells are transplanted within a supporting matrix [8]. Biomaterials can provide
mechanical support for the stem cells and supply nutrients and oxygen to encapsulated
cells [9,10,41,42].

Cardiac tissue engineering combines cells and biological scaffolds to make heart
grafts to replace the damaged heart tissue and restore or improve the heart structure and
function. In addition to cellular cardiomyoplasty, heart valve reconstruction, and vessel
graft manufacturing are also the main target areas of heart tissue engineering.

Common tissue engineering materials are made of either natural or synthetic biomate-
rials. Natural biomaterials include Matrigel [42–44], hyaluronic acid [45,46], gelatin [47–49],
chitosan [50,51], alginate [52–54], collagen [42,55–59], fibrin [21–23,55,60–63], elastin [64],
amniotic membrane [41], and spider silk proteins [65]. Synthetic biomaterials, on the other
hand, include poly(ethylene glycol) (PEG) [66,67], polylactide-glycolic acid (PLGA) [68,69],
polyacrylamide (PAA) [70], poly(N-isopropylacrylamide) (PNIPAAm) [71], polycapro-
lactone (PCL) [72], and polyurethane (PU) [73]. More recently, natural/synthetic hybrid
hydrogels are being developed as an alternative biomaterial that combines natural and
synthetic materials through covalent grafting or crosslinking [74,75].

3.3.1. Natural Biomaterials

Hydrogels made of natural biomaterials have high flexibility and water content and
provide mechanical support for cell attachment, migration, differentiation, and even prolif-
eration. In cardiac tissue engineering, hydrogels are usually used to inoculate encapsulated
cells and compress them into 3D tissues. Natural biomaterials are similar to ECM, and
their physiological properties make them suitable for an array of applications.

Although early studies showed the feasibility of direct hydrogel injection for MI
treatment [76,77], there is still a need for a biomaterial capable of supporting co-cultured
cardiovascular cells for tissue engineering since the cardiac tissue is composed of a variety
of cells. Collagen and fibrin are two of the most often used natural biomaterials for
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manufacturing engineered cardiac tissues (ECTs). This is usually done by culturing PSC-
derived cardiovascular cells in biomaterials to treat MI in small (Table 2) and large animal
models (Table 3).

Collagen has been used to manufacture ECTs using hESC- or hiPSC-derived
cells [42,55–59]. Nakane et al. characterized the impact of cell composition on hiPSC-
derived engineered cardiac tissue [59]. In this study, ECTs (15 × 15 mm) made of col-
lagen and hiPSC-CMs, hiPSC-ECS, and hiPSC derived vascular mural cells(total cell
number = 6 × 106) displayed the lowest number of dead cells, as well as the lowest degree
of maturation. Furthermore, myofiber bundles (d = 0.5 mm) with better cell alignment
and higher active stress were also obtained in the same set of cells. In contrast, a higher
cell number (>6 × 106) increased cell death and lowered active stress. Moreover, ECTs
(developed using collagen/Matrigel hydrogel seeded with hESC-CMs or hiPSC-CMs and
fibroblasts) implanted into infarcted rat hearts effectively recovered the myocardial struc-
ture and function with reduced scar size [43]. This engineered tissue displayed structures
and functions close to the human postnatal myocardium and is therefore functional for
cardiac repair.

Fibrin is another natural biomaterial that has been extensively used to manufacture
cardiac tissue [21–23,55,60–63,78]. hiPSC-ECs or hiPSC-CMs have been co-cultured in fibrin
gel to create cardiac patches, which were then implanted into infarcted rat hearts [60,61].
Although revascularization was improved in both studies, only the cardiac patch made of
hiPSC-CMs and pericytes significantly increased left ventricular (LV) systolic function after
MI. These suggest that although rebuilding the vessel and perfusion network in infarcted
myocardium is important, these are still insufficient to achieve contractility improvement
in injured hearts and that myocytes are still needed to repopulate the fibrotic tissue. Thus,
cardiac patches combining fibrin gel with hiPSC-CM and hiPSC-ECs and/or hiPSC-SMCs
have been manufactured to address these challenges [63,79–81]. Human ECT strips made
of fibrin patch loaded with hiPSC-CMs and hiPSC-ECs have been used to treat cryo-injury
in guinea pig hearts [63,79]. Some grafts showed vascularization and electrical coupling to
the intact heart tissue with improved LV function [79]. Furthermore, electrocardiograms
recorded over a 28-day follow-up showed that the rate of arrhythmic events did not differ
between the ECT implant and cell-free scaffold implant and the control groups [63].

In another study, the loading of insulin-like growth factor 1 (IGF1) on cell-free fibrin
scaffolds on infarcted myocardium has also been shown to increase the engraftment rate
(up to 9%) of hiPSC-CM, hiPSC-EC, and hiPSC-SMC in a porcupine I/R model [21]. The
seeding of these cells into a fibrin gel and its implantation into a pig heart I/R model
has also significantly improved LVEF and reduced apoptosis, myocardial wall stress,
infarct size, and hypertrophy in the board-zone myocardium [81]. In addition to this, the
efficacy of angiomyogenesis using hiPSC-CMs for transient overexpression of angiopoietin-
1 (Ang-1-hiPSC-CMs) has also been determined through the use of fibrin gels. In this
study, Ang-1-hiPSC-CMs were seeded into a fibrin/thrombin patch and applied onto the
infarcted rat myocardium [22]. Patch transplantation effectively induced host (rat) and
donor (human) CM mitosis and arteriole formation, improved the cell engraftment rate,
limited the LV dilation, and improved the LV systolic function.

Table 2. Tissue engineering using PSC derived cardiovascular cells for treatment of MI in small animal models.

Stem Cell Types Model Animal Biomaterials ROA Reference

hESC-CMs I/R Rat Matrigel + collagen Applied on epicardium [42]
hESC-CM or
hIPSC-CM +
fibroblasts

MI Rat Matrigel + collagen Applied on epicardium [43]

hESC-CMs MI Rat Collagen Applied on epicardium [57]
hESC-CM, hiPSC-CM,

HUVEC, MSC, and
MEF

Uninjured
heart Rat Collagen Applied on epicardium [58]
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Table 2. Cont.

Stem Cell Types Model Animal Biomaterials ROA Reference

hiPSC-CM, hiPSC-ECs,
and hiPSC-SMCs MI Rat Collagen Applied on epicardium [59]

hESC-SSEA-1 +
progenitor cells MI Rat Fibrin/thrombin Applied on epicardium [82]

hiPSC-CMs MI Mouse

Cells, CHIR99021,
and FGF1 loaded

into
fibrin/thrombin

scaffold

Applied on epicardium [83]

hiPSC-ECs and
pericyte MI Rat Fibrin/thrombin Applied on epicardium [60]

hiPSC-CMs and
pericytes MI Rat Fibrin/thrombin Applied on epicardium [61]

Ang-1 modified
hiPSC-CMs MI Rat Fibrin/thrombin Applied on epicardium [22]

hhiPSC-CMs Cryo-injury Guinea pig and
pig Fibrin/thrombin Applied on epicardium [62]

hiPSC-CMs and
hiPSC-ECs Cryo-injury Guinea pig Fibrin/thrombin Applied on epicardium [79]

hiPSC-CMs and
hiPSC-ECs Cryo-injury Guinea pig Fibrin/thrombin Applied on epicardium [63]

hiPSC-CMs,
hiPSC-ECs, and

hiPSC-SMCs
MI Mouse Gelatin Applied on epicardium [47]

FGF1, fibroblast growth factor-1; hEShESC-CM, human embryonic stem hiPSC-CM, human induced pluripotent stem cells derived cardiomy-
ocytes; hiPSC-ECs, human induced pluripotent stem cells derived endothelial cells; hiPSC-SMCs, human induced pluripotent stem cells derived
smooth muscle cells; HUVEC, human umbilical vein endothelial cells; I/R, ischemia/reperfusion; MEF, mouse embryonic fibroblasts; MI,
myocardial infarction; MSC, mesenchymal stem cells; ROA, route of administration; SSEA-1, stage-specific embryonic antigen-1.

Table 3. Tissue engineering using PSC derived cardiovascular cells for treatment of MI in large animal models and clinic.

Stem Cell Types Model Animal Biomaterials ROA Reference

hiPSC-CM Chronic
ischemia Pigs hiPSC-CM sheet Applied on epicardium [84]

hiPSC-CM Chronic
ischemia Pigs Omentum flap Intramyocardial injection of cells +

omentum flap applied on epicardium [85]

hiPSC-CM and hMSC Chronic
ischemia Pigs

hiPSC-CM and
hMSC sheet;

Omentum flap
Applied on epicardium [86]

hiPSC-EC, and
hiPSC-SMC I/R Pigs Fibrin/thrombin Applied on epicardium [87]

hiPSC-CM, hiPSC-EC,
and hiPSC-SMC I/R Pigs Fibrin/thrombin

Intramyocardial injection of cells +
IGF-1 loaded fibrin/thrombin scaffold

applied on epicardium
[21]

hiPSC-CM MI Pigs Gelatin and
fibrin/thrombin

1. hiPSC-CM intramyocardial
injection;

2. Gelatin microspheres for
sustained release of Tb4;

3. Fibrin/thrombin scaffold applied
on epicardium

[23]

hiPSC-CM MI Micro
mini-pigs Gelatin Applied on epicardium [88]

hESC-SSEA-1+ I/R Patients
Cells were cultured
in fibrin/thrombin

patch

Applied on epicardium in adjunction to
CABG [89,90]

CABG, coronary ratery bypass graft; hESC-SSEA1, human embryonic stem cells derived stage-specific embryonic antigen-1 progenitor
cells; hiPSC-CM, human induced pluripotent shiPSC-ECs, human induced pluripotent stem cells derived endothelial cells; hiPSC-SMCs,
human induced pluripotent stem cells derived smooth muscle cells; hMSCs, human mesenchymal stem cells; I/R, ischemia/reperfusion;
IGF-, insulin-like growth factor-1; ROA, route of administration.
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To meet clinical requirements, good manufacturing practices to improve the quality
of human ECT have been developed by Querdel et al. [62]. Specifically, they established
protocols for manufacturing clinical-grade mesh-structured tissue patches using collagen
and hiPSC-CMs. ECTs with three different doses (4.5 × 106, 8.5 × 106, and 12 × 106)
of hiPSC-CMs were tested in a cryoinjury guinea pig heart model [62]. Heart tissue
transplantation resulted in a dose-dependent remuscularization; however, only high-dose
patches improved LV function with partial remuscularization observed in injured hearts.

More recently, amniotic membranes and spider silk proteins have also been investi-
gated for ECT manufacturing [41,65]. Amniotic membranes promoted the differentiation
of hiPSC-derived cardiac progenitor cells into CMs and enhanced the intracellular calcium
transients and the cellular mitochondrial complexity of differentiated CMs [41]. Spider silk
films have also been demonstrated to support the growth of hiPSC-CMs [65]. It has been
found that films can contract up to 14 days in vitro. Moreover, hiPSC-CMs on films also
respond to pharmacological stimulation, including phenylephrine and verapamil.

3.3.2. Synthetic Materials

The physical and biochemical properties of synthetic materials are easy to control,
usually through the modulation of water affinity and degradation rate. PEG is being
used as a matrix in many fields of tissue engineering due to its low protein adsorption
and inert surface, which then reduces the rate of inflammation after implantation. Its
modified form has been used as an injectate for the treatment of MI to limit the adverse
post-infarct LV remodeling [66]. PEG hydrogels containing hiPSC-CMs and erythropoietin
(EPO) were injected into the infarcted myocardium of a rat MI model [67]. Attenuation of
LV remodeling was observed in all groups that received PEG injections. However, LVEF
was only significantly increased in the gel-EPO, cell, and gel-cell-EPO groups. PEG was
modified with the Arg-Gly-Asp (RGD) peptide to improve cell adhesion, survival, and
proliferation, significantly increasing the viability of encapsulated mESC-CMs [91]. The
implantation of modified PEG carrying mESC-CMs improved sustained cardiac function
(up to 12 weeks) as observed in a mouse MI model.

Considering the features of myocardial tissue, a biocompatible and biomimetic plat-
form is needed for CM culture and for forming a functional myocardium. Biomimetic
cardiac patches made of microgrooved thin PLGA films with hESC-derived CMs have been
developed by Chen et al. [68]. This cardiac patch recapitulated the anisotropic electrophysi-
ological feature of native cardiac tissues and is more refractory to premature stimuli than
non-grooved PLGA films. Song et al. developed cardiac cell sheets by combining direct
cardiac reprogrammed cells with a nanothin membrane made of PLGA [69]. The cell sheets
were laid layer-by-layer and prevacularized with endothelial cells between the layers. The
implantation of the prevascularized, multilayered cell sheets improved cardiac function
and caused a reduction in adverse cardiac remodeling in rat MI models. PNIPAAm, a
pPAAm derivative, is a thermosensitive polymer with a thermal transition temperature
of 32 ◦C [92]. Unlike other polymers, it retains its liquid state at room temperature and
polymerizes at 37 ◦C [92]. This unique property has enabled PNIPAAm to be used for direct
intramyocardial injection and for manufacturing thermoresponsive cell culture surfaces
to generate cell sheets for cardiac repair [70,71]. Intramyocardial injection of PNIPAAm
has been shown to reduce collagen deposition, increase neovascularization, limit LV en-
largement, and improve cardiac function in a rat MI model [71]. In this study, copolymers
synthesized from NIPAAm, 2-Hydroxyethyl methacrylate, and methacrylate-polylactide
by free radical polymerization were intramyocardially injected into rat heart after MI [71].
As a result, LV dilation was reduced, and cardiac function was improved in the rat model.
Additionally, a biohybrid PNIPAAm-gelatin-based hydrogel improved the survival and
maturation of encapsulated cardiac cells in vitro as shown by their superior structural
organization and cell-cell coupling [75]. Lastly, hiPSC-CMs and hiPSC-ECs were also
seeded successfully in randomly oriented or aligned polycaprolactone scaffolds [72]. The
latter significantly improved hiPSC-CM maturation, as well as increased the sarcomeric
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length and gene expression of myosin heavy chain adult isoform compared with randomly
oriented scaffolds.

3.4. 3D Printing in Cardiac Tissue Engineering Using PSC Derived Cardiovascular Cells

In recent years, the rapid development of 3D printing technology enabled the con-
struction of hydrogels and myocardial patches into highly precise and repeatable nanoscale
3D structures using multiple cell types. Biomaterials that are used for the 3D printing
of myocardial tissue include alginate [93,94], fibrin [94], collagen [95,96], gelatin [97–99],
hyaluronic acid [98], hydroxypropyl chitin [100], thixotropic magnesium phosphate [101],
gellan gum [99], and decellularized ECM scaffolds [102–104]. Maiullari et al. manufactured
a vascularized heart tissue using human umbilical vein endothelial cell (HUVEC) and
miPSC-CMs using alginate and PEG/fibrin hydrogel extruded through a microfluidic print-
ing head [94]. This study successfully generated a functional patch made of miPSC-CMs
that aligned along the fiber printing direction. Furthermore, it was also observed that a
pre-formed vasculature in 3D heart tissue has the potential to anastomose with the host’s
vessels rapidly to supply blood to the implanted sample [94].

Lee et al. described a 3D printing technique to build complex collagen scaffolds for
engineering vessels, contractile cardiac ventricle models, trileaflet heart valves, and even
neonatal-scale human hearts [95]. Collagen gelation was controlled by modulating the
pH and the printing resolution (up to 10 µm). With this technique, cells were successfully
embedded in the collagen scaffolds. This is the first study to demonstrate successful 3D
printing of a neonatal-sized heart with validated functions.

Fully xeno-free and personalized biomaterials as bioinks for 3D printing have also
been reported. Noor et al. developed thick and perfusable cardiac patches using a patient’s
omentum-derived hydrogel and self hiPSC-CMs and hiPSC-ECS using 3D bioprinting [105].
Vascularized patches were printed according to the anatomy of the human heart. Strikingly,
a small human heart (height: 20 mm; diameter: 14 mm) was created by combining heart CT
imaging and mathematical modeling, hiPSC-CMs, and hiPSC-ECs via 3D printing. This
study highlights the feasibility and potential of engineering cardiac tissues with natural
human anatomical structure and patient-specific biochemical microenvironment.

Considering that most of the biomaterials used so far for bioprinting cannot represent
the complexity of the ECM in human tissues or organs, a bioink made of decellularized
ECM has been developed [102]. This tissue-specific bioink may provide crucial cues for
improving cell engraftment, survival, and function. Bioinks composed of decellularized
human heart tissue with either gelatin methacryloyl (GelMA) or GelMA-methacrylated
hyaluronic acid (MeHA) hydrogels were developed [104]. It was observed that all bioinks
were compatible with hiPSC-CMs and human cardiac fibroblasts. Moreover, printed cardiac
constructs were associated with striation formation and connexin-43 expression.

Although 3D bioprinting has demonstrated the feasibility to print human cardiac tissue
and is considered a promising approach for engineering whole hearts, there are still challenges
that need to be addressed. These challenges include the development of an ideal bioink, as
well as looking for a sustainable source of cardiovascular cells. A natural human decellularized
ECM has obvious advantages in constructing a microenvironment for myocardial regenera-
tion similar to natural myocardial tissues in terms of molecular composition, morphological
structure, mechanical properties, and electrical conductivity. However, immunogenicity and
limited donor sources limit the wide application of acellular heart tissues. Although the
well-established hiPSC reprogramming and differentiation techniques can provide enough
cardiovascular cells for 3D printing, patient- or disease-specific hiPSC-derived cardiovascular
cells may not be suitable as an autologous cell source used in 3D printing. In this case, universal
hiPSC-derived cardiovascular cells may be an option.

4. Challenges and Future Directions of Cardiac Tissue Engineering

Although substantial progress has been made in cardiac bioengineering, there are still
some challenges that hinder the progress of this promising field:
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a. Natural Biomaterials vs. Synthetic Biomaterials

Ideally, cardiac tissue engineering combines biodegradable biomaterials with cardiomy-
ocytes with functional properties such as electronic and mechanical coupling, calcium handling,
and force generation. Thus, biodegradable biomaterials, natural or synthetic, with minimal
immunogenicity are preferred. Therefore, a xeno-free and autologous cardiac tissue patch will
be required as a clinical product to achieve maximal therapeutic benefit.

b. Choice of Cells

Although the current hiPSC techniques can provide many cardiovascular cells for
cardiac patch manufacturing, using patients’ autologous hiPSC-derived cells may com-
promise therapeutic efficacy as most patients with ischemic heart disease have diabetes,
hypertension, and hypercholesterolemia. These pathophysiological conditions will affect
the quality of hiPSC-derived cells through their epigenetic memories [106]. Derivatives of
universal hESCs or hiPSCs are therefore a good option for allogeneic transplantation.

c. Progenitor Cells vs. Terminally Differentiated Cardiovascular Cells

Early cardiovascular progenitors exhibit high plasticity that allow them to differentiate
into both cardiac and vascular cells. These cells may be more viable than terminally
differentiated cells, especially mature CMs [107], thus enhancing cell engraftment efficacy.
Currently, clinical studies of hESCs- SSEA-1+ cells have been reported. Cells were seeded
into a fibrin scaffold and applied onto the infarct area as an adjunct of coronary artery
bypass graft in patients suffering from severe HF [89,90]. Except for one patient who
died early post-operation from treatment-unrelated comorbidities, the rest had uneventful
recoveries and symptomatically improved, with an increased systolic motion observed in
the cell-treated segments. No patient experienced arrhythmias, and no tumor was detected
during follow-up.

d. Alignment vs. Non-Alignment

Current 3D printing techniques can provide high resolution in printing and can accu-
rately control cell alignment. However, cardiac muscle fibers are oriented spirally around
the circumference of the heart. This anatomic arrangement is due to the complex twisting
during heart development and is responsible for contraction [108]. Thus, unsynchronized
contraction may deteriorate the LV pump function if a well-aligned cardiac patch is applied
to an infarcted myocardium with a different orientation. It is therefore imperative to
consider cell alignment in the construction of cardiac patches.
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