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Abstract: The cardiac fibroblast is a remarkably versatile cell type that coordinates inflammatory, 
fibrotic and hypertrophic responses in the heart through a complex array of intracellular and 
intercellular signaling mechanisms. One important signaling node that has been identified involves 
p38 MAPK; a family of kinases activated in response to stress and inflammatory stimuli that 
modulates multiple aspects of cardiac fibroblast function, including inflammatory responses, 
myofibroblast differentiation, extracellular matrix turnover and the paracrine induction of 
cardiomyocyte hypertrophy. This review explores the emerging importance of the p38 MAPK 
pathway in cardiac fibroblasts, describes the molecular mechanisms by which it regulates the 
expression of key genes, and highlights its potential as a therapeutic target for reducing adverse 
myocardial remodeling.  
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1. Introduction 

Although once viewed as relatively passive players that solely regulate extracellular matrix 
(ECM) remodeling, cardiac fibroblasts are now acknowledged as being the primary nodal regulators 
of multiple aspects of cardiac function under both physiological and pathophysiological conditions 
[1–4]. In addition to modulating ECM turnover, cardiac fibroblasts contribute to cardiac 
inflammation, angiogenesis and cardiomyocyte hypertrophy, and hence are viewed as an important 
potential therapeutic target for ameliorating adverse cardiac remodeling [5]. Mitogen-activated 
protein kinase (MAPK) intracellular signaling pathways are central regulators of multiple aspects of 
cellular function in all tissues, including the heart [6]. The p38 MAPK pathway is activated in 
response to stress and inflammatory stimuli, and has been shown to play an important role in 
regulating cardiac remodeling [7,8]. The four kinases that comprise the p38 MAPK family (p38α, β, 
γ and δ) have differential expression and function in individual cardiac cell types, but the precise role 
of the p38 pathway in cardiac fibroblasts has not been well explored. The aim of this review is to 
discuss the importance of p38 MAPK in regulating cardiac fibroblast function in the context of cardiac 
remodeling, to describe the underlying molecular mechanisms, and to highlight the value of cardiac 
fibroblast p38 signaling as a potential therapeutic target.  

2. Cardiac Fibroblasts and Myocardial Remodeling 

Cardiac fibroblasts play a pivotal role in maintaining normal cardiac structure and function, and 
also contribute to cardiac remodeling in response to myocardial injury or pathologies [1–4]. The 
cardiac fibroblast is a remarkably versatile cell type, and is able to adopt alternative phenotypes, 
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proliferate, migrate, secrete a plethora of cytokines and growth factors, and alter the turnover of 
cardiac ECM [1–4]. These processes are essential following myocardial infarction (MI) in order to 
adapt to the altered environment and prevent cardiac rupture. However, if they persist, they can 
become maladaptive and lead to pathological remodeling, which can advance to heart failure. 
Classically, cardiac fibroblasts have been understood to differentiate to a myofibroblast phenotype 
during the remodeling process [9,10], but recent in-depth molecular analyses and lineage-tracing 
experiments reveal that a continuum of different differentiation states exist in these highly plastic 
cells following myocardial injury [11–13].  

Cardiac fibroblasts adopt an inflammatory phenotype within the first few days after the MI [14]. 
Fibroblasts respond to damage-associated molecular patterns (DAMPs) [2]; a collection of 
intracellular and extracellular molecules whose presence is indicative of a loss of cell membrane 
integrity, ECM remodeling and a pathological environment. DAMPs are recognized through pattern 
recognition receptors, including members of the Toll-like receptor (TLR) family, which are coupled 
to inflammatory signaling pathways resulting in increased secretion of proinflammatory cytokines 
and chemokines that attract and activate leukocytes in the infarcted area [2]. 

As the inflammatory signals abate, fibroblasts proliferate and migrate towards the damaged 
region, and degrade the ECM through upregulation of matrix metalloproteinase (MMP) activity [15], 
thus facilitating cell migration and angiogenesis. In response to mechanical stimuli and elevated 
levels of transforming growth factor-β (TGFβ), fibroblasts adopt a highly synthetic and contractile 
myofibroblast phenotype, characterized by the appearance of cytoplasmic stress fibers containing 
alpha smooth muscle actin (αSMA) [9,10]. Myofibroblasts originate from resident cardiac fibroblasts, 
but can also be derived from other cellular sources including endothelial cells, epithelial cells, 
mesenchymal stem cells, pericytes, smooth muscle cells and bone marrow-derived fibrocytes [9,10]. 
As myofibroblast numbers increase and they migrate to the site of injury, a pro-fibrotic environment 
is created. Increased ECM deposition by myofibroblasts is the net result of increased type I and III 
collagen synthesis, decreased MMP activity and an increased activity of the tissue inhibitors of 
metalloproteinases (TIMPs), the native inhibitors of MMPs [16]. Myofibroblasts undergo apoptosis if 
ECM tension is restored, but if a mechanical load persists, such as with chronic hypertension, there 
is prolonged myofibroblast activity, and fibrosis occurs [17]. Fibrosis results in stiffening of the heart, 
impairment of electrical conductivity and reduced pumping capacity and oxygen diffusion, thus 
exacerbating adverse remodeling, and leading to heart failure progression. In addition to driving 
fibrosis, cardiac fibroblasts are now recognized as being important regulators of cardiac hypertrophy 
[18,19]. Fibroblasts synthesize a range of paracrine signaling molecules, including growth factors, 
cytokines and microRNAs, that can act to stimulate hypertrophy of cardiomyocytes [18,19]. 

The multifactorial functions of cardiac fibroblasts in myocardial remodeling make them an 
attractive target therapeutically. However, inadequate understanding of the regulatory mechanisms 
governing this cell type so far hinders the development of therapies targeting the cardiac fibroblast 
and its pathological involvement in disease progression.  

3. p38 MAP Kinase 

3.1. MAP Kinase Signaling Cascades 

The MAPKs are a large family of kinases associated with vital cell functions such as gene 
regulation, proliferation, differentiation, mobility, survival and death [20]. There are four classical 
MAPK signaling cascades: Extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases 
(JNK1, 2 and 3), p38 mitogen-activated kinases (p38α, β, γ and δ) and ERK5 (Figure 1). Further 
atypical MAPKs have also been identified (ERK3/4, ERK7 and Nemo-like kinase).  

The classical MAPK signaling cascade involves a number of sequential phosphorylation events 
which commence with a MAP kinase kinase kinase (MAPKKK) phosphorylating a MAP kinase 
kinase (MAPKK) on specific serine/threonine residues, which in turn leads to dual phosphorylation 
of the MAPK on specific threonine and tyrosine residues (Figure 1). This dual phosphorylation 
always occurs in a Thr-X-Tyr motif, where X is either a Glu (ERK), Pro (JNK) or Gly (p38) residue in 



J. Cardiovasc. Dev. Dis. 2019, 6, 27 3 of 17 

 

the regulatory loop [20]. Activated MAPKs continue the cascade in order to alter different aspects of 
cell function; they can exert their effects directly by phosphorylating downstream substrates such as 
transcription factors, or indirectly by activating downstream kinases, which in turn phosphorylate 
their own substrates. 

 
Figure 1. Canonical MAPK signaling. Schematic simplified representation of the different classical 
MAP kinase pathways in mammals. The mitogen-activated protein kinase (MAPK) pathways consist 
of a cascade of three kinases which phosphorylate (indicated by P) and activate each other 
sequentially. Mitogens, cytokines, and cellular stresses act as the stimulus to promote the activation 
of these MAPK pathways. MAPKs regulate cellular function by phosphorylating downstream 
substrates in the nucleus (e.g., transcription factors), cytosol, cytoskeleton, mitochondria and plasma 
membrane. MAPK: Mitogen-activated protein kinase; MAPKK: Mitogen-activated protein kinase 
kinase; MAPKKK: Mitogen-activated protein kinase kinase kinase. 

Despite the apparently simple architecture of this pathway, MAPKs are capable of responding 
to a plethora of different stimuli. The JNK and p38 MAPKs are activated by environmental stresses 
and inflammatory stimuli (e.g., ultraviolet light, oxidant stress, osmotic shock, infection and 
cytokines [21]), and are collectively known as stress-activated protein kinases (SAPKs). The SAPKs 
mediate cell death, differentiation and inflammatory responses. In contrast, the ERK1/2 pathway 
plays important roles in proliferation, differentiation and survival, and is activated only to a smaller 
degree by stress stimuli; rather, growth factors, serum, and phorbol esters are those which strongly 
activate the pathway [6]. ERK5 is the final MAPK subfamily and the least studied of the four; it is 
activated by both growth and stress stimuli [22]. This review will focus exclusively on p38 MAPK, a 
kinase that has long been recognized as a driver of myocardial remodeling, and whose role in 
modulating cardiac fibroblast function is becoming more appreciated. The ERK1/2, JNK and ERK5 
families will not be discussed further, but the reader is referred to some thorough reviews on the 
roles of these kinases in the heart [6,23]. 

3.2. p38 MAP Kinase Signaling 

3.2.1. p38 Subtypes and Their Activation 

Four different p38 MAPK isoforms have been identified; p38α (MAPK14/SAPK2a), p38β 
(MAPK11/SAPK2b) and the more distantly related p38γ (MAPK12/SAPK3) and p38δ 
(MAPK13/SAPK4). The four isoforms share structural homology (particularly between p38α and β, 
and between p38γ and δ) and substrate similarities. P38α is the most well-characterized isoform and 
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is ubiquitously expressed, whereas the other subtypes display differential tissue and cell-type 
expression. Hence, most studies that refer to p38 MAPK most likely relate to the α subtype. P38α and 
β can be inhibited by pyridinyl imidazole drugs (e.g., SB203580, SB202190), whereas the diaryl urea 
compound BIRB-0796 inhibits all four p38 subtypes [24]. A number of orally-active p38α/β inhibitors 
have been developed for clinical use, including losmapimod (GW85655) and RWJ-67657 [24].  

Various upstream kinases are involved in the phosphorylation cascades leading to p38 
activation, including MST1, MEKK1–4, MLK3, TAK1 and ASK1 at the MAPKKK level, and MKK3/4/6 
at the MAPKK level (Figure 1). P38 can also be activated by at least two non-canonical mechanisms. 
One of these is through TAB1 (TGF-β-activated protein 1 (TAK1)-binding protein 1), which binds to 
p38α MAPK and leads to its autophosphorylation [25,26]. This mechanism contributes to injury 
during myocardial ischemia [25]. The other method has only been observed in T-cells stimulated 
through the T-cell antigen receptor (TCR), and involves the tyrosine kinase ZAP70 [27]. 

3.2.2. Modulation of Gene and Protein Expression 

The p38 pathway is able to modulate gene and protein expression through multiple 
complementary methods, including the regulation of chromatin structure, gene transcription, mRNA 
stability and protein translation. Firstly, p38 can modulate chromatin structure by influencing DNA 
methylation [28] and phosphorylating histones e.g., via the activation of mitogen- and stress-
activated protein kinase 1 (MSK1) [29]. Secondly, p38 can directly alter gene transcription by 
phosphorylating key target residues on specific transcription factors to modulate their activity. These 
include ATF1/2/6, C/EBPα, CHOP, CREB, c-MYC, c-FOS, ELK1, GATA4, MEF2A/C/D, NFAT, SRF 
and STAT1 [8,24]. P38 can also induce an expression of the early response gene c-FOS, a component 
of the AP-1 transcription factor, via ELK1 activation [30]. Thirdly, the p38 pathway is a strong 
regulator of the stability and decay of specific mRNAs through the phosphorylation of specific RNA 
binding proteins, including the mRNA stabilizing factor HuR (human antigen R) and the mRNA 
destabilizing factor TTP (tristetraprolin) [31,32]. HuR and TTP compete with one another to regulate 
mRNA stability through binding to AU-rich elements (AREs) in the 3′ untranslated regions (3′UTRs) 
of specific mRNAs. Phosphorylation of HuR increases the stability of specific mRNAs, whereas 
phosphorylation of TTP reduces mRNA decay. Thus, p38-mediated phosphorylation of either or both 
of these RNA binding proteins results in an increase in steady state mRNA levels. Although the 
precise mechanism by which p38 phosphorylates the regulators of mRNA stability remains 
unknown, most of the evidence suggests that MAPK-activated protein kinase 2 (MK2), a p38 
substrate, is the kinase responsible [31,33]. Finally, the p38 pathway can regulate protein translation 
through the phosphorylation of MAPK-interacting serine/threonine-protein kinase 1 (MNK1) that in 
turn regulates the eukaryotic initiation factor 4E (eIF4E) [34]. 

3.2.3. MAPK-Activated Protein Kinases 

MK2 and MK3 are stimulated by the p38 module in response to stress stimuli [35]. Targeted 
deletion of the mouse Mk2 gene provides evidence that, although p38 regulates a diverse set of 
substrates, MK2 is fundamental in p38-dependent biological processes [36]. Both MK2 and MK3 can 
be activated by p38α, but the expression level and activity of MK2 is considerably higher than that of 
MK3 [35]. The substrate range of both enzymes includes proteins involved in cytokine production, 
endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin 
remodeling and transcriptional regulation [35].  

MK5 is more distantly related to MK2/3, but it has been shown that, under conditions of 
overexpression, p38 phosphorylates MK5 in response to cellular stress [37]. Despite this, some 
evidence suggests that MK5 is not a physiological p38 substrate, as it is not activated by classical p38 
stimuli, and no interaction between endogenous MK5 and p38 has been reported [38]. MK5 has more 
recently been shown to be a physiological substrate of ERK3/4 [39]. 

3.2.4. MAPK Phosphatases 
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The balance between kinase activation and inactivation adds another layer of regulation by 
which the MAPK signaling is tightly controlled. Protein phosphatases remove phosphate groups 
added by kinases, thus determining the magnitude, duration and localization of kinase activation. 
Dual-specificity phosphatases (DUSPs), formerly termed MAPK phosphatases (MKPs), can either 
inactivate a single class of MAPK (e.g., DUSP6/MKP3 specifically inactivates ERK), or they can 
regulate more than one MAPK pathway (e.g., DUSP1/MKP1 dephosphorylates ERK, JNK and p38) 
[6,40,41]. The phosphatases that can inactivate p38 MAPK include the nuclear DUSPs 1, 2 and 4, the 
nuclear and cytosolic DUSPs 8, 10 and 16, and protein Ser/Thr phosphatases such as PP2C [6,40,41].  

4. p38 MAP Kinase and Regulation of Cardiac Remodeling 

4.1. In Vitro and In Vivo Studies 

There is a wide body of in vitro and pre-clinical in vivo evidence that points to a detrimental role 
of p38 MAPK in cardiac remodeling, based largely upon the pharmacological p38 inhibition and 
transgenic/viral manipulation of p38 subtypes or upstream activators such as MKK3 and MKK6. In 
the interests of space, a full review of this literature is not possible here, but the reader is referred to 
a number of excellent reviews on this topic that give a detailed evaluation of the underlying primary 
literature [7,8,42,43]. Inhibiting the p38 pathway may therefore be a viable therapeutic strategy to 
ameliorate the adverse myocardial remodeling associated with MI, hypertrophy and heart failure [7]. 
Interestingly, many of the effects of p38 appear to be manifested through the downstream kinase 
MK2, and in addition, the administration of MMI-0100, a cell-permeable peptide inhibitor of MK2, 
has been shown to mimic the effects of p38 inhibition and improve cardiac remodeling [44–46].  

The p38 pathway contributes to cardiac and vascular inflammation through the induction of 
inflammatory cytokines and reactive oxygen species [43,47]. In addition to effects on immune cells, 
p38 has direct effects on cardiac cell types. Ectopic overexpression studies suggest that p38β 
stimulates cardiomyocyte hypertrophy, whereas p38α stimulates myocyte apoptosis [48,49]. 
However, in vivo studies inhibiting or knocking out these subtypes selectively in cardiomyocytes fail 
to improve cardiac function in hypertrophy models, and in some cases exacerbate the problem [50–
53]; in stark contrast to pre-clinical studies, where pharmacological p38 inhibitors are effective 
[7,8,42,43]. An obvious difference between these two types of study is that the kinase inhibitors affect 
all cardiac cell types (myocytes, fibroblasts, endothelial cells, inflammatory cells), whereas the genetic 
targeting approaches target just cardiomyocytes. Hence, it is important to appreciate the cell-specific 
roles of these p38 subtypes in regulating cardiac remodeling.  

Although the vast majority of our knowledge on p38 in the heart relates to p38α, and to a lesser 
extent p38β, the roles of p38γ and p38δ remain elusive. However, recent evidence suggests that the 
γ and δ subtypes are important in both developmental and pathological hypertrophy via the 
modulation of the mTOR pathway [54]. As discussed above, the spatiotemporal nature of p38 
signaling is regulated by phosphatases, particularly members of the DUSP family. DUSPs have been 
shown to play important regulatory roles in cardiac hypertrophy and remodeling [41], and DUSP1/4 
double knockout leads to unrestrained p38 activation and induction of cardiomyopathy [55].  

4.2. Clinical Studies 

The development of p38 MAPK inhibitors for use in the clinic was originally limited to patients 
with chronic inflammatory diseases but, more recently, there has been interest in p38 inhibition in 
cardiovascular diseases [7,24,43].  

The orally active p38α/β inhibitor losmapimod was evaluated for its effect on inflammation and 
infarct size in patients with non-ST-segment elevation MI in the SOLSTICE study [56]. This 
randomized phase 2 multicenter trial demonstrated the beneficial effects of losmapimod, including 
improved LV function and a non-significant trend towards reduced infarct size in losmapimod-
treated subjects. However, the follow up LATITUDE-TIMI 60 phase 3 multicenter trial failed to show 
a reduction in a risk of major ischemic cardiovascular events after 12 weeks, despite a reduction in 
inflammation and levels of wall stress [57]. Improved knowledge of the role of p38 in the 
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cardiovascular system could help fine tune therapeutic p38 inhibition for the treatment of 
cardiovascular disease in the future.  

5. p38 MAP Kinase and Regulation of Cardiac Fibroblast Function 

5.1. In Vitro Studies 

Human cardiac fibroblasts express relatively high levels of p38α, with lower levels of p38γ and 
p38δ, and very low or undetectable levels of p38β [58]. A similar profile of subtype expression is 
evident in whole heart tissue [59,60]. The importance of p38 in regulating cardiac fibroblast function 
is derived largely from in vitro cell culture studies using human, rat and mouse cells. Stimuli that 
induce p38 signaling in cardiac fibroblasts include inflammatory cytokines (e.g., IL-1, TNFα), 
profibrotic cytokines (e.g., TGF-β), DAMPs, G-protein coupled receptor agonists (e.g., angiotensin II 
[Ang II], β-adrenoceptors), ischemia and mechanical stretch [2,3,58,61]. 

Most of our knowledge on p38 signaling in cardiac fibroblasts relates to the α subtype, as this is 
the most highly expressed subtype, and (along with p38β) is the target of the pyridinyl imidazole 
class of inhibitors including SB203580 and RWJ-67657. In contrast, the functional importance of the 
other subtypes in cardiac fibroblasts is largely unexplored. Pharmacological and molecular 
interference studies ascribe a key role for fibroblast p38α in regulating the mRNA expression and 
protein secretion of a range of proinflammatory cytokines (e.g., IL-1, IL-6, IL-8, TNFα) [58], enabling 
cardiac fibroblasts to contribute to local inflammation after cardiac injury [2,14]. The p38 pathway 
also modulates ECM turnover through controlling the expression of several MMPs expressed by 
cardiac fibroblasts (e.g., MMPs 1, 3, 9) [15,58], as well as type I collagen [62–64] and TIMP-1 [65]. 
Additionally, the p38 pathway regulates the proliferation, migration and differentiation of cardiac 
fibroblasts. These elements will be explored in more detail below. 

5.1.1. Proinflammatory Cytokines 

Induction of inflammatory gene transcription is the initial specific step that leads to increased 
mRNA levels of particular cytokines, but the duration of this response is under tight control by post-
translational mechanisms, including the regulation of mRNA stability [32]. The promoter regions of 
genes encoding inflammatory cytokines have binding sites for a limited set of transcription factors, 
including NFκB, AP-1, C/EBPβ and Ets family members (e.g., ELK1); all of which can be activated 
downstream of the p38 pathway. Many inflammatory cytokines have characteristically short half-
lives, enabling the rapid dampening of inflammatory responses in the absence of prolonged 
stimulation. For example, the half-life of TNF mRNA is only 30 min in human cardiac fibroblasts [66]. 
A number of proinflammatory cytokines that are secreted by cardiac fibroblasts (e.g., IL-1, IL-6, IL-8, 
TNFα) are regulated at the post-transcriptional level by p38-induced MK2-mediated modulation of 
RNA-binding proteins, including TTP and HuR [33]. Studies on cultured human cardiac fibroblasts 
identify roles for p38 in inducing the mRNA expression of TNFα, IL-1β and IL-6, whereas p38 
appears to regulate IL-8 at the protein synthesis/secretion level [66–68]. IL-6 is discussed further in 
the next section. 

5.1.2. Hypertrophic Factors 

A paradigm that has emerged over the last few years is that cardiac fibroblasts are important 
modulators of cardiac hypertrophy through their secretion of specific paracrine hypertrophic factors, 
including growth factors, cytokines and microRNAs [18,19]. Amongst the list of paracrine factors 
identified to date, several can be modulated by the p38 pathway, including fibroblast growth factor 
(FGF)-2 [69,70], insulin-like growth factor (IGF)-1 [71], TGF-β [72] and IL-6 (see below). 

Some of the most compelling evidence for a p38-regulated paracrine mediator of cardiomyocyte 
hypertrophy produced by cardiac fibroblasts relates to IL-6. IL-6 is a pleiotropic cytokine that has 
proinflammatory, anti-inflammatory and fibrotic roles in the heart, depending on the context and 
duration of its effect [73]. In vitro studies have shown that IL-6 is secreted from cardiac fibroblasts in 
response to several well-known hypertrophic stimuli, including β-adrenergic receptor stimulation 
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and Ang II [1]. IL-6 can directly induce cardiomyocyte hypertrophy in vitro [74,75] and Ang II- or 
phenylephrine-induced cardiomyocyte hypertrophy is impaired in myocytes isolated from IL-6 
knockout mice [74], suggesting that IL-6 secretion is necessary for the induction of myocyte 
hypertrophy by these stimuli.  

Evidence from numerous in vitro cardiac fibroblast studies points to a pivotal role for p38α in 
stimulating IL6 mRNA expression and protein secretion in response to inflammatory cytokines and 
neurohumoral stimuli (reviewed in [24]). The p38 pathway is an important inducer of IL-6 expression 
in the heart, acting via both transcriptional and post-transcriptional (e.g., increased mRNA stability) 
mechanisms [47,76] (see Figure 2 for a summary). For example, Ang II-induced, p38-dependent Il6 
transcription in rat cardiac fibroblasts involves the phosphorylation of the CREB transcription factor 
and binding to specific CRE sites in the IL6 gene promoter [77]. In addition to transcriptional effects, 
p38α can stabilize IL6 mRNA via multiple AREs in the 3′UTR of the IL6 transcript [78], and a role for 
TTP phosphorylation in this process has been established in cancer cells [79]. Localized adenovirus-
mediated gene transfer of activated MKK3/p38α in rat hearts revealed IL-6 to be a central signaling 
molecule which was implicated in the regulation of numerous p38-sensitive genes through the 
modulation of several transcription factors including GATA-4, AP-1, SRF and NFκB [76].  

 

Figure 2. Molecular mechanisms by which p38 regulates the expression of MMPs, αSMA and IL-6 in 
cardiac fibroblasts. The p38 pathway is important for upregulating the expression of specific proteins 
in cardiac fibroblasts, including matrix metalloproteinases (MMPs), α-smooth muscle actin 
(αSMA/ACTA2) and interleukin-6 (IL-6). Modulation occurs at multiple levels, including the 
regulation of gene transcription and mRNA stability. P38 activation leads to phosphorylation and 
activation of specific transcription factors (via both direct and indirect mechanisms), and can also 
increase stability of specific mRNAs through the phosphorylation of mRNA stabilizing factors (e.g., 
HuR) and mRNA destabilizing factors (e.g., TTP). See main text for more details. 

Recent fibroblast-targeted transgenic mouse studies provide support for fibroblast-derived IL-
6-driving cardiac hypertrophy in vivo [80], with p38α playing a key role [81]. Further studies in 
murine cardiac hypertrophy models using animals with cardiac fibroblast-specific deletion of the IL6 
gene would be useful to confirm this hypothesis. 



J. Cardiovasc. Dev. Dis. 2019, 6, 27 8 of 17 

 

5.1.3. Matrix Metalloproteinases 

MMP expression and activity can be regulated at multiple levels including transcription, mRNA 
stability, translation, secretion, zymogen activation and endogenous inhibition by TIMPs [82]. The 
p38 pathway impacts on MMP activity predominantly by increasing transcription and mRNA 
stability (see below), although it can also influence TIMP expression [65]. Several MMPs expressed 
by cardiac fibroblasts are regulated by p38, including MMP-1, MMP-3 and MMP-9 [15,58]. The 
potential underlying molecular mechanisms are summarized in Figure 2. The promoter regions of 
the genes encoding MMPs 1, 3 and 9 contain common binding sites for AP-1 and NFκB [15,83]; 
transcription factors that can be activated in response to p38 activation via increased FOS expression 
and IKK phosphorylation, respectively. In addition to these sites, the MMP1 promoter contains a 
binding site for the CCAAT/enhancer binding protein-β (C/EBP-β), a transcription factor that is 
directly phosphorylated and activated by p38 [84].  

IL-17-induced MMP1 mRNA expression in human cardiac fibroblasts has been shown to occur 
in a p38- and ERK-dependent manner involving transcription factor binding at the AP-1, NFκB and 
C/EBP-β sites [85]. In addition to inducing MMP1 gene transcription, p38 can also increase MMP1 
mRNA levels by increasing MMP1 mRNA stability [86], although the mechanism is unclear. 

Cytokine-induced MMP-3 expression is mediated via p38α in human cardiac fibroblasts [58,87] 
and dermal fibroblasts [86], but appears to be p38-independent in rat cardiac fibroblasts [88]. In 
human dermal fibroblasts, cytokine-induced increases in MMP3 mRNA levels were due to the 
stabilization of MMP3 mRNA, rather than increased transcription [86]. However, as with MMP1 
above, the underlying regulatory mechanisms are unclear, as MMP3 mRNA does not contain 
consensus AREs in its 3′UTR. 

Activation of p38 increases MMP9 gene transcription through NFκB and AP-1 transcription 
factors binding to the gene promoter [89,90]. IL-1-induced MMP9 mRNA expression is p38-
dependent in rat cardiac fibroblasts [88], although it appears to be p38-independent in human cardiac 
fibroblasts [58,87]. In addition to modulating gene transcription, p38-mediated activation of the 
downstream kinase MK2 has been shown to increase MMP9 mRNA stability [91]. The 3′UTR of 
MMP9 mRNA contains several AREs [92] and p38 activation is able to increase MMP9 mRNA 
stability through the phosphorylation of TTP [79] and by targeting HuR [93].  

5.1.4. α-Smooth Muscle Actin 

Transcription of the ACTA2 gene, encoding α-SMA, requires the formation of nuclear complexes 
comprising the serum-response factor (SRF) and myocardin-related transcription factor-A (MRTF-A) 
[94]. The p38 pathway induces ACTA2 expression through at least two complementary mechanisms 
(summarized in Figure 2). Firstly, p38 is critical for TGF-β-induced SRF gene expression; a 
prerequisite for the formation of SRF/MRTF-A complexes and ACTA2 gene transcription [95]. 
Secondly, the p38 downstream kinase MK2 phosphorylates and activates SRF, thereby further 
contributing to increased ACTA2 transcription [96].  

In rat cardiac fibroblasts, the pyridinyl imidazole p38 inhibitors RWJ-67657 and SB203580 have 
been shown to abrogate αSMA expression [62,97], confirming a key role for p38α in regulating αSMA 
expression in these cells. Furthermore, αSMA expression was reduced in mouse embryonic 
fibroblasts (MEFs) with a conditional deletion of p38α, and this was overcome by the ectopic 
expression of SRF, confirming that p38α lies upstream of SRF and αSMA expression in fibroblasts 
[98]. 

5.1.5. Proliferation, Migration and Myofibroblast Differentiation 

P38α is also important for cardiac fibroblast proliferation, migration and myofibroblast 
differentiation [24]. Specific evidence for a role of p38 in myofibroblast differentiation and fibrosis 
comes from studies showing that TGF-β-induced expressions of collagen I and αSMA are attenuated 
by p38 inhibition in rat and mouse cardiac fibroblasts [62–64]. MEFs with conditional p38α deletion 
impair the capability to contract collagen gels and exhibit reduced strain-induced αSMA expression 
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[98]. The ability of p38 to promote cardiac myofibroblast differentiation and migration appears to be 
mediated via its downstream substrate, MK2 [44], and similar conclusions have been drawn in 
studies using fibroblasts from other sources [99,100]. A role for the inactivation of the phosphatase 
DUSP1/MKP1 (and hence enhanced p38 and ERK activation) has been proposed as a mechanism by 
which IL-17A stimulates cardiac fibroblast proliferation [101].   

5.2. In Vivo Studies 

Methods for genetically modifying cardiac fibroblasts in vivo have lagged well behind those for 
targeting cardiomyocytes, and establishment of such models has been an important goal for 
progressing the cardiac fibroblast field for many years [24]. A number of fibroblast-targeted Cre-lox 
models have now been well characterized in lineage-tracing experiments and shown to target 
fibroblasts and/or myofibroblasts in the heart, as well as in other tissues. The models that have been 
most widely utilized are driven by promoter/enhancer regions from the Col1a2 [102], Postn [103,104] 
and Tcf21 [103–105] genes. When combined with tamoxifen-inducible forms of Cre, these have been 
employed to manipulate gene expression (knockout and overexpression) conditionally and 
specifically in the fibroblast (Col1a2, Tcf-21) or myofibroblast (Postn) populations of the murine heart 
[81,98,106–109].  

5.2.1. Fibroblast-Specific Targeting of p38α 

Several recent studies exploit these in vivo fibroblast-targeting strategies to define a critical role 
for cardiac (myo)fibroblast p38α in modulating hypertrophic and fibrotic cardiac remodeling. 
Molkentin and colleagues developed both fibroblast- and myofibroblast-selective Mapk14 knockout 
mouse models to investigate the contribution of p38α to cardiac fibrosis after myocardial injury [98]. 
Mice with a conditional deletion of p38α in resident fibroblasts (Tcf21-Cre) were more prone to 
cardiac rupture with 100% mortality observed after experimental MI (permanent LAD ligation) and 
50% mortality observed after ischemia-reperfusion injury (transient LAD ligation), suggesting 
cardiac fibroblast p38α is important for effective scar formation. Fibroblast-specific p38α-null animals 
that survive the ischemia-reperfusion procedure exhibited less fibrosis and improved diastolic 
function. When p38α knockout was induced exclusively in myofibroblasts (Postn-Cre), there was a 
reduction in the MI scar and fibrotic area and a reduction in myofibroblast numbers, without 
impacting cardiac function [98]. Cardiac fibrosis and hypertrophy induced by chronic neurohumoral 
stimulation were also reduced in mice with a myofibroblast-specific deletion of p38α. Conversely, 
fibroblast-specific activation of p38 (by conditional Tcf21-directed expression of constitutively active 
MKK3) results in increased fibrosis in the heart (and other tissues), expansion of the fibroblast 
number and increased myofibroblast differentiation; effects that were exacerbated following MI or 
chronic neurohumoral stimulation [98].  

In addition to this role in regulating fibrosis and myofibroblast differentiation, we recently 
reported that fibroblast-specific p38α is also important for stimulating cardiac hypertrophy in a 
mouse model of chronic β-adrenergic stimulation [81]. Fibroblast-specific deletion of p38α (using a 
tamoxifen-inducible Col1a2-Cre model) significantly improves cardiac function after chronic β-
adrenergic stimulation and reduces the resultant increase in cardiac mass and cardiomyocyte size 
compared to littermate controls. In vitro mechanistic studies indicated an important role for IL-6 as 
a p38α-induced paracrine factor to be released by fibroblasts in response to tissue damage that could 
subsequently stimulate cardiomyocyte hypertrophy [81]. A reduction in cardiac hypertrophy was 
also noted in the fibroblast-specific p38α knockout hearts in the study by Molkentin and colleagues 
[98], and we also observed a reduction in cardiac fibrosis in our study [81]. Thus, these two 
complementary independent studies using different fibroblast-specific targeting strategies offer 
strong evidence that p38α is a critical regulator of cardiac fibrosis and hypertrophy following MI or 
chronic neurohumoral stimulation. It would be interesting to evaluate the impact of fibroblast-
specific p38α knockout in additional pathological models, including chronic pressure- and volume-
overload. 
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5.2.2. Fibroblast-Specific Targeting of Other Components of the p38 Pathway 

Further supporting evidence of the importance of the fibroblast p38 pathway in cardiac 
remodeling comes from a non-biased transcriptomic approach that identifies the ATF3 transcription 
factor as being cardioprotective in hypertensive cardiac remodeling [109]. Cardiac fibroblasts were 
shown to be the primary cardiac cell type that express ATF3, and fibroblast-specific ATF3 deletion 
(Col1a2-Cre) attenuated hypertensive cardiac fibrosis and hypertrophy induced by Ang II. Further 
detailed bioinformatic and integrated transcriptomics revealed that ATF3 exerts its cardioprotective 
effects by repressing the Map2k3 locus (the gene encoding MKK3), which in turn reduces the p38 
activity in cardiac fibroblasts [109]. Conversely, fibroblast-specific overexpression of ATF3 (driven by 
Col1a2-Cre) improves cardiac function and remodeling after MI [110], thus confirming that activation 
of cardiac fibroblast ATF3 represents a potential therapeutic strategy for improving cardiac 
remodeling and function.  

MK5 was originally identified as a downstream substrate of p38α/β, and subsequently the 
atypical kinases ERK3 and ERK4 [37,39]. Despite similar expression levels of MK5 mRNA in cardiac 
myocytes and fibroblasts [111], the protein expression of MK5 appears to be restricted to fibroblasts 
[112], suggesting cell-specific MK5 translational regulation. Global knockdown of MK5, which 
therefore effectively targets the fibroblast population in the heart, attenuates both hypertrophy and 
cardiac dysfunction in response to chronic pressure overload [112]. Thus, the fibroblast-selective 
inhibition of MK5 appears to be cardioprotective, in agreement with the above p38-focused studies. 
However, it remains unclear whether p38 is a genuine physiological activator of MK5 [38], and in 
mouse heart MK5 forms a stable signaling complex only with ERK3 (not p38α or ERK4) [113]. Hence 
caution is warranted when interpreting MK5 data in terms of the p38 pathway. 

Conditional deletion of MK2 has not been studied in cardiac fibroblasts in vivo, but the Col1a2-
Cre model has been used to delete MK2 in a study focused on lung fibrosis [99]. Fibroblast-specific 
MK2 deletion attenuated bleomycin-induced lung fibrosis in mice, and similar results were obtained 
following the administration of a cell-permeable peptide inhibitor of MK2, MMI-0100 [99].  

5.2.3. MicroRNAs 

MicroRNAs are small non-coding RNAs that regulate the expression of specific proteins by 
promoting mRNA degradation or inhibiting protein translation [114]. Several miRNAs are known to 
play important roles in regulating cardiac fibroblast phenotype and function [10,115], and some 
mediate their effects through their modulation of the p38 MAPK pathway (Figure 3). For example, 
miR-101 has been shown to be important for IL-17A-induced cardiac fibroblast proliferation and 
migration via a mechanism involving the inhibition of DUSP1/MKP1 expression, thus increasing p38 
and ERK activity [101]. Similarly, miR-21 promotes high glucose-induced cardiac fibroblast 
proliferation and collagen synthesis by suppressing DUSP8 expression and activating JNK and p38 
MAPK [116]. In another example, miR-378 released from cardiomyocytes was shown to induce anti-
fibrotic effects by targeting MKK6 in cardiac fibroblasts and reducing p38 MAPK phosphorylation 
[117]. 

Recently we identified a small number of miRNAs (miRs 21a, 30d, 208b, 214 and 224) that were 
up- or down-regulated with cardiac remodeling in control mice following chronic β-adrenergic 
stimulation, but not in fibroblast-specific p38α knockout mice [81]. Further studies will be needed to 
evaluate the roles of these p38-regulated miRNAs in cardiac fibroblasts.  
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Figure 3. Central role of p38 in regulating cardiac fibroblast function. Cardiac fibroblast p38 is 
important for regulating several key aspects of cardiac remodeling, including inflammation, fibrosis 
and cardiomyocyte hypertrophy through a variety of molecular and cellular mechanisms. See the 
main text for more details. 

6. Conclusions and Future Perspectives 

Taken together, the above in vitro and in vivo studies provide persuasive evidence that the p38 
pathway (particularly p38α) in cardiac fibroblasts is a critical regulator of myocardial remodeling, 
and hence a viable therapeutic target. The central role of p38 in regulating cardiac fibroblasts 
functions that are pertinent to cardiac remodeling is summarized in Figure 3.  

The advent of in vivo fibroblast-specific targeting approaches has enabled the identification of 
cardiac fibroblast-specific p38α as being a critical mediator of hypertrophic and fibrotic remodeling 
in a variety of pathological scenarios [81,98]. However, translating these pre-clinical genomic studies 
into effective therapeutic treatments for cardiovascular patients is challenging. Given the 
disappointing results of the LATITUDE-TIMI 60 study in which global p38 inhibition with 
losmapimod fails to improve outcomes six months after MI [57], alternative approaches that target 
upstream or downstream components of the p38 pathway, or act in a cell-selective manner, may be 
warranted. Whilst cell-selective targeting of p38α is unrealistic given the ubiquitous nature of its 
expression, several components of the p38 signaling pathway are selectively expressed in cardiac 
fibroblasts, including ATF3 [109] and MK5 [112].  

This may allow pharmacological agents to be developed that target upstream (e.g., ATF3 
activation) or downstream (e.g., MK5 inhibition) molecules in the p38 signaling pathway specifically 
within the cardiac fibroblast. 

Another potential strategy for cell-specific therapies is to target microRNAs [118]. As many 
microRNAs show differential cellular expression and regulation, identifying and targeting cardiac 
fibroblast-specific microRNAs that regulate the p38 pathway could enable more targeted therapies.   

In conclusion, the p38 MAPK signaling node is gaining recognition as a critical regulator of a 
variety of cardiac fibroblast functions that contribute to adverse myocardial remodeling, including 
hypertrophy and fibrosis. Future therapeutic strategies that specifically target cardiac fibroblast p38 
signaling may offer benefits in reducing the consequences of detrimental cardiac remodeling. 
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