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Abstract: Heart Failure is a chronic and progressively deteriorating syndrome that has reached
epidemic proportions worldwide. Improved outcomes have been achieved with novel drugs and
devices. However, the number of patients refractory to conventional medical therapy is growing.
These advanced heart failure patients suffer from severe symptoms and frequent hospitalizations and
have a dismal prognosis, with a significant socioeconomic burden in health care systems. Patients
in this group may be eligible for advanced heart failure therapies, including heart transplantation
and chronic mechanical circulatory support with left ventricular assist devices (LVADs). Heart
transplantation remains the treatment of choice for eligible candidates, but the number of transplants
worldwide has reached a plateau and is limited by the shortage of donor organs and prolonged
wait times. Therefore, LVADs have emerged as an effective and durable form of therapy, and
they are currently being used as a bridge to heart transplant, destination lifetime therapy, and
cardiac recovery in selected patients. Although this field is evolving rapidly, LVADs are not free
of complications, making appropriate patient selection and management by experienced centers
imperative for successful therapy. Here, we review current LVAD technology, indications for durable
MCS therapy, and strategies for timely referral to advanced heart failure centers before irreversible
end-organ abnormalities.
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1. Advanced Heart Failure (ADHF)

Heart Failure (HF) is a complex clinical syndrome with high morbidity and mortality,
imposing a significant burden on healthcare systems in terms of resources and costs [1].
HF incidence in the adult population is 1–2%, but it reaches up to 10% in people >70 years
old. Although incidence has remained stable over the years, HF prevalence is increasing
due to the aging population and better survival following acute myocardial infarction [2].
Improved outcomes have been achieved with new pharmacological treatments and device
(ICD/CRT) therapy. However, nearly 10% of HF patients will progress to ADHF. These
patients experience poor quality of life, recurrent hospitalizations, and 25–50% mortality
within 1 year [3–5]. The Heart Failure Association of the ESC has updated the criteria for
the definition of ADHF [6] (Table 1).
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Table 1. Updated HFA-ESC criteria for defining ADHF. From M.G. Crespo-Leiro et al. Eur J Heart
Fail.2018 [6], with permission.

All the following criteria must be present despite optimal guideline-directed treatment:

1. Severe and persistent symptoms of heart failure [NYHA class III (advanced) or IV].

2. Severe cardiac dysfunction defined by a reduced LVEF ≤30%, isolated RV failure (e.g., ARVC)
or non-operable severe valve abnormalities or congenital abnormalities, or persistently high (or
increasing) BNP or NT-proBNP values and data of severe diastolic dysfunction or LV structural
abnormalities according to the ESC definition of HFpEF and HFmrEF.

3. Episodes of pulmonary or systemic congestion requiring high-dose intravenous diuretics (or
diuretic combinations) or episodes of low output requiring inotropes or vasoactive drugs or
malignant arrhythmias causing >1 unplannedvisit or hospitalization in the last 12 months.

4. Severe impairment of exercise capacity with Inability to exercise or low 6MWD (<300 m) or
pVO2 (<12–14 mL/kg/min), estimated to be of cardiac origin.

In addition to the above, extra-cardiac organ dysfunction due to heart failure (e.g., cardiac
cachexia, liver, or kidney dysfunction) or type 2 pulmonary hypertension may be present but are
not required.

ARVC, arrhythmogenic right ventricular cardiomyopathy; BNP, B-type natriuretic peptide; ESC, European Society
of Cardiology; HFA, Heart Failure Association; HFmrEF, heart failure with mid-range ejection fraction; HFpEF,
heart failure with preserved ejection fraction; LV, left ventricular; LVEF, left ventricular ejection fraction; NT-
proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; pVO2, peak exercise
oxygen consumption; RV, right ventricular; 6MWTD, 6 min walk test distance.

For ADHF patients with advanced age (>75 years) and/or severe co-morbidities,
palliative care is the therapy of choice [7]. The PAL-HF trial was the first randomized
controlled trial to show clinical benefit with improvement in quality of life measures by
using an interdisciplinary intervention in end-stage HF patients [8]. For the rest of the
patients, we should consider advanced therapies, including heart transplantation (HTx) and
durable mechanical circulatory support (MCS). HTx, with recent 1- and 10-year survival
rates of approximately 90% and 60%, respectively, is the treatment of choice regarding
longevity and quality of life in selected patients with ADHF [9]. However, shortage of
donor organs, prolonged waiting-list time, and patient co-morbidities remain significant
limitations, making HTx a treatment available to only a small proportion of patients with
ADHF [10]. LVADs have emerged as an effective and viable form of therapy for this patient
group [11]. Though this field is experiencing explosive growth, LVAD recipients are at
risk for serious adverse events, making appropriate candidate selection the key to optimal
treatment outcomes.

2. Anatomy of the Current LVAD Technology

According to the INTERMACS registry in the USA, 95% of implanted LVADs in the
last decade are Continuous Flow (CF-LVADs) or non-pulsatile LVADs [12].Those CF-LVADs
have been technically upgraded and have better outcomes compared to the first-generation
pulsatile devices [13,14].Overall survival of patients after LVAD implantation (either as
a bridge to transplant or as destination therapy) is 83% at 1 year and 73% at 2 years [15].
First-generation devices were bulky, pneumatically driven, and pulsatile, leading to high
rates of morbidity, mortality, and device failure, thus significantly limiting the duration
of support [16]. New-generation CF-LVADs have smaller sizes, are easier to implant, and
have a decreased risk of infection [17]. Their size currently permits implantation via a
minimally invasive approach [18]. Moreover, placement in patients with smaller bodies or
left ventricular sizes and even right-sided support became feasible [19–21]. CF-LVADs have
also demonstrated improved durability (>10 years in some cases), they produce less noise
and they are user-friendly [22,23]. Furthermore, the cost effectiveness of LVAD therapy is
continuously improving, irrespective of the pre-implant strategy (bridge to transplant or
destination therapy), especially with new-generation devices, and this can promote LVAD
utilization in more patients and in weaker healthcare systems [24]. Due to the continuous
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flow, most patients have undetectable peripheral pulses. It should be mentioned that CF-
LVADs have been associated with gastrointestinal bleeding, arterial-venous malformations,
aortic insufficiency, and a lower rate of left ventricular recovery, partially explained by the
unique continuous flow physiology [25].

The most frequently implanted CF-LVADs are third-generation, intrapericardial, mag-
netically levitated, centrifugal pumps, like HeartWare™ HVAD™ (Medtronic, Minneapolis,
MN, USA) and the more recently approved fully magnetically levitated HeartMate 3™ (Ab-
bott Laboratories, Abbott Park, Illinois, US) (Figure 1). However, on June 2021, Medtronic
announced the withdrawal of the HVAD from the global market due to the risk of neuro-
logical adverse events, mortality, and potential failure to restart [26].
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Figure 1. Third-generation CF-LVADs, schematic demonstration, and chest X-ray appearance from
patients in our unit. (A) HeartWare HVAD™ (Medtronic), (B) HeartMate 3™ (Abbott).

Regardless of their design, the pumps draw blood from the apex of the left ventricle
through an inlet cannula (inflow) and advance it via an outlet cannula (outflow) into the
ascending aorta. The pump is connected to the external control system (controller) with
a percutaneous cable (driveline), which exits the body from the abdominal wall. The
controller monitors the pump function and displays the revolutions per minute (rpm),
flow (L/min), and power (Watts) so adjustments to LVAD speed can be made according to
the clinical setting. The pump is supplied with energy via portable rechargeable batteries
and/or an AC adaptor. Each device has specific external equipment to allow the patient to
move around freely.

Third-generation CF-LVADs have centrifugal pumps that direct flow perpendicular to
the axis of rotation. The pump houses the impeller, a spinning disk that is magnetically
levitated and can produce up to 10 L of blood flow per minute. These novel devices have
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no mechanical bearings and allow wide passages for the bloodstream in order to reduce
mechanical stress and thrombus formation (Figure 2). Among the existing CF-LVADs,
HeartMate3™ is fully magnetically levitated and periodically changes rotor speed to create
intrinsic pulsatility. In the 2-year outcomes of the MOMENTUM 3 trial, HeartMate 3™ was
superior to HeartMate II™ in improving survival free from disabling stroke and the need
to remove or replace the pump. There was a significant reduction in pump thrombosis,
which occurred only in 1.1% of the patients in the centrifugal pump group compared to
15.7% in the axial flow pump group. Remarkable was also the overall survival at 2 years
(82.8%) in the centrifugal flow arm, which approximates the survival of HTx [27].
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namic levitation, HeartWare™ HVAD™ (Medtronic), withdrawn from the market (B) full magnetic
levitation, HeartMate 3™ (Abbott), currently the only FDA-approved CF-LVAD.

New technological advances, like fully implantable LVADs with transcutaneous energy
transmission, are being awaited in the near future. The first human experience with this
innovative technology, using a coplanar energy transfer (CET) system coupled with a
CF-LVAD, has already been reported [28].

3. Indications for Durable MCS

The initial approach to an LVAD candidate should be the evaluation for eligibility
criteria for HTx after meticulous assessment by an experienced heart team. Although many
similarities exist in the selection criteria between the two advanced therapies, significant dif-
ferences must be considered in order to select the appropriate candidates. High pulmonary
vascular resistance or a recently treated malignancy (without metastases) are absolute
contraindications for HTx. In contrast, the criteria for MCS are more liberal. On the other
hand, some patients could experience good outcomes with HTx compared to MCS with
an LVAD. This applies to patients with unfavorable anatomy (small and/or hypertrophic
left ventricle) or severe right ventricular dysfunction, which may be further aggravated by
LVAD implantation, leading to irreversible right ventricular failure [6,29–31].

Four major indications for LVAD implantation currently exist: (1) bridge to transplan-
tation (BTT), (2) destination therapy (DT), (3) bridge to decision (BTD), and (4) bridge to
recovery (BTR).

Bridge to transplantation refers to patients who are eligible candidates for HTx but
are not able to maintain adequate organ perfusion despite treatment with inotropes and
temporary MCS. Because of hemodynamic instability and increased risk of mortality,
patients are too sick to wait for a potential donor and require durable MCS. Within this
context, the LVAD improves survival (88% at 1 year) and quality of life, and the patient
is presented for transplant in a compensated state with improved renal, hepatic function,
and nutritional status [15,32]. One out of 2 transplanted patients is already supported
mechanically at the time of HTx, whereas 30% of listed LVAD patients undergo HTx
within the first year of support [9,33]. Complications after LVAD implantation are a
major concern, and as a consequence, after 24 months of support, the implant strategy of
25–30% of patients may change from BTT to DT strategy [34]. Infections and stroke are
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major complications that can force an LVAD recipient to become ineligible for HTx [30,31].
Furthermore, allosensitization during LVAD support is not infrequent but represents a
risk factor either for delaying HTx and/or for antibody-mediated rejection after HTx [35].
Finally, the risks of a second cardiac surgery, the ones related to the expected HTx, are also
a disadvantage of the BTT strategy [31]. However, the post-transplant survival of patients
on LVAD support before HTx is not significantly different from those who did not require
LVAD as a BTT. Additionally, the duration of MCS does not negatively affect survival after
HTx [36].

Destination therapy refers to the implantation of a permanent LVAD in patients who
are not eligible for HTx. Due to the growing population of patients with ADHF, the
stagnant number of donor organs, and the increased durability of the newer devices, the
DT strategy is growing. DT accounts for nearly 50% of the implants in the current era
and is the leading indication for LVAD therapy in some countries [15,37].The landmark
REMATCH trial was the first to compare the efficacy of LVAD therapy versus optimal
conservative treatment in patients with end-stage HF who were ineligible for HTx. The
device used in the study was the first-generation pulsatile HeartMate XVE LVAD. The
study was completed in 2001 and showed a 48% risk reduction in mortality in the LVAD
group, thus providing the indication for DT. 1-year survival in patients receiving MCS was
52% vs. 25% in those who received medication, while the 2-year survival was 23% and
8%, respectively. In addition to survival benefits, the group of patients treated with LVAD
had improved quality of life, although the risk of experiencing severe complications was
doubled compared to the conservative treatment arm [38]. Subsequently, the multicenter
HeartMate II trial randomized 200 transplant-ineligible patients to receive therapy with the
HeartMate XVE vs. second-generation HeartMate II LVAD. This study showed dramatically
better event-free survival with the second-generation CF-LVAD. One-year survival was
68% (HM II) vs. 55% (HM XVE), while 2-year survival was 58% and 24%, respectively [39].
A remarkable further improvement in 1- (80%) and 2-year (69%) survival has been recently
demonstrated with the DT approach, in parallel with the increasing rate of implantation of
the third-generation CF-LVADs [15].

LVAD can be used as a bridge to decision in patients initially ineligible for transplant
listing due to co-morbidities (i.e., renal insufficiency, increased pulmonary vascular resis-
tances), which can potentially fully or partially resolve following a prolonged period of
LVAD support, rendering, eventually, some of them eligible for heart transplantation.

Bridge to recovery is used in selected patients with potentially reversible etiologies
of HF (e.g., myocarditis, peripartum/toxic cardiomyopathy) or in selected patients with
advanced chronic heart failure (see Section 6).

4. Patient Selection

A detailed patient assessment is mandatory prior to LVAD implantation. HF status
and treatment decisions will be determined by the patient’s clinical evaluation, laboratory
tests, imaging studies, cardiopulmonary stress testing, and right heart catheterization.

According to the 2021 ESC guidelines for the treatment of acute and chronic HF,
patients potentially eligible for LVAD implantation are those with severe symptoms despite
optimal medical and device therapy, absence of major contraindications and more than one
of the following: (a) LVEF <25% and if measured peakVO2 <12 mL/kg/min (and/or <50%
predicted value), (b) ≥3 unprovoked HF hospitalizations in the last 12 months, (c) inotrope
or temporary MCS dependence, and (d) progressive end-organ dysfunction due to low
perfusion [pulmonary capillary wedge pressure (PCWP) ≥20 mmHg and systolic arterial
pressure (SAP) ≤90 mmHg or cardiac index (CI) ≤2 L/min/m2)] [2]. The absence of severe,
irreversible right ventricular dysfunction is an important prerequisite for isolated LVAD
implantation.

Selecting patients for LVAD therapy is a challenging task, as successful therapy de-
pends on strategic implantation timing and the selection of the appropriate candidate.
Patients must have sufficient disease severity in order to derive a benefit, whereas patients



J. Cardiovasc. Dev. Dis. 2024, 11, 61 6 of 20

at very late or early stages of the disease should be excluded since they are not expected
to derive improvement in their clinical status and long-term survival with MCS. Taking
these into consideration, the contribution of INTERMACS classification was essential in
the evolving field of MCS.

This classification was created to predict the outcome of patients receiving MCS based
on their clinical and hemodynamic status. It has been proven to be a valuable tool for
determining candidate appropriateness and urgency for MCS, and it is considered more
specific than the NYHA classification. Briefly, patients in INTERMACS class 1 are in
cardiogenic shock (crash and burn), class 2 patients are deteriorating despite inotropic
therapy (sliding on inotropes), class 3 are stable on inotropes, while classes 4–7 refer
to ambulatory patients with varying severity of symptoms without inotropic therapy.
The INTERMACS classification also includes modifiers for profiles based on arrhythmia,
frequent hospital admissions (“frequent flyers”), and temporary MCS, increasing awareness
for these patients with high mortality risk [40] (Figure 3).
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The outcome of patients with INTERMACS class 1–2 is worse compared to other
classes after LVAD implantation. Profile 1–2 patients had the lowest survival at 30 days
and 1 year and greater lengths of hospitalization compared to the rest of the profiles.
These patients may benefit from short-term circulatory support prior to implantation of a
durable LVAD in order to improve clinical status. INTERMACS class 3 patients have better
outcomes than classes 1–2, and they are currently considered to have the optimal profile
for LVAD implantation. Outcomes in profiles 4–7 following LVAD implantation are less
studied, and they constitute a “grey zone”. Evidence exists that there is improvement in
clinical outcomes of ambulatory chronic heart failure patients after LVAD therapy [15,41,42].
The ROADMAP trial was a prospective, nonrandomized, observational study comparing
LVAD implantation vs. optimal medical therapy in patients with INTERMACS profiles 4–7.
Patients in the LVAD group had improved functional status and quality of life 2 years after
implantation, but they revealed a higher risk for complications compared to the optimal
medical therapy group. There was not a statistically significant difference in survival
between the two arms of the study [43]. Stratifying patients with INTERMACS profile, in a
further ROADMAP analysis, LVAD with current technology may be a reasonable therapeu-
tic approach in selected INTERMACS 4 patients with respect to survival and health-related
quality of life despite more frequent adverse events but seems to be inappropriate for most
INTERMACS 5–7 patients [44]. The MedaMACS registry enrolled 161 ambulatory AHF
patients (INTERMACS profiles 4–7) on optimal medical therapy and compared outcomes
with matched LVAD recipients from the INTERMACS registry. In the 2-year outcomes,
19% of patients were transplanted, 11% received LVAD therapy, and only 53% survived
conservative treatment, highlighting a high-risk group. There was no difference in the
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intention to treat survival rates between the two groups when including less sick profiles
6–7, but there was a survival benefit with LVAD support in patients with profiles 4 and 5
compared to medical therapy [45].

In conclusion, LVAD implantation should be considered in selected patients with
INTERMACS profiles 1–2, in all eligible profile three patients [6,29], while more data are
needed for the benefit of relatively early LVAD support in non-inotrope dependent patients
with profiles 4–7.

5. Referral of Patients to Advanced Heart Failure Centers

Early referral for assessment to a specialized ADHF center is very important for patient
outcomes. The evaluation should be performed by a qualified and experienced Heart Team
in collaboration with physicians from other specialties. Shared decision-making following
a multidisciplinary work-up, including VAD and Transplant coordinators, social workers,
psychologists, nutritionists, and physiotherapists, is essential for determining eligibility
and timing of LVAD implantation [46]. Identifying the patient with early advanced heart
failure is not an easy task. It has been suggested that patients who have marked limitations
on exertion (NYHA III) despite guideline-directed optimal medical therapy should be
considered for discussion with an HF specialist [29]. Recently, the American College of
Cardiology, in an expert consensus document, has summarized in the acronym “I NEED
HELP” high-risk features that should trigger consideration for referral for advanced HF
consultation [47] (Table 2).

Table 2. I NEED HELP, useful mnemonic that should trigger consideration for referral for advanced
HF consultation. From Yancy CW et al. J Am Coll Cardiol. 2018 [47], with permission.

I: Inotropes (iv)

N: NYHA IIIb-IV or persistently elevated natriuretic peptides

E: End-organ dysfunction

E: Ejection fraction ≤35%

D: Defibrillator shocks

H: Hospitalizations >1 in prior 12 months

E: Edema despite escalating diuretics

L: Low blood pressure ≤90 mmHg, high heart rate

P: Prognostic medication progressive intolerance/down-titration of guideline-directed medical
therapy

6. Considerations for Candidate Selection and Pre- and Post-LVAD Patient Management

INTERMACS classification alone is not sufficient for the selection of eligible LVAD
candidates because it lacks specificity and does not take into consideration relevant co-
morbidities and end-organ dysfunction. We should also consider psychosocial factors and
operative risk.

6.1. Right Ventricular Failure (RVF)

RVF is defined by INTERMACS as documented elevations in central venous pressure
(CVP) and its manifestations (edema, ascites, renal/hepatic dysfunction). RVF following
LVAD implantation is considered severe when there is a need for prolonged inotropic
support or RV mechanical support [48,49]. RVF complicates 10–40% of LVAD implants
and is associated with multiorgan failure, longer hospitalizations, and high morbidity and
mortality post-implant [50]. Therefore, simultaneous left and right ventricular assist device
(BiVAD), rather than LVAD support, should be considered for bridge to transplant in pa-
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tients with irreversible biventricular failure or at high risk for developing right ventricular
failure after LVAD implantation, given that delayed right ventricular support after initial
LVAD placement is associated with worse prognosis [15]. Consequently, identification of
patients at high risk for RVF is essential, but reliable prediction of post-operative RV failure
remains challenging despite the development of risk scores incorporating several vari-
ables [51]. The assessment is based on the contemporary evaluation of biochemical, hemo-
dynamic, and echocardiographic parameters that were found to predict post-implant RVF.
Biochemical parameters to be considered as high risk for the occurrence of RVF post-LVAD
implantation are: Total Bilirubin ≥2 mg/dL, aspartate aminotransferase (AST) ≥80 iu/L,
Creatinine ≥2 mg/dL, albumin ≤3 gr/dL, elevated INR and NT-proBNP levels [52–54].
With regard to hemodynamic parameters, central venous pressure (CVP) >15 mmHg, a
CVP to pulmonary capillary wedge pressure ratio (CVP/PCWP) >0.6, right ventricular
stroke work index (RVSWi) <300 mmHgxml/m2 and pulmonary artery pulsatility index
(PAPi) <2 have been identified as predictors ofhigher risk for post-operative RVF [55–57].
Imaging plays a key role in the multiparametric pre-LVAD patient evaluation, but it is
limited by complex RV geometry and load dependence. Echocardiographic parameters
used in order to predict post-LVAD RVF are: TAPSE < 7.5 mm (highly specific but with
poor sensitivity) [58], RV-to-LV end-diastolic diameter ratios (RV/LV ≥ 0.75) [59], fractional
area change (FAC < 35%) [60], and RV free wall longitudinal strain (RVFWLS) with very
promising prognostic significance (RVFWLS < −11% in absolute values) [61,62]. Patients
with evidence of RV dysfunction should be hospitalized pre-operatively for aggressive
management with diuretics, inotropes (dobutamine, milrinone), or temporary percuta-
neous MCS and then reassessed, aiming for patient optimization [31]. Evidence exists that
prolonged intra-aortic balloon pump (IABP) support of patients presenting with ADHF
and RV dysfunction may improve right ventricular and end-organ function [63,64]. In our
clinical practice, we have observed that patients with biventricular failure demonstrate RV
function improvement after prolonged IABP support, allowing safer LVAD implantation in
terms of risk for post-operative RVF [65].

6.2. Post-Operative Temporary Mechanical RV Support

In a recent study based on an INTERMACS analysis of 6632 LVAD patients, it emerged
that more than one-third of patients post-LVAD implantation had temporary or durable RV
mechanical support. Severe RV failure post-LVAD was associated with poor outcomes [66].
Determining which LVAD patient requires mechanical RV support remains challenging,
and the decision should be the result of a multidisciplinary team approach, taking into
consideration detailed clinical, advanced echocardiographic, and hemodynamic assessment.
Due to the complexity and multiple factors involved, it has been proposed that artificial
intelligence (AI) technology might be able to predict the risk of right ventricular failure
post-LVAD implantation more accurately [67].

The current options for temporary mechanical cardiac support are peripheral Extra-
corporeal Membrane Oxygenation (ECMO), IMPELLA RP, Tandem RVAD, and Protek Duo
cannula. Intra-aortic balloon pump (IABP) has been used in the past to support indirectly
RV perfusion with insufficient outcome results; however, modern mechanical devices have
radically changed the strategic plan due to greater and more efficient RV support provided,
reducing significantly the current use of IABP in acute RV failure post-LVAD implantation.

IMPELLA RP (Abiomed, Danvers) is a percutaneous microaxial pump (22 F size)
positioned through the femoral vein with a distal tip to the pulmonary artery (PA) draining
blood from the right atrium (RA) to PA (direct RV bypass). It has been previously shown
from the the case series that IMPELLA RP is safe and efficient in improving hemodynamics
and survival [68]. Tandem Protek Duo (Cardiac Assist Inc., Pittsburgh, PA 15238, USA)
is a dual-lumen cannula (usually 29/31 F size) positioned percutaneously through the
internal jugular vein to PA, draining blood from RA via an external centrifugal pump
to PA (direct RV bypass). This percutaneous mechanical device has been proven to be
feasible, relatively safe, and potentially effective with the advantage of full mobilization [69].



J. Cardiovasc. Dev. Dis. 2024, 11, 61 9 of 20

Veno-arterial (VA) ECMO is another valid low-cost option for temporary right ventricular
support (indirect RV bypass) since it can unload RV successfully and provide adequate
tissue perfusion at the same time. VA-ECMO is inserted percutaneously in the majority
of cases via the femoral approach, but it might require a surgical cut approach. An inflow
cannula (21–25 F size) is positioned through the femoral vein at the level of inferior vena
cava/RA, draining blood via a centrifugal pump through an oxygenator and returning
oxygenated blood via a retrograde outflow cannula (17–21 F size) at the femoral artery with
an additional connected ante-grade-flow arterial cannula (6–8 F size) to keep limb perfusion.
Other VA-ECMO configurations, such as trans-femoral/trans-axillary-pulmonary artery
cannulation, might provide early mobilization and ambulation and should always be
considered [70]. VA-ECMO offers the advantage of oxygenator support and should be the
gold–standard approach if there is moderate to severe pulmonary hypertension and/or
impaired blood gas exchange due to respiratory alterations. However, VA-ECMO increases
afterload and might affect LVAD output if not managed with echocardiographic and
hemodynamic monitoring to maintain adequate total cardiac output for tissue perfusion
and LV unloading to avoid pulmonary edema and cardiac and pulmonary vein thrombosis.

VA-ECMO or RV assist device (RVAD) (CentriMag R©, Abbott, Abbott Park, IL, USA)
with/without oxygenator remains the most durable approved mechanical assist device
(~30 days), which in most cases is sufficient to provide RV recovery (approximately 60%
weaning rate). However, long-term support might be required in cases of RV failure
persistence, and temporary mechanical support should be replaced by long-term support
devices such as a 2ndHeartMate 3 RV positioned (off-label use) or a paracorporeal pulsatile
ventricular assist device as a biventricular support configuration (Dual Berlin Heart EXCOR)
or total artificial heart (SynCardia or Aeson). These are challenging options, particularly due
to the presence of LVAD support and anatomical peculiarities that determine its feasibility
and applicability in these patients.

6.3. Aortic Insufficiency (AI)

More than mild AI is a contraindication for LVAD implantation as it creates a closed
circuit that does not contribute to peripheral perfusion and, at the same time, diminishes
ventricular unloading. LVAD support creates a pressure gradient across the aortic valve,
which restricts its motion, leading in some cases and especially in patients with bioprosthe-
sis to the fusion of the commissures and degeneration, resulting in worsening AI [71,72].
LVAD speed optimization in order to maintain intermittent aortic valve opening seems
to be protective [73]. AI should be addressed at the time of implantation either by re-
placing it with a bioprosthetic valve or by approximating the aortic valve leaflets using
Park’s Stich. Mechanical aortic valve replacement is contraindicated at the time of LVAD
implantation [74,75].

6.4. Renal Dysfunction

Severe irreversible end-organ dysfunction and systemic diseases, which limit survival
to <2 years, are contraindications for LVAD implantation [31,75]. Renal impairment in
patients with ADHF is related mainly to poor renal perfusion, venous congestion, non-
hemodynamic factors such as renin angiotensin aldosterone system (RAAS) and sympa-
thetic nervous system (SNS) activation, inflammation, endothelial dysfunction, and anemia
and to a lesser degree to intrinsic parenchymal disease from chronic co-morbidities [76].
In many patients, renal dysfunction is reversible with LVAD support, possibly due to
improved cardiac output, decongestion, and decreased neurohormonal and immune-
inflammatory activation. Negative predictors of improved renal function include small
kidney size on ultrasonography (<10 cm), older age, and use of angiotensin-converting
enzyme inhibitors [77]. Lower hemoglobin and increased proteinuria at baseline may
also predict worse renal outcomes postoperatively [78]. End-stage renal failure on renal
replacement therapy is an absolute contraindication for LVAD implantation because it is
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associated with a high risk of morbidity and mortality [79]. However, the role of LVAD
therapy on renal function is an area of ongoing research [80].

6.5. Bleeding Risk

Bleeding is one of the most common adverse events and causes of rehospitalization in
patients supported with LVADs. It manifests as surgical bleeding in the early post-operative
phase and as gastrointestinal bleeding after the first 3 months of support [12,81]. Upper
gastrointestinal tract is the most common site of bleeding and is typically associated with
the development of arterial-venous malformations, which is thought to be a consequence of
diminished pulsatility [82]. Patients should have upper and lower endoscopy, and lesions
predisposing to bleeding should be treated before LVAD implantation. In order to advert
pump thrombosis, patients after LVAD implantation must be treated with a coumarin
anticoagulant (targeting an INR between 2–3) and an antiplatelet agent (usually aspirin
81–325 mg daily). The intensive anti-thrombotic regimen and acquired von Willebrand
factor (vWf) deficiency from pathologic shear stress (including vWf unfolding and prote-
olysis of large into smaller, less hemostatic, multimers) are both contributing to the high
prevalence of bleeding among LVAD recipients [83]. Consequently, the presence of hemor-
rhagic diathesis is a contraindication to LVAD implant unless coagulopathy is caused by
reversible hepatic dysfunction. Low platelet count before implantation also predicts poor
outcomes, and sometimes, the presence of heparin-induced thrombocytopenia antibodies
needs to be excluded [75,84,85]. In the recent ARIES-HM3 trial, the exclusion of aspirin
from the standard anti-thrombotic regimen was safe and reduced bleeding events, a result
that may change current clinical practice [86].

6.6. Infection

Active infection and sepsis are contraindications to LVAD implantation. These patients
should be aggressively treated with the contribution of infectious disease experts. Infections
are associated with an increased risk of mortality, and they are extremely difficult to
eradicate once the LVAD is inoculated, so preoperative antibiotic prophylaxis should be
implemented [75,87–89]. With the implementation of contemporary effective anti-viral
regimens, LVAD implantation seems to be a feasible treatment for selected patients with
controlled HIV, HBV or HCV infection [90,91].

6.7. Psychosocial Evaluation

Candidates for durable MCS must be motivated, well-informed, and able to comply
with the complex treatment. Additionally, they must be capable of learning the device’s
operation, alarm response, and daily wound care. There is also a need to have a caregiver,
usually someone from their family environment. In accordance with transplantation rec-
ommendations, all candidates for LVAD therapy should be evaluated by mental health
professionals and social workers to ascertain that they are able to achieve adequate care in
the outpatient setting before the decision to proceed with implantation is made [2,75,92].
Active alcohol/substance abuse, severe cognitive-behavioral disabilities or dementia, his-
tory of noncompliance, insufficient social support, and mental retardation are related to
poor outcomes, and they may be contraindications to LVAD therapy [31,75,93].

6.8. Exercise Training (ET)

Despite the significant hemodynamic improvement and peripheral muscle strength
beneficial effects [94,95], exercise capacity often remains below 50% of predicted peakVO2,
with significant chronotropic incompetence similar to advanced HF [96], while 20–30% of
VAD patients do not functionally recover after durable mechanical support. Exercise might,
therefore, provide additional benefits to this category of patients. Exercise training appears
to be feasible and safe and has been recently recommended for patients supported with
LVAD [97–99]. Dynamic resistance and respiratory training are indicated, but they should
be carefully implemented in a cardiac rehabilitation program [99,100]. ET tends to improve
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exercise capacity and quality of life in LVAD recipients. It might also promote myocardial
recovery due to its direct effects on myocardial metabolism, as indicated by training-
induced up-regulation of physiological growth signaling pathways [101]. Although the
existing evidence from small trials is encouraging, further research is required in this new
fascinating area. To this end, the European prospective, randomized Ex-VAD trial will
assess the potential incremental beneficial effects of a supervised aerobic endurance and
resistance ET program on functional capacity and quality of life in patients with LVAD [102].

6.9. Myocardial Recovery

Unloading of the heart during LVAD support may allow reverse cardiac remodeling
and improvement in myocardial structure and function to the level that the device could
be removed [103–105]. A study from the Harefield program in the UK showed that sur-
vival rates of patients post LVAD weaning due to myocardial recovery were similar to
the post-heart transplantation outcomes [106], while another study has concluded that
post-explant exercise capacity was almost similar to that of healthy controls [107]. As
indicated in Table 3, sufficient recovery to allow device explantation has been observed in
3.3–73% of LVAD recipients, depending on the patient selection criteria and the specific
population studied. Recent data from the U.S. multicenter RESTAGE-HF trial demonstrated
that in selected heart failure patients (i.e., HF duration less than 5 years, non-ischemic
cardiomyopathy, <60 yo) the implementation of standard pharmacological therapy, pump
speed optimization, and monitoring of heart function can lead to LVAD explantation rates
of 50% [108] (Table 3).

The Interagency Registry for Mechanically Assisted Circulatory Support (INTER-
MACS) provides strong evidence of what is the incidence of post-LVAD myocardial recov-
ery in the non-selected patient populations, i.e., “all comers”. In two INTERMACS studies
(performed by the Columbia group and the Utah group, respectively), approximately 13%
of more than 7000 LVAD patients (that underwent post-LVAD serial echocardiograms) expe-
rienced a post-LVAD LVEF >40% [109,110].On top of these two reports from INTERMACS,
a recent prospective multicenter study also investigated the reverse cardiac remodeling
and recovery taking place after continuous flow LVAD [111]. The study evaluated the
degree of structural (LV internal dimension at end-diastole [LVIDd]) and functional (LV
ejection fraction [LVEF]) change after LVAD. Patients experiencing an improvement in LVEF
≥40% and LVIDd ≤6.0 cm were termed responders, absolute change in LVEF of ≥5% and
LVEF <40% were termed partial responders, and the remaining patients with no significant
improvement in LVEF were termed non responders. Among 358 LVAD patients, 34 (10%)
were responders, 112 (31%) were partial responders, and the remaining 212 (59%) were non
responders. The median change in LVEF was 27%, 9%, and −2%, respectively. The use
of guideline-directed medical therapy for heart failure was higher in partial responders
and responders. Structural changes (LVIDd) followed a different pattern with significant
improvements even in patients who had minimal LVEF improvement. Altogether, the
conclusion from these studies and the studies included in Table 3 is that reverse cardiac
remodeling associated with durable LVAD support is not an “all-or-none” phenomenon
(like pregnancy or death) and manifests in a continuous spectrum.

Predictors of cardiac recovery during LVAD support are younger age, non-ischemic
HF etiology, duration of HF history less than 5 years, and less baseline left ventricular
dilatation [108–113]. Additionally, consideration of novel echocardiographic markers like
rotational mechanics and inflammation biomarkers could further enhance the ability to
recognize patients with a higher probability of myocardial recovery before LVAD implanta-
tion [114,115]. Specific therapeutic and monitoring protocols should be implemented in
these patients with a high likelihood of reverse remodeling [108,113].

In the case of myocardial recovery, LVADs can be explanted by either full removal of
the pump or by deactivation and leaving different degrees of device material in the patient
(decommissioning). Various techniques for apical closure of the left ventricle following the
inflow cannula have been described. Occlusion of the apex with a custom-made plug with
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preservation of the sewing ring potentially provides the advantage of off-pump removal
and the facilitation of LVAD re-implantation if heart failure reoccurs [116]. Others have
suggested a ventriculoplasty technique following the removal of the sewing ring [117].
LVAD decommissioning provides the advantage of avoiding a complex redo sternotomy
and has emerged as an alternative technique for LVAD explantation. The device is left in
place, and the flow through it is interrupted either by ligation of the outflow graft through a
small thoracotomy [118] or percutaneously by placing an AMPLATZER Vascular Plug II in
the outflow graft [119]. In the case of LVAD decommissioning, the risk of infection requires
close patient monitoring. Temporal use of anticoagulants and antiplatelet therapy have
been described. Future studies will provide more information on the surgical technique for
LVAD removal following myocardial recovery.

LVAD population is a unique myocardial recovery investigational model that has
significant research implications and could be utilized to uncover novel therapeutic biology
targets in order to impact the entire HF population [105].

Table 3. List of prospective studies investigating myocardial recovery during chronic LVAD support.
Modified from Drakos et al. JACC Basic TranslSci 2017 [105].

Group, Year
(Ref. #) n HF Etiology

Adjuvant
Drug Therapy

Protocol

Heart Function
Therapy
Protocol

LVAD Support
Duration
(Months)

Cardiac
Recovery

Freedom from HF
Recurrence after

Explantation,
Follow-Up Duration

US multicentre
study, 2020

[108]
40 NICM 100% Yes Yes Up to 18 50%

90% and 77%,
1 and 3 yrs
respectively

US LVAD
Working

Group, 2007
[120]

67 NICM: 55%,
ICM: 45%

Not
standardized Yes 4.5 NICM: 13.5%

ICM: 3.3% 100%, 6 months

Berlin, 2008
and 2010
[121,122]

188 NICM: 100% Not
standardized Yes 4 NICM: 19% 74% and 66%, 3 and

5 yrs, respectively

Utah Cardiac
Recovery

Program, 2016
[123]

154 NICM: 60%,
ICM: 40%

Not
standardized Yesu 6 NICM: 21%

ICM: 5% N/A

Montefiore,
2013 [124] 21 NICM: 62%,

ICM: 38% Yes Yes 9 NICM: 23%
ICM: 0% 100%, 57 months

Gothenburg,
2006 [125] 18 NICM: 83%,

ICM: 17%
Not

standardized Yes 7 NICM: 17%
ICM: 0% 33%, 8 yrs

Vancouver,
2011 [126] 17 Not reported Not

standardized Yes 7 NICM and
ICM: 23% 100%, 2 yrs

Pittsburgh,
2003 [127] 18 NICM: 72%,

ICM: 28%
Not

standardized Yes 8 NICM: 38%
ICM: 20% 67%, 16.5 months

Texas Heart
Institute, 2003

[128]
16 NICM: 75%,

ICM: 25% Yes Yes 8 NICM: 58%
ICM: 50% 78%, 14.3 months

US IMAC, 2012
[129] 14 NICM: 100% Not

standardized Yes 3.5 NICM: 67% 87.5%, 17.5 months

Harefield, 2006
[103] 15 NICM: 100% Yes Yes 11 NICM: 73% 100% and 89%, 1 and

4 yrs, respectively

Harefield, 2011
[113] 20 NICM: 100% Yes Yes 9 NICM: 60% 83%, 3 yrs

University of
Athens, 2007

[130]
8 NICM: 100% Yes Yes 7 NICM: 50% 100%, 2yrs
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6.10. Complications after LVAD Implantation

The majority of LVAD recipients experience rehospitalizations for various causes,
starting early after implantation. After the first year, extended survival is heavily con-
strained by the occurrence of adverse events and post-operative end-organ dysfunction.
Infections, bleeding, stroke, and multisystem organ failure are among the most common
LVAD complications and contribute to more than 50% of deaths. Furthermore, balancing
the coexisting risks of bleeding and thrombosis is frequently a challenging task [131].

Infections in patients with an LVAD constitute the Achilles Heel of this therapy. Infec-
tions can be specific to the LVAD involving the driveline, the pocket, the cannulas, and the
pump. Furthermore, infections can be related to LVAD (i.e., mediastinitis), and additionally,
they can be non-LVAD related (i.e., pneumonia). Driveline infections are the most common
device complication. Various risk factors have been identified for the occurrence of infec-
tions in patients supported with LVADs, including diabetes mellitus, obesity, and older
age [132]. The most common microorganisms identified in infected patients with LVADs
are staphylococcus aureus and coagulase-negative staphylococci, with lower occurrence
rates for pseudomonas and fungi.

The management of the infected patient with LVAD depends on the location of the
infection, the causative microorganism, and the severity, with most of the superficial drive-
line infections to be managed successfully with oral antibiotics for 10 days [133]. However,
for those patients with more severe infections involving abscesses, it is necessary to apply
an extended duration of antibiotic administration. In resistant cases, it is unavoidable to
proceed to surgical management of the infection with repositioning of the driveline, or for
more persistent cases, device removal or exchange. The reoccurrence of the infections, even
in the cases of device removal and exchange, is high. An increase in urgency status can
shorten the time for HTx for patients who face severe LVAD infections. These patients may
reveal severe infections postoperatively, although post-HTx survival does not appear to be
affected [134].

7. Conclusions

Within a relatively short period of time, technological advancements along with
improved medical management have contributed to remarkable progress in the field of
MCS.LVADs are undoubtedly an established therapy, saving the lives of thousands of pa-
tients suffering from end-stage HF. Outcomes are continuously improving and the number
of LVAD implantations for destination therapy is consistently growing. Currently, the
candidate selection process is moving toward support for ambulatory patients. However,
the risk for serious adverse events is significant and remains an important limiting factor for
LVAD therapy. We anticipate that innovative engineering will overcome these challenges
in the near future. Smaller devices, less invasive techniques, improved biocompatibility,
and elimination of the driveline are eventually expected to make LVADs available to more
patients and at earlier heart failure stages.
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