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Abstract: Heart failure is a cardiovascular condition, leading to fatigue, breathlessness, and fluid
retention. It affects around 56 million people globally and is a leading cause of hospitalization and
mortality. Its prevalence is rising due to aging populations and lifestyle factors. Managing heart
failure demands a multidisciplinary approach, encompassing medications, lifestyle modifications,
and often medical devices or surgeries. The treatment burden is substantial, impacting patients’
daily lives and straining healthcare systems. Improving early detection, novel therapies, and patient
education are crucial for alleviating the burden and enhancing the quality of life. There are notable
advancements in the field of heart failure treatment and prevention. We will discuss significant phar-
macological and device advances related to heart failure, including angiotensin receptor–neprilysin
inhibitor, sodium–glucose co-transporter inhibition, glucagon-like peptide-1 agonist, cardiac resyn-
chronization therapy, cardiac contractility modulation, mechanical circulatory support devices, and
transcatheter valve interventions. We will also review novel therapies on the horizon, emerging
technologies like CRISPR-based treatments for genetic anomalies, and the involvement of artificial
intelligence in heart failure detection and management.

Keywords: heart failure; ARNI; SGLT2 inhibitors; gene therapies; artificial intelligence

1. Introduction

Heart failure is caused by left ventricular dysfunction, resulting in clinical symptoms
such as the shortness of breath, tiredness, and the limitation of exercise capacity. It is a
major public health concern with an estimated prevalence of over 56 million globally, with
an age-standardized rate (ASR) of 711.90 per 100,000 population [1]. Though there was
an improvement in ASR from 1990 to 2019, ASR prevalence has increased at an annual
percentage change of 0.6% from 2017 to 2019 [1]. A nationwide survey from the American
Heart Association in 2013 reported that direct and indirect costs attributed to HF will
significantly increase from USD 30.7 billion in 2012 to USD 69.7 billion in 2030 [2]. In
attempts to reduce the morbidity and mortality of heart failure patients, multiple new
therapeutic interventions have surfaced in the last decade. This review will focus on recent
advancements significantly impacting heart failure management. We will discuss the topic
under the following categories: pharmacological therapies, device-based interventions,
biomarkers in heart failure, telemedicine, and emerging trends (Figure 1).
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Figure 1. Central illustration. 

2. Classification 
Heart failure has been classified according to the left ventricular ejection fraction 

(LVEF) [3]: 
1. Heart failure with preserved ejection fraction (HFpEF: LVEF ≥ 50%); 
2. Heart failure with midrange ejection fraction (HFmrEF: LVEF 41%–49%); 
3. Heart failure with reduced ejection fraction (HFrEF: LVEF ≤ 40%). 

Multiple evidence-based interventions have evolved for HFrEF, refining treatment 
for better outcomes. On the contrary, HFpEF management, unfortunately, has not had any 
significant progress because of a lack of clear benefits of the same intervention in this pa-
tient population in randomized controlled trials. This highlights the distinct difference in 
the underlying pathology for these categories, contributing to differential treatment re-
sponses. 

American College of Cardiology (ACC)/American Heart Association (AHA) pro-
vided various stages of heart failure (Table 1) to identify high-risk subgroups and target 
early interventions to reduce morbidity and mortality [4]. 

Table 1. ACC/AHA heart failure stages. 

Stage A Patients at risk for HF but have no symptoms or structural heart disease. 
Stage B Patients have structural heart disease but are asymptomatic. 
Stage C Patients have structural heart disease plus symptoms. 
Stage D Patients have refractory HF that requires modified interventions. 

HFpEF vs. HFrEF 
There is significant variation in treatment responses between disease phenotypes. As 

discussed in detail below, there is contrast in benefits of most pharmacotherapies between 
HFrEF and HFpEF. This is likely secondary to dissimilarity in pathogenesis despite simi-
lar clinical symptoms. Multisystem abnormalities are common in HFpEF patients [5]. Dif-
ferent mechanisms including arterial hypertension causing adverse LV remodeling and 
pro-inflammatory co-morbidities causing microvascular endothelial cell inflammation 
and resultant left ventricular remodeling are some of the proposed theories. Defining the 
various phenotypes and the identification and targeting of treatment are active research 
areas in this field [5]. H2FPEF score proposed to be helpful in diagnosing HFpEF in pa-
tients presenting with unexplained dyspnea [6]. The score is calculated based on six vari-
ables: age, BMI, number of antihypertensive medications, atrial fibrillation history, pul-
monary hypertension, and filling pressures based on echo parameters. A value of > 6 is 
considered diagnostic of HFpEF. A value of < 2 rules out HFpEF and additional testing 
suggested for intermediate values. 

Unlike HFrEF, HFpEF lacks evidence-based therapeutic targets. Apart from recent 
trials showing the benefits of sodium–glucose cotransporter 2 inhibitors and glucagon-
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2. Classification

Heart failure has been classified according to the left ventricular ejection fraction
(LVEF) [3]:

1. Heart failure with preserved ejection fraction (HFpEF: LVEF ≥ 50%);
2. Heart failure with midrange ejection fraction (HFmrEF: LVEF 41–49%);
3. Heart failure with reduced ejection fraction (HFrEF: LVEF ≤ 40%).

Multiple evidence-based interventions have evolved for HFrEF, refining treatment
for better outcomes. On the contrary, HFpEF management, unfortunately, has not had any
significant progress because of a lack of clear benefits of the same intervention in this patient
population in randomized controlled trials. This highlights the distinct difference in the
underlying pathology for these categories, contributing to differential treatment responses.

American College of Cardiology (ACC)/American Heart Association (AHA) provided
various stages of heart failure (Table 1) to identify high-risk subgroups and target early
interventions to reduce morbidity and mortality [4].

Table 1. ACC/AHA heart failure stages.

Stage A Patients at risk for HF but have no symptoms or structural heart disease.
Stage B Patients have structural heart disease but are asymptomatic.
Stage C Patients have structural heart disease plus symptoms.
Stage D Patients have refractory HF that requires modified interventions.

HFpEF vs. HFrEF

There is significant variation in treatment responses between disease phenotypes. As
discussed in detail below, there is contrast in benefits of most pharmacotherapies between
HFrEF and HFpEF. This is likely secondary to dissimilarity in pathogenesis despite similar
clinical symptoms. Multisystem abnormalities are common in HFpEF patients [5]. Different
mechanisms including arterial hypertension causing adverse LV remodeling and pro-
inflammatory co-morbidities causing microvascular endothelial cell inflammation and
resultant left ventricular remodeling are some of the proposed theories. Defining the
various phenotypes and the identification and targeting of treatment are active research
areas in this field [5]. H2FPEF score proposed to be helpful in diagnosing HFpEF in patients
presenting with unexplained dyspnea [6]. The score is calculated based on six variables:
age, BMI, number of antihypertensive medications, atrial fibrillation history, pulmonary
hypertension, and filling pressures based on echo parameters. A value of >6 is considered
diagnostic of HFpEF. A value of <2 rules out HFpEF and additional testing suggested for
intermediate values.

Unlike HFrEF, HFpEF lacks evidence-based therapeutic targets. Apart from recent
trials showing the benefits of sodium–glucose cotransporter 2 inhibitors and glucagon-
like peptide-1 agonists as discussed below, HFpEF management has traditionally focused
on symptomatic management with decongestion and treating underlying co-morbidities
such as diabetes, obesity, HTN, ischemic heart disease, and arrhythmia. Also, it has
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focused on identifying pathologies with proven therapeutic strategies such as hypertrophic
cardiomyopathy, amyloid cardiomyopathy, high-output heart failure, primary pulmonary
HTN, constrictive pericarditis, and cardiac sarcoidosis. Revascularization has been shown
to improve HFpEF outcomes in observational studies [5]. Exercise training has also shown
to improve peak oxygen uptake, 6 min walk distance, and quality of life in randomized
controlled trials [7]. Physical rehabilitation has been shown to be helpful even in frail
patients after being hospitalization for heart failure [8].

3. Pharmacological Therapies
3.1. ARNI (Angiotensin Receptor–Neprilysin Inhibitor)

Beta-blockers, angiotensin-converting enzyme inhibitors (ACEi), and mineralocor-
ticoid receptor antagonists (MRA) are traditionally considered the cornerstone in the
management of patients with HFrEF based on multiple trials with class 1 recommendations
in guidelines [9]. PARADIGM-HF was the first trial to show significant clinical benefit of
this new medication (Sacubitril–Valsartan). When compared to Enalapril, ARNI reduced
cardiovascular mortality (13.3% vs. 16.5%; hazard ratio (HR): 0.8) and reduced hospitaliza-
tion for heart failure (12.8% vs. 15.6%; HR: 0.79) [10]. This trial studied stable heart failure
patients with LVEF ≤ 40% and was prematurely terminated because of its overwhelming
benefit. Later, PIONEER-HF investigators showed significant improvement in NT-proBNP
(N-terminal Pro-B-type natriuretic peptide), indicating an improvement in heart failure in
HFrEF patients hospitalized for acute decompensation [11].

The same drug did not show significant improvement in heart failure hospitalizations
or death from cardiovascular causes among patients with heart failure and LVEF ≥ 45% in
the PARAGON-HF trial [12]. However, there was a considerable improvement in NT-pro
BNP in patients with LVEF > 40%, and a recent worsening heart failure event with ARNI
compared to Valsartan in the PARAGLIDE-HF trial [13].

Given the substantial benefit of ARNI, especially in HFrEF, ARNI had class I recom-
mendations in patients with HFrEF in the latest reiteration of heart failure management
guidelines by the American College of Cardiology [14]. Also, it recommended switching
stable heart failure patients from ACEi/ARB to ARNI.

3.2. SGLT2 Inhibitors (Sodium–Glucose Cotransporter 2 Inhibitors)

SGLT2 inhibitors reduce glycemia, blood pressure, body weight, and albuminuria in
people with diabetes mellitus. EMPA-REG investigators showed a substantial benefit of
empagliflozin in reducing primary outcomes inclusive of death from a cardiovascular cause,
nonfatal myocardial infarction, or nonfatal stroke. The composite adverse event happened
in 37.4 per 1000 patient-years in the empagliflozin arm vs. 43.9 per 1000 patient-years in
the control arm (HR—0.86). Empagliflozin also reduced death from any cause and heart
failure hospitalizations [15].

Subsequently, the CANVAS group reported improved cardiovascular mortality and
morbidity with Canagliflozin in 2017 [16]. The composite primary outcome, like the EMPA-
REG trial, occurred in 26.9 participants per 1000 patient-years in the intervention group
compared to 31.5 participants in the control arm (HR—0.86). There was also a clear signal
for reduced heart failure hospitalization with 5.5 vs. 8.7 events in the intervention and
control arm, respectively (HR: 0.67). High amputation rates raised safety concerns in
patients with previously diagnosed peripheral arterial disease.

Later, the DAPA-HF and EMPEROR-Reduced trials were conducted specifically in
HFrEF patients with or without diabetes. Both showed significant improvements in their
primary outcome, which was heart failure hospitalization or cardiovascular death, with
a hazard ratio of 0.74 with Dapagliflozin [17] and 0.75 with Empagliflozin [18] (Figure 2).
These studies noted no significant safety concerns other than an increased risk of uncompli-
cated genital infections.
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Figure 2. Clinical trials of SGLT2 inhibitors in stabilized heart failure patients irrespective of their
diabetic status.

Then, the trial was repeated in other heart failure groups as well. Dapagliflozin [19]
and Empagliflozin [20] reduced heart failure hospitalizations in patients with heart failure
and LVEF > 40% (Figure 2). SGLT2 inhibitors are the only medication class that has shown
benefit in patients with HFpEF in randomized controlled trials. SGLT2 inhibitors have
the highest rank of recommendations for patients with HFrEF in the 2022 ACC/AHA
guidelines [14].

3.3. Vericiguat

Modulating the nitric oxide-soluble guanylate cyclase pathway that generates cyclic
GMP (guanosine 3′,5′-cyclic monophosphate) is essential for normal cardiovascular func-
tion. In heart failure, endothelial dysfunction and reactive oxygen species lower nitric
oxide bioavailability, resulting in a relative deficiency of soluble guanylate cyclase and
reduced cyclic GMP generation. Vericiguat enhances the cyclic GMP pathway by directly
stimulating soluble guanylate cyclase through a binding site independent of nitric oxide
(Figure 3).
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This novel oral soluble guanylate cyclase stimulator showed a reduction in the primary
outcome, a composite of death from cardiovascular causes and hospitalization for heart
failure in patients with heart failure and LVEF < 45% with evidence of recent worsening of
heart failure warranting hospitalization or outpatient intravenous diuretic therapy. Heart
failure hospitalizations predominantly drove the positive response. The study patients had
a worse NYHA class and higher NT-ProBNP levels than ARNI and SGLT2 trials, indicating
a high-risk subset. The difference was notable after three months of treatment [21]. Given
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its vasodilating properties, Vericiguat resulted in symptomatic hypotension and syncope,
although these were not significantly higher than placebo. The median follow-up time in
the study was 10.8 months. A longer follow-up time may show more promising results in
future studies.

3.4. GLP (Glucagon-like Peptide)-1 Agonist

Multiple earlier trials evaluating GLP-1 receptor and cardiovascular outcomes did not
focus on heart failure outcomes in their primary endpoints [22]. In the HARMONY trial,
Albiglutide showed a reduction in heart failure hospitalization (HR—0.71). The trial did
not include baseline LVEF or NYHA classification. STEP-HFpEF trial was the recent GLP-1
trial focusing on HFpEF, showing improvements in symptoms and exercise function [23].
GLP-1 Agnoist are the second class of drugs to offer some benefit in randomized controlled
trials for patient with HFpEF.

In another recent trial, Semaglutide was shown to have cardiovascular benefits in
obese patients even in the absence of diabetes mellitus [24]. In this study, a reduction
in the composite heart failure endpoint (cardiovascular death or hospitalization or an
urgent medical visit for heart failure) was observed. The hazard ratio was 0.81, which was
statistically significant. A significant discontinuation of Semaglutide (~16.6%) was noted
in the trial because of its side effects. The predominant side effect was gastrointestinal
disorders. Baseline NYHA classification or LVEF was not included in this study.

4. Device-Based Interventions
4.1. Cardiac Resynchronization Therapy (CRT)

CRT is an advanced pacemaker option with an additional left ventricular pacing lead
via coronary sinus in patients with conduction system disease, causing dyssynchrony to
improve LVEF, and it was evaluated in 2005 in the CARE-HF [25] trial and then in the
MADIT-CRT [26] trial in 2009. It is most beneficial for patients with HFrEF and Left Bundle
Branch Block (LBBB) with QRS duration of more than 150 milliseconds. Patients with
QRS complexes duration of 120–149 milliseconds or non-LBBB morphology and HFrEF
may also benefit from this device depending on their baseline NYHA functional class and
LVEF [14]. A recent BUDAPEST trial showed the significant benefits of upgrading from
a dual-chamber pacemaker to CRT in patients with a high burden of RV pacing (≥20%),
wide QRS complex (≥150 milliseconds), and reduced ejection fraction (≤35%) [27].

4.2. Transcatheter Mitral Valve Interventions

Mitraclip is a transcatheter intervention option for mitral valve regurgitation in pa-
tients at high risk for surgical interventions. COAPT (Cardiovascular Outcomes Assessment
of the MitraClip Percutaneous Therapy for Heart Failure patients with Functional Mitral
Regurgitation) trial favored the intervention in this group with a significant reduction in
heart failure hospitalization (HR: 0.53) and all-cause mortality (HR: 0.62) [28]. However,
MITRA-FR (Percutaneous Repair with Mitraclip Device for Severe Functional/Secondary
Mitral Regurgitation) did not benefit significantly from this technology in a similar patient
population in terms of mortality or heart failure hospitalization [29]. Multiple proposed
theories exist [30] for the discrepant results. Overall, the evidence favors this intervention
in appropriate patients. Transcatheter edge-to-edge has class II(a) recommendation for
HFrEF and HFmrEF patients with NYHA (New York Heart Association) class II-IV, severe
secondary mitral regurgitation, suitable anatomy, LV end-systolic dimension ≤ 70 mm, and
PASP ≤ 70 mm Hg [14].

4.3. Mechanical Circulatory Support (MCS)

Multiple trials are ongoing in this space, assessing the role of MCS in managing heart
failure, including temporary and permanent devices. Temporary trans-axial pumps, like
Impella and Abiomed Inc., and extracorporeal pumps, like Tandem Heart and Cardiac
Assist Inc., are being currently used in the percutaneous revascularization of complex
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coronary disease patients who are not candidates for surgical intervention and heart failure
patients with cardiogenic shock refractory to pharmacological interventions. Trials so far
have not shown any significant clinical benefit with the unselected use of temporary MCS
in patients with cardiogenic shock complicating acute myocardial infarction [31]. These
devices have a role in the acute decompensation of chronic heart failure patients as a bridge
to decisions regarding long-term management options—Class II(a) recommendation in
ACC/AHA heart failure management guidelines [14].

The Multicenter Study of MagLev Technology in Patients Undergoing Mechanical
Circulatory Support Therapy with HeartMate 3 (MOMENTUM 3) trial showed signifi-
cant benefit from a magnetically levitated centrifugal pump compared to traditional axial
continuous-flow pumps for advanced heart failure patients, warranting implantable pumps
for support. Reoperation for pump malfunction secondary to thrombosis was less frequent
in the centrifugal pump group [32]. Durable left ventricular assist devices have the class I
recommendation for HFrEF patients with NYHA class IV symptoms, despite optimal medi-
cal therapy, or those deemed dependent on IV inotropes as per heart failure guidelines [14].

4.4. Cardiac Contractility Modulation (CCM)

Cardiac contractility modulation (CCM), a device-based therapy that involves apply-
ing relatively high-voltage, long-duration electric signals to the RV septal wall during the
absolute myocardial refractory period, has been associated with the augmentation of LV
contractile performance. FIX-HF-5 trial showed CCM-improved exercise tolerance and
quality of life in heart failure patients with LVEF ≥ 25% and ≤45%, QRS duration < 130 ms,
and NYHA class III or IV symptoms, leading to its approval for use in the United States [33].
Long-term follow-up of patients with CCM on the CCM-REG registry showed improved
functional status, quality of life, LVEF, and heart failure hospitalization rates [34].

4.5. Obstructive Sleep Apnea (OSA) and Heart Failure

Sleep apnea is prevalent yet underdiagnosed and untreated in cardiovascular pa-
tients. A recent retrospective study showed that cardiac patients with sleep apnea treated
with continuous positive airway pressure (CPAP) were likely to have a 60% reduction in
readmission in 30 days [35]. Untreated sleep apnea impacts cardiovascular health with
increased sympathetic activity, oxidative stress, endothelial dysfunction, and metabolic
dysregulation [36]. Since compliance with CPAP is still challenging, newer treatment
options are available. These include hypoglossal nerve stimulator therapy, oral appliances,
positional therapy, oral negative pressure devices, and eXciteOSA therapy.

5. Biomarkers in Heart Failure

Biomarkers in heart failure can be loosely arranged into the following categories: (1) my-
ocardial stress/injury, (2) neurohormonal activation, (3) remodeling, and (4) co-morbidities.

B-type natriuretic peptide (BNP) and its biologically inert, amino-terminal pro-peptide
counterpart (NT-proBNP) are the most common biomarkers to diagnose and determine HF
prognoses. The most potent BNP inducer is the stretch of the left ventricular wall caused
by increased pressure or volume. BNP can induce diuresis and cause vasodilation, renin–
aldosterone, and fibrosis inhibition. As the degradation of BNP by neutral endopeptidases
such as neprilysin is inhibited by ARNI, it becomes challenging to interpret the values in
this population. BNP levels on admission were shown to be associated with in-hospital
mortality risk in the Acute Decompensated Heart Failure National Registry (ADHERE)
registry [37]. Discharge BNP level was also helpful in predicting one-year mortality in the
Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart
Failure (OPTIMIZE-HF) trial [38]. Biomarker-guided heart failure therapy using BNP has
shown to be superior to the standard of care with reduced event rates, improved quality of
life, and favorable effects on cardiac remodeling [39].

New biomarkers gaining importance in heart failure management include mid-regional
pro adrenomedullin (MR-proADM) and copeptin (stable C-terminal pro-peptide fragment
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of arginine vasopressin), indicating neurohormonal activation, ST2, and Galectin-3, indicat-
ing myocardial remodeling.

Adrenomedullin (ADM) is a vasodilatory peptide expressed in different tissues with
potent hypotensive effects, and its levels are known to be elevated in patients with chronic
heart failure. Because of its biologically stable nature, immunoassays targeting prohormone
fragments such as MR-pro ADM and mid-regional pro-atrial natriuretic peptide (MR-
ProANP) as surrogate markers were developed. In a prospective multicenter trial, MR-
proADM was shown to have independent prognostic value, predicting the 90-day mortality
risk and adding prognostic value to BNP [40].

Arginine vasopressin (AVP) is a posterior pituitary hormone known to have antid-
iuretic and vasoconstrictive properties. Its concentrations are elevated in heart failure
patients and postulated to mediate hyponatremia, which is a poor prognostic marker. Co-
peptin is the C-terminal segment of preprovasopressin identified to be a stable and reliable
surrogate marker. In the same multicenter study, elevated co-peptin predicted increased
90-day mortality, readmissions, and emergency department visits [41].

Galectin-3, a member of the galectin family, was shown to be of both diagnostic and
prognostic value in heart failure patients [42]. Galectin-3 has been postulated to be involved
in cardiovascular remodeling and used as a biomarker for fibrosis and inflammation.
Studies have also shown ethnic difference in the Galectin-3 prognostic value with limited
utility in the African American population based on the limited observation data [43].
Galectin-3 values have been shown to be predictive of survival post left ventricular assist
device placement and also coronary allograft vasculopathy post-transplant in a prospective
study [44].

ST2 is strongly induced in the setting of cardiomyocyte or cardiac fibroblast stretch.
ST2 is closely involved in LV hypertrophy, fibrosis, and remodeling due to its interaction
with IL-33. Increasing ST2 concentrations are associated with adverse clinical outcomes
in HF and are unaffected by BMI or renal function. Elevated ST2 levels have also been
shown to predict the development of heart failure in at-risk populations like patients with
acute MI [45], providing an opportunity for early identification and targeting treatment.
Large prospective trials are needed to assess these new markers in biomarker-guided heart
failure management.

6. Telemedicine and Emerging Trends in Heart Failure Management
6.1. Remote Pulmonary Pressure Monitoring

CardioMems, an implantable pressure sensor placed in the pulmonary artery, reduced
heart failure-related hospitalizations due to its ability to track patients’ filling pressures
and to guide management [46]. The study included all heart failure patients in NYHA class
III, irrespective of the left ventricular ejection fraction and a previous hospital admission
for heart failure. The benefit was again reproducible in the GUIDE-HF trial, reducing
heart failure hospitalizations across the spectrum of LVEF, but was more prominent in the
HFrEF subgroup [47]. Post-FDA approval, the real-world observational study also showed
significantly lower heart failure and all-cause hospitalization post-device placement [48].
This technology greatly benefits heart failure patients with its ability to monitor and
intervene remotely to prevent exacerbation, warranting hospitalization.

6.2. Telerehabilitation

Exercise-based interventions have consistently demonstrated a significant, clinically
meaningful improvement in symptoms, objectively determining exercise capacity and
quality of life in heart failure patients [49]. Telerehabilitation is a home-based program with
devices to monitor vitals and an online platform for structured exercise regimens. This
field is still in its infancy, but with the advent of new technology, it is evolving rapidly.
Telerehabilitation will improve access to many patients with rehabilitative needs with
travel limitations.
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6.3. Artificial Intelligence in Heart Failure

Artificial intelligence (AI) has seen a rapid increase in utility in medicine in recent years.
AI is increasingly used to revolutionize risk assessment, screening, diagnosis, treatment
and drug discovery in cardiovascular medicine [50]. EAGLE trial is testing AI-guided ECG
screening for low ejection fraction, which will significantly impact the heart failure field
with the early identification of at-risk populations [51]. Multiple supervised and semi-
supervised machine learning (ML) algorithms have predicted the onset of heart failure
based on large labeled and unlabeled datasets from electronic health records. However, it
is important to compare the performance of these ML-developed risk models to known
or conventional approaches to determine their clinical utility [52]. Some ML algorithms
also incorporate imaging data, which helps to track change longitudinally and predict
disease progression.

Heart Failure Association (HFA) of the European Society of Cardiology (ESC) recently
provided guidelines for developing HFpEF models through a stepwise approach of com-
prehensive cardiac and extra-cardiac phenotyping. There were three leading phenogroups
based on aging, cardiometabolic stress, and chronic hypertension [53]. ML algorithms can
be beneficial in identifying phenotypes and provide a hypothesis-generating framework
for designing future clinical trials.

AI models have been used to assess heterogeneity in response to HF pharmacother-
apies [54] and cardiac resynchronization therapy (CRT). At least six trials have studied
machine learning algorithms for predicting response to CRT [52]. Studies have identified
several predictors like sex, etiology, severity of HF, renal function, and comorbidity burden
for determining the response to CRT. ML analytics demonstrated predicting rehospital-
ization for heart failure with 87.5% sensitivity and 85% specificity based on non-invasive
remote monitoring in the LINK-HF trial [55].

The incorporation of AI technologies into heart failure also faces several regulatory
concerns. New privacy and data management principles are necessary that can allow for the
training of algorithms in these datasets while also maintaining individual privacy [52]. The
algorithms should undergo rigorous testing and validation to ensure proper performance.
The US FDA has issued guidance emphasizing the prospective validation of AI algorithms
before their implementation in clinical practice [56].

6.4. Gene Therapies for Advanced Heart Failure

There is a dysregulation of the excitation–contraction coupling at multiple levels in HF.
Targets for gene therapy so far have involved various ways to restore contractile function,
angiogenesis, cytoprotection, and stem cell homing.

The key regulator in cardiac contractility is the β-adrenergic system. It is downregu-
lated and desensitized in HF because the critical protein G protein-coupled receptor kinase
2 (GRK2) is upregulated. In rodents and preclinical large animal heart failure models, the
inhibition of GRK2 via βARKct (carboxyl-terminus of the β-adrenergic receptor kinase)
expression has shown positive results including an improvement of the left ventricular
systolic dysfunction [57]. Ca2+-handling proteins involved in the excitation–contraction
coupling has also been assessed as targets for heart failure management. SERCA2a gene
transfer improved cardiac contractility in the swine volume-overload model of HF [58] and
decreased arrhythmias and mortality [59]. Other studies have demonstrated the increase in
the small ubiquitin-like modifier type 1 (SUMO1) with the help of the adenovirus vector
leads to the increased levels of the SERCA2a gene, which results in improved cardiac
contractility, decreased arrhythmias, and decreased mortality [60].

However, the same results as in animal models have been hard to reproduce in human
trials. The initial Calcium Upregulation by Percutaneous Administration of Gene Therapy
in Cardiac Disease (CUPID) [61] trial did demonstrate some benefits. However, the larger
CUPID2 trial failed to demonstrate any significant benefit in the recurrence of heart failure
or mortality [62]. AGENT-HF trial [63] showed similar results. Adenylyl Cyclase VI (AC VI)
is another target that has been studied [64] and is awaiting phase III study [65]. Learning
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from the trials conducted so far, there is a focus for identifying new targets and improving
the vector with high cardiac tropism that de-targets the liver [66].

Gene-editing technology has also evolved in recent years, leading to fundamental
upgrades of the biomedical research model with the achievement of falling off-target
incidence, improving editing efficiency, and expanding application scope. Current third-
generation gene-editing technology clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system functions through protein–
nucleic acid complex [67]. A milestone advancement in genetic therapy leading to an
effective and sustained improvement in patients with heart failure can be anticipated soon.

7. Conclusions

Despite medical advances, heart failure remains a major health issue, resulting in
significant morbidity and healthcare expenses. Continued efforts in refining medical
therapy targeting these high-risk populations have recently shown promising results. With
few evidence-based therapeutic options, heart failure with preserved ejection fraction
remains a challenge. Using artificial intelligence to identify at-risk groups and instituting
early, appropriate risk factor modifications might be the key for reducing the global disease
burden. Gene therapy with advanced gene-editing technology will be the next major
milestone in managing heart failure.
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