
Citation: Kochanowska, A.; Rusztyn,

P.; Szczerkowska, K.; Surma, S.;
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Abstract: Sodium–glucose cotransporter 2 inhibitors (SGLT2is) are glucose-lowering agents whose
positive impact on cardiovascular risk has been described extensively. Not only do they influence lipid
profile, blood pressure, atherosclerosis risk, hemoglobin level, and insulin resistance, but they also reduce
cardiovascular events, all-cause mortality, and hospitalization rates. Some of these effects may be due to
their impact on serum uric acid (SUA) concentration. Findings from nine meta-analyses showed that,
indeed, SGLT2is significantly reduce SUA. The data on the drug- and dose-dependency of this effect
were inconclusive. Several factors alternating the beneficial effects of SGLT2is on SUA, such as glycated
hemoglobin concentration (HbA1c), presence of diabetes, and baseline SUA level, were described. Even
though there is a consensus that the lowering of SUA by SGLT2is might be due to the increased urinary
excretion rate of uric acid (UEUA) rather than its altered metabolism, the exact mechanism remains
unknown. The influence of SGLT2is on SUA may not only be used in gout treatment but may also be of
huge importance in explaining the observed pleiotropic effects of SGLT2is.

Keywords: sodium–glucose cotransporter 2 inhibitors; SGLT2i; flozins; uric acid; gout

1. Introduction

Sodium–glucose cotransporter 2 inhibitors (SGLT2is) are new glucose-lowering agents
that are widely used in type 2 diabetes mellitus (T2DM) patients, as well as in nondiabetic
patients, to improve their cardiovascular and metabolic outcomes. The positive impact on
cardiovascular risk has been described extensively, together with kidney-protective effects,
regardless of the presence of diabetes [1]. Other multiple promising effects of SGLT2is are
being studied, in the hope that SGLT2is will be recognized as a holy grail of numerous
diseases of affluence.

The considerably growing interest in uric acid (UA) is related to the dependence of
UA levels in modern humans on lifestyle, diet, or environment [2]. Elevated serum uric
acid (SUA) concentrations are the subject of much research due to their multifactorial
effects on the body. The liver, intestines, and vascular endothelium mainly produce UA as
the final product of an exogenous pool of purines. Additionally, UA is produced during
the apoptosis of cells and the breakdown of nucleic acids, adenine, and guanine. This
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review evaluates the effect of SGLT2is on lowering SUA concentration, the mechanism
of its reduction, and the factors influencing this effect. Additionally, it examines the role
of UA as a risk factor for numerous diseases and provides current knowledge about the
cardio–renal effects of SGLT2is.

2. Uric Acid—Multifactorial Effects on the Human Body

UA functions as a potent antioxidant, but also as a promoter of reactive oxygen species
(ROS) and peroxynitrite [3], which contribute to the development of numerous diseases.
The role of UA in the pathophysiology of numerous diseases is illustrated in Figure 1.
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2.1. Gout

One of the best-documented effects of SUA is its correlation with gout. Gout was one
of the earliest described disease entities that is closely related to high UA concentrations.
One of the most prevalent types of inflammatory arthritis is linked to high levels of
monosodium urate crystals present in tissues, which results in acute arthritis. In gout,
SUA levels of <6 mg/dL are recommended, with the aim of preventing the creation of new
crystals in the joints [4].

2.2. Kidneys

Roughly two-thirds of the UA load are removed by the kidneys, while the gastrointesti-
nal tract is responsible for eliminating the remaining one-third. Therefore, a link between
high SUA levels and kidney impairment is frequently a subject for consideration. Undoubt-
edly, there is a relationship between UA and the urinary system, including the mundane
possibility of UA crystals precipitating and forming stones that cause nephrolithiasis. Re-
search performed in the Chinese population revealed that hyperuricemia was linked to
a more significant decrease in kidney function and a higher probability of developing
kidney failure [5]. A greater decline in the estimated glomerular filtration rate (eGFR) was
observed in patients with higher SUA, which can be considered a potential factor of chronic
kidney disease (CKD) progression [6]. Similar conclusions were drawn by Ponticelli et al.,
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where SUA-lowering agents have not produced evidence of improved kidney function [7].
However, the results are still controversial, and the correlation between lowering SUA and
improved kidney function continues to be disputed.

2.3. Metabolic Syndrome

Lin et al. showed that SUA levels are positively associated with the risk factors of
metabolic syndrome (MetS). High SUA levels were associated with obesity, body mass index
(BMI), waist circumference (WC), and waist-to-hip ratio (WHR) [8]. An elevated insulin
resistance index (HOMA-IR) in patients with hyperuricemia was also noted. Another study
conducted in the Chinese population is also in agreement about the association between
SUA and WC or triglycerides [9].

2.4. Type 2 Diabetes Mellitus

According to a study on the correlation between hyperuricemia and T2DM risk, pa-
tients with elevated SUA are at a greater risk of T2DM [10,11]. Lv et al. found compelling
evidence that elevated SUA levels are an independent risk factor for developing T2DM in
middle-aged and older individuals, irrespective of other established risk factors, includ-
ing components of the MetS [12]. Elevated SUA is associated with increased oxidative
stress [10,13], which may be a factor in the development of T2DM. The correlation between
diabetic neuropathy and hyperuricemia was studied by Yu et al. Further studies should be
performed to confirm this hypothesis, but peripheral neuropathy was more common in
patients with higher SUA [14].

2.5. Neurological Effect

Recognition of higher SUA as a beneficial neurological factor has been a matter of
debate. Several studies suggest that lower SUA might be related to the presence of multiple
sclerosis [15], Parkinson or Alzheimer’s disease [16], although others disagree with this
view about the supposed protective effect of UA on neurological diseases [17]. It is definitely
not possible to clearly define the function of SUA on the neurological system.

2.6. Cardiovascular Risk
2.6.1. Uric Acid in Cardiovascular Pathology

Several hypothetical mechanisms contribute to the possible cardiovascular risk caused
by UA and play a role in the damage of the cardiovascular system. It should be noted
that high SUA is associated with metabolic, renal, diabetic, and liver damage in metabolic
dysfunction-associated fatty liver disease (MAFLD) and obesity, all of which are predispos-
ing factors for cardiovascular diseases (CVD). An important action to consider is that UA is
an outcome of xanthine oxidoreductase (XOR) activity, which is a significant contributor to
ROS and oxidative stress. Additionally, XOR is closely connected to nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase, which also produces ROS and, as a result,
contributes to a higher risk of heart diseases [18]. The presence of UA and XOR has been
detected in atherosclerotic plaques, indicating their involvement in the development of
atherosclerosis [19]. This may affect the cardiovascular risk in patients with current is-
chemic heart disease. Although UA functions as an antioxidant and is crucial for protection
against oxidative stress, in certain environments, such as the cytoplasm or atherosclerotic
plaques, it can convert into a pro-oxidant. UA can also oxidize partially oxidized low-
density lipoproteins (LDL), leading to further oxidation. The reduced availability of nitric
oxide (NO) is a major and widely accepted pathophysiological mechanism through which
SUA promotes CVD. SUA reacting rapidly with NO reduces its availability, converting
NO into 6-aminouracil. This results in the absence of an essential chemical compound
necessary for proper endothelial function. Atherosclerotic changes are also caused by the
activation of cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α),
which are produced by mononuclear cells stimulated by UA. This shows that SUA has a
proinflammatory effect [20].
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2.6.2. Coronary Heart Disease, Stroke or Mortality

The correlation between coronary heart disease (CHD), stroke, or morbidity and SUA
levels is unclear, and the results of studies on different populations are inconsistent. Two
large studies in Asian populations have reported significant associations between SUA
levels and CHD or mortality, and the correlation between ischemic heart disease (IHD)
and UA was proven [21,22]. The meta-analysis by Li et al. also confirmed the correlation
between hyperuricemia and the heightened risk of CHD. Hyperuricemia was likely to
elevate the risk of CHD occurrences, especially mortality related to CHD in females [23].
However, many studies concluded that the role of UA in predicting CHD-related deaths is
still uncertain and found no significant association between SUA and CHD [24–26]. More-
over, in the ALL-HEART trial, which was a large, randomized study of patients with CHD
and no history of gout, allopurinol did not improve major cardiovascular outcomes [27].
Thus, due to methodological reasons, it is impossible to establish any conclusion on active
decreasing levels of SUA and clinical outcomes based on the ALL-HEART. In general, it
remains uncertain whether the associations between UA and mortality vary based on gen-
der, race, or baseline cardiovascular risk and also if it is an epiphenomenon or a risk factor.
The extent to which traditional risk factors modify the link between UA and cardiovascular
mortality has thus far not been thoroughly investigated.

2.6.3. Congestive Heart Failure

Observational studies focusing on pathophysiology have demonstrated that UA is
a reliable marker for the aerobic metabolic capacity in heart failure (HF), and can pre-
dict impaired oxidative metabolism, anaerobic threshold, and inefficiency in glucose
metabolism [28,29]. A correlation between congestive heart failure (CHF) and SUA has
been extensively investigated. In patients with CHF, high levels of SUA are often observed.
Many studies have been conducted that investigate the relationship between UA and the in-
cidence, severity, or prognosis of CHF. A meta-analysis performed by Huang et al. showed
that having high levels of SUA is linked to a significantly higher risk of developing HF,
and the risk increases with higher levels of UA. Elevated SUA levels are also predictive of
increased risk for all-cause mortality, cardiovascular mortality, and a combination of death
or cardiac events in patients with HF [30]. A study that determined the impact of SUA on
CHF concluded that elevated SUA levels are associated with diastolic dysfunction in CHF;
however, there was no correlation between UA levels and indicators of left ventricular
volumes or systolic function [31].

2.6.4. Hypertension

Many studies indicate that hyperuricemia is associated with a higher relative risk
of developing hypertension over five years, even when other risk factors are taken into
account [32]. The noninflammatory activation of the renin–angiotensin system (RAS) and
inhibition of nitric oxide synthase in the kidney, along with stimulation of NADPH oxi-
dases, resulting in mitochondrial dysfunction and increased oxidative stress, is the most
well-established mechanism of urate-induced hypertension [7]. Altogether, this promotes
endothelial dysfunction, the proliferation of vascular smooth muscle cells, and the reab-
sorption of sodium, which results in hypertension. Activation of the immune system can
be caused by both UA and molecules released in response to the hypertension-induced
damage. UA can cause inflammation by engaging nucleotide-binding oligomerization
domain and leucine-rich repeat-containing proteins (NLRP3) inflammasome and inducing
the cleavage of proinflammatory cytokines IL-1β, IL-6, and TNF-α. Toll-like receptors
are also activated and the activation leads to the promotion of inflammatory responses.
Additionally, UA can stimulate B-cells which contribute to endothelial impairment and
vascular remodeling. Whether a lowering SUA level treatment is beneficial for patients
with hypertension is still uncertain and requires thorough investigation in a bigger popula-
tion [33].
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3. Pleiotropic Effects of SGLT2i

SGLT2is inhibit the sodium-dependent reabsorption of glucose in the kidneys, promot-
ing glucosuria and natriuresis. They were originally used to treat T2DM and have shown
significant cardiovascular benefits, which made them a standard treatment in CHF. Clinical
trials have shown that SGLT2is can reduce cardiovascular events, all-cause mortality, and
reduce hospitalization rates [34]. Additionally, these agents play a role in alleviating fur-
ther renal damage. Beneficial mechanisms associated with SGLT2is are demonstrated in
Figure 2. Kidneys play a crucial role in maintaining glucose and sodium levels by reabsorb-
ing glucose through SGLT transporters in the proximal convoluted tubules of nephrons [35].
SGLT2 cotransporters are primary sodium-dependent glucose transporters responsible for
over 90% of renal glucose reabsorption, whereas SGLT1 transport provides less than 10%.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results and their interpretation, as well as the experimental
conclusions that can be drawn.
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3.1. Renal Effects of SGLT2i—Counteraction against Hyperfiltration, Proteinuria, and Renal
Fibrosis

Nephropathy arising from T2DM is associated with increased filtration of a single
nephron with normal, increased, or decreased eGFR. The mechanism of enhanced renal
perfusion is different than T1DM, involving factors affecting hyperfiltration, such as insulin
resistance (IR) or RAS activation. Renal response to SGLT2is in patients with T2DM
reduces intraglomerular pressure and single nephron eGFR through vasodilation of efferent
arteriole and slight constriction of the afferent arteriole [36]. SGLT2is widely used in T2DM
patients might also have an influence on renal protection in T1DM patients. Skrtic et al.
revealed the positive effects of SGLTis in T1DM patients with renal hyperfiltration, applying
empagliflozin [37]. As a result, renal perfusion was attenuated, probably due to modulation
of tubuloglomerular feedback. Whether this therapeutic effect would also apply in T1DM
patients with kidney damage is yet to be proven [38]. Another protective effect of SGLT2is
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is alleviating proteinuria and reducing podocyte remodeling. In a study involving mice
with bovine serum albumin-induced proteinuria, dapagliflozin was found to provide a
similar level of glomerular protection as an angiotensin-converting enzyme inhibitor (ACE-
I), which is the standard comparison treatment [39]. Dapagliflozin effectively reduces
proteinuria, glomerular dysfunction, podocyte impairment, and directly targets podocytes
by maintaining the architecture of the actin cytoskeleton. Whether SGLT2is could become
a potential future treatment option for proteinuria in patients who do not yet have an
effective therapy remains to be determined in clinical trials [40–42]. It was also reported
that SGLT2is could alleviate inflammation and, as a result, renal fibrosis and mesangial
expansion [43].

3.2. Cardiovascular Effects of SGLT2i
3.2.1. SGLT2i Treatment Decreases Heart Failure Risk

Numerous studies have proven the positive impact of SGLT2is on HF risk. The main
result measured in the DAPA-HF study was a combination of either HF deterioration
or cardiovascular-associated death. McMurray et al. reported that regardless of T2DM
presence in patients, cardiovascular-caused death or worsening of HF was reduced in the da-
pagliflozin treatment group [44]. Findings established by Packer et al. using empagliflozin
were comparable with results of DAPA-HF. Empagliflozin was found to alleviate HF and
cardiovascular death risk [45]. Additionally, slower progression of CKD was observed in
the study group with HF using empagliflozin. Cardioprotective effect of empagliflozin was
also studied by Zhou on diabetic mice [46]. Mice treated with empagliflozin developed
smaller zones of hypoperfusion, because of improved microcirculation. Parameters such as
endothelial relaxation ability, endothelial nitric oxide synthase (eNOS), phosphorylation,
and microvascular density determining microcirculation were evaluated in the myocardium
of the mice. Treatment with empagliflozin improved these parameters, and additionally,
upgraded the integrity of microvessels, which may lead to a lower chance of experiencing
vascular inflammation and microthrombus formation. Repressing excessive mitochondrial
fission might play a key role in the beneficial effects on the microvascular endothelium.

3.2.2. Lipid Profile and Blood Pressure

An additional impact of SGLT2is that deserves attention is their influence on lipid
levels. Studies discovered that SGLT2i usage resulted in notable rises in total, LDL, and
high-density lipoprotein (HDL) cholesterol levels. However, in patients who received
SGLTis, plasma triglyceride levels were lowered. No noteworthy variations in the ratio of
LDL to HDL cholesterol were detected as a result of the treatment [47]. Another positive
aspect affected by SGLT2is is a significant reduction in blood pressure (BP) [48]. It has
been proven that the use of SGLT2is lowers both systolic and diastolic BP in patients with
controlled and untreated hypertension.

3.2.3. SGLT2i—Is There Any Influence on the Renin–Angiotensin System?

Considering the fact that SGLT2is promote natriuresis, it is plausible to suggest that
they may activate the RAS by lowering levels of sodium. Li et al. aimed to study the effect
of SGLT2is on systemic and intrarenal RAS activity [49]. Their data indicated that plasma
renin activity (PRA) was enhanced only temporarily and did not affect systemic renin
secretion over the long term. There were no changes observed in aldosterone levels after
treatment with SGLT2is. The outcomes of another study [50] also indicated that SGLT2is
may have an immediate effect on PRA but not plasma aldosterone concentration (PAC).

Moreover, the long-term activation of PRA and PAC, which could lead to cardiovascu-
lar complications, was not detected. However, the intrarenal RAS activity is proven to be
changed by SGLT2i use [51].
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3.2.4. SGLT2is Change Sympathetic Nervous System Activity

Studies in both humans and laboratory animals suggest that activation of the sym-
pathetic nervous system (SNS) is a key factor in MetS [52,53]. Common strategies for
treating MetS, such as weight loss through diet and exercise, aim to suppress sympathetic
activity and reduce its influence on hypertension, obesity, and cardiorenal problems [54].
SGLT2is have been found to have sympathoinhibitory effects that could lead to reduction
in sympathetic nervous activity (SNA) in the heart and kidneys [55]. Studies have shown
that SGLT2is can improve the circadian rhythm of sympathetic activity in rats with MetS
and reduce the high-fat-diet-induced elevation of tyrosine hydroxylase and noradrenaline
in the kidneys and hearts of mice. This suggests a possible protective effect of SGLT2is
through suppressing the renal afferent nerve and alleviating SNA [56,57].

3.2.5. SGLT2is As Myocardium Protectors

Another beneficial effect of SGLT2is is their protection of myocardium. SGLT2is has
been shown to modulate myocardial fibrosis by inhibiting the activity of the sodium/
hydrogen exchanger 1 (NHE1). This inhibition of NHE1 activity results in a reduction of
calcium influx into the myocardium, leading to a decrease in mitochondrial dysfunction.
The available evidence suggests that SGLT2is has a protective effect on the myocardium
by regulating its metabolism and promoting autophagy in the cells [51]. Another study,
performed on diabetic mice, has shown that empagliflozin prevents myocardial fibrosis and
might be a therapeutic option for people with diabetic cardiomyopathy [58]. Nevertheless,
further clinical trials should be performed to confirm this effect.

3.3. Other Effects

Another way that SGLT2is act is their ability to alleviate IR by modifying inflamma-
tory factors induced by T2DM [59]. Okauchi et al. reported that luseogliflozin reduced
IR in T2DM mice and had a protective effect on pancreatic β-cells. The administration
of luseogliflozin resulted in a significant increase in insulin biosynthesis and secretion,
and mRNA expression of insulin was also enhanced [60]. SGLT2is are believed to protect
pancreatic β-cells from elevated glucose levels, which can induce β-cell glucose toxicity [61].
Specifically, the activation and recruitment of M2 macrophages is a factor in the develop-
ment of insulin sensitivity. It also attenuates MAFLD and reduces hepatic inflammation.
SGLT2is have been found to have beneficial effects on limiting MAFLD through their direct
downregulation of multiple processes, including ROS activity, inflammation, autophagy,
or endoplasmic reticulum stress [62,63]. Recent studies suggested that the production of
ketones could also alleviate IR and is bound with SGLT2i use [51]. The potential anti-
inflammatory effect of ketones was a starting point to research the link between SGLT2is
and ketogenesis, which was enhanced in empagliflozin-treated patients. Ferrannini et al.
have suggested that hyperketonemia and, specifically, the presence of b-hydroxybutyrate,
were correlated with a lower HF risk [64]. Moreover, SGLT2is were associated with a
lower atherosclerosis risk due to a decrease in low-grade inflammation by limiting the
action of immune cells [65]. It was also proven that SGLT2is can reduce multiple cytokines
levels [66]. SGLT2is are also believed to upgrade hematocrit and hemoglobin levels in
diabetic patients, which may improve oxygen delivery to tissues in patients with HF [46,51].
The same stimulating mechanism of canagliflozin on erythropoietin production was proven
in patients with chronic kidney disease, but further studies should be performed to confirm
this effect [67].

4. SGLT2i—Potential Mechanism of Serum Uric Acid Reduction
4.1. Renal Urate Management

The mechanism of renal urate management is rather complicated, but altering its
excretion is mostly achieved by changing its reabsorption and secretion in the proximal
convoluted tubule. The main transporters responsible for urate reabsorption are human
urate transporter 1 (URAT1) and facilitative glucose transporter 9 (GLUT9). The former and
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isoform 2 of the latter are responsible for transporting UA through the apical membrane of
the cells. Organic anion transporters 4 and 10 (OAT4 and OAT10) also contribute to this
effect but to a lesser extent. Isoform 1 of GLUT9 transports UA through the basolateral
membranes, thus increasing SUA. Secretion of UA takes place in more distal segment of
the nephron. Reuptake of UA from circulation to epithelial cells is conducted by OAT1
and OAT3 and its secretion into the lumen of the nephron takes place through multidrug
resistance-associated protein 4 (MRP4) and ATP-binding cassette subfamily G member 2
(ABCG2) [68].

4.2. Evidence from Clinical Studies

The exact mechanism of lowering SUA by SGLT2is remains unknown; however, most
authors suggest that it takes place because of the increase in the urinary excretion rate
of uric acid (UEUA) [69–72]. Most of our knowledge on its exact mechanism is based
on animal and in vitro studies; however, there were a few attempts to explain this effect
clinically. Possible mechanisms of SUA reduction by SGLT2is are illustrated in Figure 3.
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(ABCG2) [68]. 

4.2. Evidence from Clinical Studies 
The exact mechanism of lowering SUA by SGLT2is remains unknown; however, 

most authors suggest that it takes place because of the increase in the urinary excretion 
rate of uric acid (UEUA) [69–72]. Most of our knowledge on its exact mechanism is based 
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An analysis of the first two clinical studies of luseogliflozin showed that SUA was
lowered in healthy subjects even after a single dose and a negative correlation between SUA
and UEUA occurred. UEUA was also positively correlated with urinary d-glucose excretion
and with SGLT2i concentration; however, the first correlation was stronger. The biggest
change in SUA in a multiple-dose study was shown on day 1; however, the renal clearance
of UA remained and increased for the whole 7 days of the study [69]. A longer observation
was conducted on a group of T2DM patients who were administered tofogliflozin. It
showed that SUA was lowest after 4 weeks of treatment and then plateaued, while glycated
hemoglobin concentration (HbA1c) was lowest after 24 weeks. Patients with lower urinary
N-acetyl-β-d-glucosaminidase (NAG)–creatinine ratio, which is a tubular damage marker,
responded to treatment better [73]. This, combined with the results from a meta-analysis
that showed that the UA lowering effect was decreased in patients with lower eGFR,
suggests the importance of kidney function in urate metabolism [74]. Another clinical study
involved patients with uncomplicated T1DM. It showed that hyperglycemia increased the
fractional excretion of UA and lowered SUA; however, after the introduction of SGLT2is
during clamped euglycemia, the same effect was shown, suggesting that glycosuria rather
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than hyperglycemia was its cause [75]. These studies are consistent in explaining the
lowering of SUA by its increased UEUA and associate it with urinary glucose handling;
however, to find the exact underlying mechanism, preclinical studies must be taken into
consideration.

4.3. Evidence from Preclinical Studies

In vitro experiments on cultured cells showed that UA was not transported directly by
SGLT2 and revealed no effect of the SGLT2is on the activity of URAT1, GLUT 9 isoform 1,
OAT4, OAT10, or sodium-coupled monocarboxylate transporter 1 (SMCT1) [69]. However,
injecting cRNA for GLUT9 isoform 2 (which is located in the apical membrane of tubular
epithelial cells and transports D-glucose and UA in opposite directions) into Xenopus laevis
oocytes increased their efflux rate of UA. What is more, the function of this trans-porter
was altered by different concentrations of D-glucose. A concentration of 10 mM, which
occurs in the proximal tubule after administration of SGLT2is as an effect of decreased
glucose reabsorption, increased excretion of UA and a concentration of 100 mM occurring
in collecting ducts inhibited the reabsorption of UA. It showed that even though SGLT2is
doesn’t directly alter the activity of UA transporters, glycosuria, which it can cause, has an
important influence on them [69].

Studies on animals can also provide some crucial information. Unfortunately, there are
some differences between humans and rodents regarding UA handling. The most important
one is the lack of uricase in humans, which is present in most other mammals. It breaks
down UA to allantoin, which can be excreted in higher concentrations; thus, achieving
hyperuricemia is much more difficult in rodents and UA handling may be altered by its
decreased concentration [72]. Nevertheless, uricase can be pharmacologically blocked and
studies on rodents might bring us some new theories that can be later checked in humans.

First, to support the hypothesis that the main mechanism of lowering UA by SGLT2is
is rather by its higher excretion than changes in its metabolism, it is important to show a
study on the effect of dapagliflozin on serum XOR activity. It was decreased in fructose-fed
rats (an animal model of MetS) but no influence of SGLT2is on its activity was shown [71].
The same study showed increased expression of URAT1, urate transporter (UAT), sodium-
dependent phosphate cotransporter 1 (NPT1), and decreased ABCG2 with no changes in
GLUT9 or NPT4 in this model. Dapagliflozin decreased the expression of UAT and NPT1
only. Immunohistochemistry and western blot showed an increase in URAT 1, UAT, and
GLUT9, which dapagliflozin suppressed; however, only the latter achieved a point of no
statistical importance when compared to control. These changes led to increased fractional
excretion of UA and lowering of SUA, once more confirming this hypothesis [71]. A study
on the T1DM model in rats after streptozotocin treatment showed that lowered levels of
insulin resulted in no changes in NPT1, NPT4, or GLUT9 levels, but the expression of
URAT1 increased and expression of ABCG2 was decreased. Thus, the fractional excretion
of UA was elevated.

These changes were alleviated by insulin administration, but no change was shown
after ipragliflozin. The role of insulin in the change of renal UA handling was confirmed
in a rat kidney epithelial cell line (NRK-52E) where URAT1 levels were increased after its
administration. The same effect was shown in healthy rats as URAT1 was significantly
increased, and ABCG2 decreased after insulin. It resulted in increased SUA as an effect of
higher reabsorption. Once more, SGLT2is did not alter the levels of these transporters even
though the glycemic control was similar in both probes [76]. It shows that insulin, but not
hyperglycemia, might be an important factor in renal UA handling, which should be taken
into further consideration mainly when considering the effects of another cited study [75]
in which clamped euglycemia was achieved by insulin administration as it may alter the
results. Experiments conducted on T2DM mice with induced hyperuricemia also showed
an SUA-lowering effect by increased UEUA after empagliflozin. However, it was achieved
by an upregulation of ABCG2 and the AMPK/AKT/CREB pathway was identified as
responsible for it. What is more, no effect on OAT1, OAT3, URAT1, or GLUT9 levels was
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shown after SGLT2is; however, mRNA for URAT1 was significantly reduced in kidneys.
The effect of SGLT2is on ABCG2 was also confirmed on human tubular epithelial cells
(HK-2) and the same pathway was confirmed by using Compound C (AMPK inhibitor) [70].
Another study on mice showed a couple of interesting relationships. First, both genetic and
pharmacological inhibition of SGLT2 increased UEUA, which suggested that no effect of
SGLT2is on urate transporters might be necessary for its function. Second, in mice with
a whole-body knockout of the SGLT1, glycosuric and uricosuric effect of SGLT2is was
increased, suggesting that, indeed, increased glycosuria might be one of the mechanisms
explaining SUA lowering. Finally, the absence of tubular GLUT9 and URAT1 increased
basal fractional UA excretion; however, an acute increase in it, as a result of canagliflozin,
was not shown when the second transporter was knocked out, suggesting that URAT1
might play an important role in SUA lowering by SGLT2is [72].

Not only kidney excretion of UA might be important in explaining the SUA-lowering
effect of SGLT2is, as changes in ABCG-2 expression and in AMPK/AKT/CREB pathway
were also shown in the ileum in T2DM mice; however, no changes in GLUT9 in the ileum
were shown. It shows that the ileum may also play an important role in UA handling. What
is more, the histological picture of the ileum and kidney were improved after empagliflozin
in mice with increased SUA, which may suggest a novel mechanism of SGLT2i influence on
SUA [70]. In conclusion, direct effect of flozines on UA metabolism and direct involvement
of SGLT2 in urate transport were excluded. The main proposed mechanism of lowering
SUA by SGLT2is suggests that increased UEUA is its main cause, but the exact mechanism
remains unknown. There is some evidence of SGLT2i influence on ABCG2 and URAT-1 and
GLUT-9 in it; however, the changes in different studies are inconclusive and the lowering
of SUA after genetic SGLT2 inhibition showed that it is not necessary for the effect. The
best-documented cause of increasing renal excretion of UA is glycosuria, which may be the
main underlying abnormality. However, it certainly is not responsible for all of the effect,
as changes in serum insulin, the histological picture of kidneys, and ileal transport of UA
might also be of some importance.

5. SGLT2i—Effect on Serum Uric Acid Concentration: Findings in Clinical Studies

Since 2013, when the first SGLT2i, canagliflozin, was registered, flozins became an ob-
ject of interest of many scientists. Since then, many clinical trials and observational studies
that revealed the effect of SGLT2is on SUA concentration were published. Furthermore,
there are several meta-analyses that explored this topic. As meta-analyses and systematic
reviews are considered to be the most trustworthy source of evidence and listing all avail-
able studies was not feasible, we decided to present findings from nine meta-analyses that
combined and reviewed 7 to 62 randomized controlled trials (RCTs) in both diabetic and
nondiabetic patients [74,77–84]. Two of them did not consider SUA reduction as a major
outcome [77,78].

5.1. Effect of SGLT2is on Serum Uric Acid Concentration

All agents within the drug class exhibited a significant effect on SUA reduction
(Table 1). SGLT2is available in Europe and in North America that were examined in the
abovementioned meta-analyses—empagliflozin, dapagliflozin, and canagliflozin—reduced
SUA concentration by 35.19–45.83 µmol/L, 30.32–41.50 µmol/L, and 36.27–41.22 µmol/L,
respectively. It was observed not only in phase 4 cardiovascular outcome trials [34], but also
in real-world studies [85]. The hypouricemic effect was detected already in the first weeks
of SGLT2i use [86–88] and it was sustained throughout a long period of time [34,74,89].
Zanchi et al. also confirmed this impact at 1 month but did not find any acute change in SUA
levels 180 min after administration [90]. Additionally, SGLT2is reduced SUA concentration
both in young and in elderly patients [91,92]. Furthermore, in the EMPEROR-reduced trial,
no significant difference in terms of lowering SUA levels between men and women was
observed [93].
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Table 1. Effects of SGLT2is on SUA concentration—summary of meta-analyses.

Author Year No. of Trials No. of Individuals Population Drug Uric Acid (µmol/L) I2

Musso [77] 2012 7 2943 T2D dapagliflozin −41.50 (−47.22, −35.79) a 50%

Zhang [78] 2014 10 3464 T2D dapagliflozin −36.17 (−40.99, −31.36) a 64%

Zhao [74] 2018 62 34,941 T2D total −37.73 (−40.51, −34.95) a 73.5%
empagliflozin −45.83 (−53.03, −38.63) a 0%
dapagliflozin −36.99 (−41.73, −32.25) a 65.4%
canagliflozin −41.22 (−45.03, −37.42) a 81.4%
ipragliflozin −17.40 (−23.78, −11.02) a 12.5%

luseogliflozin −28.20 (−34.73, −21.67) a 11.6%
tofogliflozin −21.48 (−35.15, −7.81) a 0%

Xin [79] 2019 31 13,650 T2D canagliflozin −37.02 (38.41, −35.63) a 80%
dapagliflozin −38.05 (−44.47, −31.62) a 99%
empagliflozin −42.07 (−46.27, −37.86) a 67%
tofogliflozin −18.97 (−28.79, −9.16) a 7%
ipragliflozin −19.75 (−28.17, −11.34) a 0%

Zhao [80] 2019 12 5781 T2D Empagliflozin c −36.59 (−46.22, −26.96) a 65%
Empagliflozin d −43.55 (−52.40, −34.70) a 65%

Wu [81] 2019 10 5159 T2D total −26.16 (−42.14, −10.17) a 80%

Hu [82] 2022 19 4218 T2D total −0.965 (−1.029, −0.901) a,b 98.7%
empagliflozin −0.710 (−0.832, −0.587) a,b 0%
dapagliflozin −2.787 (−2.965, −2.610) a,b 98.9%
canagliflozin −0.503 (−0.639, −0.366) a,b 0%
ipragliflozin −0.294 (−0.438, −0.151) a,b 87.6%

luseogliflozin −6.916 (−7.288, −6.544) a,b 97.9%
tofogliflozin −0.184 (−0.357, −0.011) a,b 86.3%

Akbari [83] 2022 55 36,215 T2D total −34.07 (−37.00, −31.14) a 78.8%
empagliflozin −40.98 (−47.63, −34.32) a 84.9%
dapagliflozin −35.17 (−39.68, −30.66) a 73.9%
canagliflozin −36.27 (−41.62, −30.93) a 66.5%
luseogliflozin −24.269 (−33.31, −15.22) a 66.3%
tofogliflozin −19.47 (−27.40, −11.55) a 0%
ipragliflozin −18.85 (−27.20, −10.49) a 59%

Yip [84] 2022 43 31,921 total total −33.03 (−37.38, −28.69) a 92%
3 597 luseogliflozin −47.73 (−79.50, −15.96) a 94%
7 4002 canagliflozin −36.62 (−42.67, −30.56) a 61%

16 17,653 empagliflozin −35.19 (−42.61, −27.78) a 96%
15 5036 dapagliflozin −30.32 (−36.20, −24.43) a 67%
2 702 ipragliflozin −20.37 (−29.17, −11.56) a 72%
4 198 without T2D total −91.38 (−126.53, −56.24) a 80%

39 31,723 T2D total −31.48 (−37.35, −25.60) a 92%
8 CKD total −8.12 (−22.17, 5.94), p = 0.26 69%

Data are presented as mean difference and 95% CI, I2—heterogeneity. a p < 0.05; b standard mean difference;
c 10 mg; d 25 mg Abbreviations: SGLT2i, Sodium–glucose cotransporter 2 inhibitors; SUA, serum uric acid;T2D,
type 2 diabetes; CKD, chronic kidney disease.

5.2. Drug- and Dose-Dependency

The findings regarding the association between the SUA-lowering effect and specific
agents are inconsistent. While Xin et al. suggested that there was no significant difference
between SGLT2is [79], there were some studies that pointed out the supremacy of several
SGLT2is. Both Yip et al. and Hu et al. considered luseogliflozin to be more effective in
lowering SUA concentration than other agents [82,84]. In contrast, Akbari et al. suggested
that empagliflozin had the highest mean SUA reduction among administered drugs [83].
Similar results were seen in a study comparing empagliflozin to dapagliflozin [94]. Many
theories could provide background for potential drug-to-drug differences in SUA-lowering
effects between flozins. According to the authors of this review, it is notable that em-
pagliflozin and luseogliflozin, considered the strongest for this particular effect, have the
highest SGLT2/SGLT1 selectivity (2500 and 1800, respectively). It is much higher than
those indices for dapagliflozin (1200) or canagliflozin (200) [95,96]. However, it demands
further studies to connect SGLT2/SGLT1 selectivity with SUA-lowering effects. Similar in-
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conclusiveness applied to dose-dependency. Although Zhao et al. observed an association
between dosage and SUA-lowering effects for dapagliflozin [74], and Hu et al. suggested a
similar relationship for luseogliflozin [82], it was not supported in other studies [79,83,84].
Whether there is a most-effective drug and dose regarding SUA reduction or not needs to
be further evaluated.

5.3. SUA Reduction in Chronic Kidney Disease Patients

There were few studies in which SUA reduction was not found. It was associated
mainly with CKD in T2D patients, and the beneficial effect was disappearing at an eGFR
of 60 mL/min/1.73m2 [74,84,97,98]. Akbari et al. noted that after removing studies that
were conducted only in CKD patients, the mean difference change in SUA concentration
increased from −35.17 µmol/L to −36.29 µmol/L, from −36.27 µmol/L to −37.44 µmol/L,
and from −40.98 µmol/L to −43.79 µmol/L for dapagliflozin, canagliflozin and em-
pagliflozin respectively [83]. It was also observed that in patients who did not benefit
in terms of SUA reduction, eGFR was significantly reduced 12 weeks after introducing
treatment with luseogliflozin [87]. On the other hand, in the EMPEROR-reduced trial, em-
pagliflozin seemed to lower SUA concentration consistently across the subgroups regardless
of kidney function, even in patients with eGFR lower than 30 mL/min/1.73 m2 [88]. It
is essential, that while SGLT2is may not significantly reduce SUA in patients with im-
paired kidney function, regarding their positive effect and improvement in terms of renal
and cardiovascular outcomes, they are indicated in CKD patients regardless of diabetic
status [99,100].

5.4. Factors Influencing SGLT2i Efficacy in Reducing Serum Uric Acid Level

Among the factors influencing the efficacy of SGLT2is in reducing SUA levels were
HbA1c, the presence and duration of diabetes, baseline SUA level, and, as mentioned
before, eGFR. It was established that lower levels of HbA1c enhanced the hypouricemic
effect of SGLT2is [74,85,87]. Baseline SUA concentration was positively associated with its
greater reduction [73,85,87,88], but it did not influence the beneficial effect of flozins on
cardiovascular outcomes [88,89]. Moreover, Ouchi et al. suggested that a greater decrease
in HbA1c was observed in patients with higher baseline SUA levels [73]. The EMPEROR-
reduced trial and the DAPA-HF showed a greater mean SUA reduction in nondiabetic
patients [88,89]. Yip et al. performed the only meta-analyses that included both patients
with and without diabetes and proved that mean SUA reduction was smaller in diabetic
patients than in nondiabetic patients, 31.48 µmol/L and 91.38 µmol/L, respectively [84].
There was a lack of consistency regarding the duration of diabetes. Whereas some studies
suggested a negative association between longer duration of the disease and SGLT2is ability
to reduce SUA [74], other research indicated the opposite relationship [83].

5.5. Effect of SGLT2is on Acute Gout Events and New Antigout Drugs Commencement

Besides exploring the direct effect of SGLT2is on SUA concentration, several studies
were conducted that examined the association between SGLT2i use and commencement
of new antigout drugs and incident gout events [89,101,102]. Banerjee et al. conducted a
meta-analysis that reviewed and combined five studies, noting the scarcity of literature on
experimental and observational studies [103]. Compared to placebo, SGLT2is significantly
reduced both the new antihyperuricemic drugs commencement (pooled HR 0.58) and
composite gout outcomes (pooled HR 0.61) in diabetic patients. A similar association was
observed comparing SGLT2is to other oral glucose-lowering drugs, such as glucagon-like
peptide-1 (GLP-1) agonists and dipeptidyl peptidase 4 inhibitors (DPP4i) [103].

5.6. SLGT2i—Novel Mechanism of Action

Hyperuricemia and acute gout events are associated with increased risk of ma-
jor adverse clinical outcomes, such as hospitalization for HF or cardiovascular mortal-
ity [88]. As medication administered during acute gout flare-ups, such as nonsteroidal
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anti-inflammatory drugs or steroids, are very often contradicted in HF or CKD patients,
the new, safe drug is in demand. In the QUARTZ study, dapagliflozin was administered in
subjects with asymptomatic hyperuricemia as a third drug in combination with antigout
drugs, verinurad and febuxostat [104]. It was observed that dapagliflozin further reduced
SUA, with no adverse outcome regarding kidney function. There was concern that a
further increase in UEUA may lead to crystallization in renal tubules and, eventually,
nephrolithiasis. However, this concern was not supported by available evidence [105].

6. Conclusions

Increased SUA may be a cause of many different diseases, starting from gout, in
which it is a direct cause of ailments, through T2DM, hypertension, and CHF, in which
hyperuricemia is a proven risk factor, to CHD, in which the correlation remains unclear.
What is more, increased SUA may be a protective factor against developing multiple
sclerosis, Parkinson’s, and Alzheimer’s diseases; however, there is no agreement between
authors on this matter. SGLT2is have a diverse impact on the human body. They have
some influence on RAS, SNS activity, lipid profile, BP, atherosclerosis risk, hematocrit,
and hemoglobin. They can also alleviate IR by modifying inflammatory factors and renal
damage by counteracting hyperfiltration, proteinuria, and renal fibrosis. What is more,
they reduce cardiovascular events, all-cause mortality, and hospitalization rates in some
groups of patients. Some of these effects may be due to their impact on SUA. All of the
cited meta-analyses showed that, indeed, SGLT2is significantly reduce SUA

The data on the drug- and dose-dependency of this effect are inconclusive, similar
to the influence of diabetes duration and eGFR; however, some alternating factors such
as HbA1c, presence of diabetes, and baseline SUA level were broadly accepted. Even
though there is a consensus that the lowering of SUA by SGLT2is is due to increased UEUA
rather than its altered metabolism, its exact mechanism remains unknown. Many possible
pathways were proposed, and they all may have some influence. Genetic inhibition of
SGLT2 showed an SUA-lowering effect, which suggested that direct influence on UA
transporters is not necessary; however, other studies showed many differences in their
expression and activity after SGLT2i. The influence of SGLT2is on SUA may not only be
used in gout treatment but may also be of huge importance in explaining the observed
pleiotropic effects of SGLT2i. Further studies to assess this effect of SGLT2is are necessary
to explore its exact mechanism and to fully utilize the potential of SGLT2i.
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