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Abstract: The heart is capable of extensive adaptive growth in response to the demands of the
body. When the heart is confronted with an increased workload over a prolonged period, it tends to
cope with the situation by increasing its muscle mass. The adaptive growth response of the cardiac
muscle changes significantly during phylogenetic and ontogenetic development. Cold-blooded
animals maintain the ability for cardiomyocyte proliferation even in adults. On the other hand, the
extent of proliferation during ontogenetic development in warm-blooded species shows significant
temporal limitations: whereas fetal and neonatal cardiac myocytes express proliferative potential
(hyperplasia), after birth proliferation declines and the heart grows almost exclusively by hypertrophy.
It is, therefore, understandable that the regulation of the cardiac growth response to the increased
workload also differs significantly during development. The pressure overload (aortic constriction)
induced in animals before the switch from hyperplastic to hypertrophic growth leads to a specific type
of left ventricular hypertrophy which, in contrast with the same stimulus applied in adulthood, is
characterized by hyperplasia of cardiomyocytes, capillary angiogenesis and biogenesis of collagenous
structures, proportional to the growth of myocytes. These studies suggest that timing may be of
crucial importance in neonatal cardiac interventions in humans: early definitive repairs of selected
congenital heart disease may be more beneficial for the long-term results of surgical treatment.

Keywords: cardiac development; adaptation to overload; adaptive growth response; phylogeny;
postnatal ontogeny; hypertrophy; hyperplasia

1. Introduction

Adaptation to the environment is a basic attribute of all forms of life. According to the
classic definition by Adolph [1], “ . . . adaptations are modifications of organisms that occur
under certain circumstances . . . and are not limited, as is often the case, to modifications
that appear to be favorable to the individual”; otherwise, each adaptation has positive and
negative consequences. If the heart is exposed to an increased workload for a long period, it
usually increases its muscle mass. The basic parameter determining the functional capacity
of the cardiac muscle is, therefore, the heart weight.

Cardiac adaptation to an increased workload is usually associated with dramatic
changes in the circulating levels of various hormones and growth factors, as well as with
remodeling of the extracellular matrix and subcellular organelles, including the sarcolemma,
sarcoplasmic reticulum, mitochondria and myofibrils. A critical role in the induction of
cardiac subcellular remodeling is played by changes in gene expression and the activation
of proteases. Changes in the function of subcellular organelles may serve as compensatory
mechanisms for the adaptation of cardiac cells [2,3].
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The adaptive cardiac growth response changes significantly during phylogenetic and
ontogenetic development. In poikilotherms, the cardiomyocytes proliferate during the
whole life; this proliferative potential is often associated with the lifelong capability of
these species to grow [4]. On the other hand, the extent of cardiomyocyte proliferation
in homeotherms depends on the developmental period: while fetal or neonatal cardiac
myocytes have proliferative potential (hyperplasia), proliferation declines sharply after
birth, and the heart grows almost exclusively via hypertrophy of the cardiomyocytes.
It is, therefore, understandable that the regulation of cardiac growth responses to the
increased workload (hyperplastic or hypertrophic) thus varies markedly during ontogenetic
development [5].

Interest in the developmental aspects of cardiac adaptation to increased workload still
increases. The main reason is likely the effort to clarify mechanisms responsible for the
plasticity of the immature heart and to discover new strategies, leading to the induction
of the proliferation of adult cardiomyocytes as well as to the regeneration of the damaged
myocardium after infarction [6]. Whereas a large amount of information currently exists
on cardiac adaptation to overload in adults, much less is known about developmental
differences in cardiac adaptive response. In this review, we summarize, therefore, some
data addressing phylogenetic and ontogenetic aspects of cardiac adaptation to increased
workload. Particular attention was paid to the regulation of normal cardiac growth and
differences in the adaptive response of the immature and adult myocardium.

2. Phylogenetic Remarks

The transition from water to land and the need for thermoregulation and physical
activity necessary for species survival represent major adaptive changes in cardiac function
during phylogeny. Heart size in different vertebrate species varies considerably. The
average values of the relative heart weight (heart weight/body weight × 100) for each
vertebrate class are shown in Figure 1. Relative heart weight is highest in birds, followed
by mammals and cold-blooded animals. The maximal acceleration of heart growth occurs
when the metabolic activity increases significantly; for example, during the transition from
poikilothermy to homeothermy [2,7,8]. Another important factor represents the increased
energy demand induced by antigravity workload, especially in birds.
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Figure 1. Mean values of the relative heart weight in individual classes of vertebrates. The number of
species from which the mean value was calculated is given in each column (data from [7]).

Significant differences in relative heart weight also exist within individual classes of
vertebrates: physically active poikilotherms and homeotherms have a greater relative heart
weight than inactive animals [9,10]. For instance, the most active species of fish also have
the largest relative heart weight. Similar differences in relative heart weights also exist in
amphibians: perennial aquatic frogs (Rana esculenta) have a lower relative heart weight
than predominantly terrestrial frogs (Bufo vulgaris, Hyla arborea). The relative heart weight
of the climbing tree frog (Hyla arborea) even reaches values typical for mammals (Figure 2).
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The relationship between heart weight and physical activity in homeotherms was
studied by Clark, who also introduced the terms “athletic” and “non-athletic” animals [9].
Two species are typical examples of the important role of excessive antigravity work: the
flying mammal, i.e., the bat (Myotis myotis), and the squirrel (Sciurus). They have a signifi-
cantly higher relative heart weight compared to mammals of approximately the same body
weight. Differences in physical activity may also explain variations in relative heart weights
between domesticated and wild species [8,11]. In this context, it is important to emphasize
that in all individuals increased heart weight is not a pathological hypertrophy, but a genetic
adaptation to physical activity by these species. Interestingly, left ventricular pressure in
newborn mammals is similar to mean ventral aortic blood pressure (30–50 mm Hg) in trout,
cod and several other fish species [12]. Although fish are very different from mammals
and function at lower and fluctuating body temperatures, it is interesting that the car-
diomyocyte morphology, excitation–contraction (e–c) coupling and energetics are similar
to those of neonatal mammals. This is, of course, a simplistic view, because the hearts of
many fish species generate much lower pressures, whereas the hearts of very active tuna
can generate a mean aortic pressure of up to 90 mm Hg [13]. Presumably, the ventricular
wall stress has a greater influence on ventricular structure than absolute pressure. The
inner spongious musculature is divided into several smaller compartments (sinusoids),
characterized by lower wall stress than the large central lumen in mammalian hearts [14].
This is the reason why some authors compare neonatal mammalian cardiomyocytes with
trout cardiomyocytes, as this is one of the most commonly studied fish species.

Phylogenetic differences in cardiac weight, performance, and energy metabolism
are closely related to the form of oxygen pathway from the blood to mitochondria [15].
The heart of poikilotherms is either entirely spongious, supplied by diffusion from the
ventricular cavity, or the inner avascular layer is covered by an outer compact myocardium
supplied by capillaries from the coronary arteries (Figure 3). The thickness of the compact
musculature in cold-blooded vertebrates increases with increasing heart and body weight.
These findings suggest that compact musculature is necessary to maintain blood pressure
in larger hearts (Figure 4, application of the law of Laplace) [2,16–18]. Structural differences
between the spongy and compact myocardium are accompanied by significant changes in
energy metabolism: the spongy myocardium is better equipped for aerobic metabolism than
the compact layer [18,19]. Cardiac adaptations to different types of increased workload vary
among lower vertebrates according to the structural, functional and metabolic properties
of their myocardium. This can range from the isolated increase in individual layers to the
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enlargement of the entire heart through a combination of hyperplasia and hypertrophy of
cardiomyocytes [2,20].
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Figure 3. Scheme of the different types of myocardial blood supply during phylogenetic development:
(a) spongious trabeculated musculature, entirely supplied from the ventricular cavity; (b) the inner
avascular spongious layer is covered by an outer compact musculature with vascular supply; (c) as (b),
but capillaries are also present in some trabeculae of spongious musculature; (d) compact musculature
supplied from coronary arteries. Type (a–c)—the heart of poikilotherms; type (d)—the heart of adult
homeotherms (adapted with permission from [21]).
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As mentioned above, in cold-blooded vertebrates the proliferative potential of car-
diomyocytes persists throughout their lifetime, allowing the complete regeneration of
the damaged heart, as has been demonstrated, for example, in urodele amphibians [22]
and zebrafish [23]. An experimental model of cardiac ventricular amputation allows the
identification of critical genes and pathways. Thus, understanding the factors that regulate
myocyte re-entry into the cell cycle in poikilothermic hearts could help in unraveling the
regenerative potential of the myocardium in humans [24].

In conclusion, a question arises as why it is useful to analyze the mechanisms of
cardiac adaptation in lower vertebrates. Although one cannot entirely agree with the view
that ontogenetic development is a recapitulation of phylogeny, comparative studies (more
correctly labelled than “phylogenetic” because the investigator is not comparing the entire
evolutionary series, but only certain classes—i.e., a pars pro toto approach) have contributed
significantly to our understanding of the function of the cardiovascular system [11,25].
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Perhaps the study of the cardiovascular system in lower vertebrates continually challenges
the perceived notion that a simple function must arise from a simple structure [26].

3. Normal Cardiac Growth during Postnatal Ontogeny

Consistent with a developmental approach to cardiac adaptation, normal cardiac
growth represents an adaptive response to increased energy demands during ontogeny. In
most mammalian species, cardiac performance in terms of stroke work is lower at birth
than in adults. During development, blood pressure and cardiac output increase, and the
heart must reach a higher performance. Accordingly, the cardiomyocytes change their
morphology, e–c coupling and energetics [27]. Achieving final organ size requires the
precise coordination of cell growth, proliferation and survival throughout postnatal life [3].

In mammals, normal cardiac growth is biphasic: during early development, hyperpla-
sia of cardiomyocytes predominates, while in later life total cell mass is achieved through
hypertrophic growth. The proliferation of cardiac myocytes peaks during embryonic life
and then declines until birth [5,28] (Figure 5). A rapid transition from myocyte hyperplasia
to hypertrophy occurs between postnatal days 3 and 4 in rat and mouse hearts [29,30]. In
humans, the final cardiomyocyte number is reached as early as one month after birth [31],
although other studies have reported an increase in the number of cardiomyocytes at even
later stages of development [32]. Proliferative activity in the heart not only increases its
mass to match the increasing demands, but along with programmed cell death and migra-
tion is a major factor in shaping the developing heart [5]. Ventricular shape is determined
by the ballooning of the left and right ventricle due to a high proliferative activity in their
apical parts and relative quiescence in the septum [33]. Immigrant cell populations are
also important for septation division of the originally single outflow tract into the aortic
and pulmonary channels by the neural crest cells. The remodeling of the atrioventricular
junction is induced by the epicardially derived cells forming a good proportion of cardiac
fibroblasts and contributing to atrioventricular valves [34]. Prenatal and early postnatal
ventricular myocytes show generally very low levels of apoptosis. However, early postnatal
rodent right ventricles have shown a temporary increase in apoptosis, interpreted as an
adaptation to postnatal pressure unloading and higher oxygen tension [35]. A similar wave
was described in both ventricles in lambs prior to birth using biochemical methods [36]; this
preceded the switch from hyperplastic to hypertrophic growth and was shown to reduce
the number of myocytes by almost 30%. The significance of this finding is unclear, and it
should be corroborated by tissue-specific markers such as TUNEL to pinpoint the spatial
distribution of dying myocytes. Similarly, the cause of interspecies differences is unknown,
but different degrees of maturation at birth may play a role.
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The adult heart is traditionally considered as a postmitotic organ, but numerous
studies have demonstrated that adult mammalian cardiomyocytes have very limited pro-
liferative potential [4,31,37,38]. Many studies have focused on promoting cardiomyocyte
proliferation via inducing cell cycle re-entry, which is essential for cardiac recovery after
myocardial infarction (for Ref. see [6]). Recently, Nakada et al. investigated the effect of
severe chronic hypoxia on cardiomyocyte proliferation [39]. Their study was based on the
presumption that during embryonic development, the mammalian heart primarily utilizes
anaerobic metabolism to produce energy, and fetal cardiomyocytes have a high prolifer-
ative capacity. The transition to higher oxygen levels is associated with an interruption
of the cell cycle of cardiomyocytes and a reduction in their proliferative potential. The
authors have observed that a gradual reduction in ambient oxygen levels to 7% induced
in adult mice a proliferative response of cardiac myocytes. Thus, hypoxemia reduced
the mitochondrial oxidative metabolism and reactive oxygen species (ROS) production,
repressed oxidative DNA damage, and led to cardiac hyperplasia through increased mi-
tosis. Interestingly, high altitude populations have reduced mortality due to ischemic
heart disease [40]. However, the recent study failed to reproduce the principal finding: the
total number of cardiomyocytes did not differ between control and hypoxia. Moreover,
indices of cardiomyocyte DNA synthesis, cell-cycle activity and cytokines failed to show
a hypoxia-induced stimulation of cardiomyocytes proliferation in left ventricles [41].

Numerous studies using different methodological approaches have systematically
mapped the ontogenetic development of cardiomyocyte proliferation [5,42,43]; their enu-
meration and critical evaluation is beyond the scope of this review. Too often, however,
insufficient evidence or improper controls are provided to support the claim that cardiomy-
ocytes proliferate, a process that should be strictly defined as the formation of two de novo
functional cardiomyocytes from a single original cell. A complementary approach to the
analysis of cell-cycle markers is to infer complete cardiomyocyte division by estimating the
associated increase in the total number of cardiomyocytes in the entire heart, also known
as “endowment”. Currently, two approaches prevail: (i) enzymatic disaggregation and
quantification, and (ii) design-based stereology [43]. Due to the significantly different
results obtained by enzymatic dissociation compared to in situ stereology, it is difficult to
determine with certainty which method generates more precise results [43]. It should be
emphasized that cardiomyocyte cell-cycle activity does not necessarily equate to prolifera-
tion, as it may also reflect hypertrophy, polyploidization, or polynucleation [44]. It should
be noted that further polynucleation, usually including a high number of nuclei (four, eight
or even more), can be a sign of cardiac disease/damage in older individuals. Therefore, it
is important to be cautious when interpreting data from cell-cycle assays. A main problem,
particularly in vivo, is to determine whether the cell-cycle marker signal actually belongs
to the cardiomyocyte or to other cardiac cells. This is particularly important because there
is often increased fibroblast proliferation and infiltration of the inflammatory cells. Failure
to recognize this issue often leads to a misinterpretation of results and is often a cause of
controversy in the fields of cardiac regeneration [42].

The postnatal growth of the normal mammalian heart depends almost entirely on
cellular hypertrophy. The reduction in proliferation after birth is followed by brief bursts of
other possible cell-cycle variations, known as polyploidization and binucleation. Both of
these variations occur in mouse and human cardiomyocytes after birth, but in relatively dif-
ferent degrees. The predominant cell cycle variant in mice cardiomyocytes is binucleation,
peaking around postnatal day 7 [45], whereas in humans polyploidization occurs mostly
between 10 and 20 years of age [31]. The functional consequences of polyploidization
are still unknown. Another interesting question is the relationship between longitudi-
nal and circumferential cardiac growth. Jonker et al. [36] observed that left ventricular
myocytes grow more rapidly in width than in length, leading to a significant decline in
their length:width ratio. This is typical of concentric hypertrophy and is considered as
a feedback response to pressure overload. It is easy to measure myocyte width in cross
sections, but far more difficult to obtain the length—it requires myocytes to be oriented
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strictly parallel with the section plane. It could be performed more easily on isolated
myocytes, but then the positional information is lost; it is supposed that there are gradients
in size transmurally and between the left and right ventricles. Prenatally, there is mostly
hyperplasia, with a bit of hypertrophy in pressure overload [5,46]. This seems to be due to
wall strains (circumferential), but there are several mediating cascades, including growth
factor signaling [47].

The ontogenetic development of cardiac muscles is accompanied by a corresponding
development of the blood vessels and cells, such as fibroblasts, immune cells, neurons, etc.
(for Ref. see [48]). Regarding the blood supply, during early prenatal development the
heart chambers are spongious and sufficiently thin; therefore, coronary circulation is not
necessary. During further development, the spongious myocardium is replaced—as during
phylogeny—by a compact layer [21,49]. The first signs of coronary vessels’ formation are
the presence of endothelial tubes in the subepicardium; vascularization then proceeds in
a predictable sequence. The tubes branch and anastomose, venous vessels are formed and
attach to the sinus venosus, and finally the capillary plexus develops [50]. The venous
part then connects to the right atrium via the coronary sinus, while the coronary stems
penetrate the aortic wall in the left and right aortic sinus slightly later [51]. The further
differentiation of the coronary vessel wall is then pressure dependent and involves the
addition of the smooth muscle media to the wall of coronary arteries in a baso-apical
gradient [50]. The early postnatal period is characterized by a rapid rate of capillarization:
nearly half of the adult capillaries in the rat heart are formed within the first 3–4 postnatal
weeks [52]. A major quantitative feature of the capillary bed in the subsequent period is
the decrease in the fiber-to-capillary ratio and capillary density: the number of cardiac cells
supplied by a single capillary decreases from 4 to 6 in the neonatal period to one in the
adult hearts of various mammalian species [53]. In adult animals, the number of muscle
fibers and capillaries/mm2 gradually declines as a result of the growth of the diameter of
muscle fibers; the fiber-to-capillary ratio remains constant (1:1), and the diffusion distance
becomes longer. In the heart muscles of old animals (in rats over to years of age), the
number of muscle fibers/mm2 is unchanged, while the number of capillaries/mm2 is lower.
The result is a significant increase in the fiber-to-capillary ratio and a prolongation of the
diffusion distance. The development of the fiber-to-capillary ratio is probably the same
in the ontogeny of all mammalian hearts [50]. Normally, the processes of myocardial and
coronary development is closely linked [54]; interestingly, the factors controlling the growth
of these two compartments are similar, with FGF2 (fibroblast growth factor 2) emerging as
a major player [47,55].

4. Regulation of Normal Cardiac Growth

What controls the development of cardiac size? How is cardiac growth regulated in
order to achieve the target size? These basic questions have received considerable attention,
and we are now starting to understand how external and genetic determinants coordinate
organ size (for more details, see Refs. [3,4,56]). In mammals, regulatory mechanisms have
developed to ensure that the heart reaches the correct size. As mentioned above, cardiac
growth during ontogeny is biphasic: hyperplastic growth is replaced by hypertrophic
growth shortly after birth. Therefore, interest was first concentrated on the analysis of the
cellular mechanisms responsible for the control of cardiomyocyte division. Several recent
reports have revealed that proliferation during cardiogenesis is coordinated by growth
factors, intrinsic signaling morphogenetic pathways, and cell-cycle regulators [56]. Extrinsic
regulatory signals include the fibroblast growth factor (FGF), bone morphogenetic protein,
and canonical and non-canonical Wnt signaling pathways (for Ref. see [57]). Sources of
such growth factors may be multiple; they are also produced by the myocytes themselves,
and released in response to the increased stretch.

As mentioned by Sedmera and Thompson [5], “what causes myocyte divide is inter-
esting, but what makes them stop dividing is fascinating”. The cessation of cardiomyocyte
proliferation after birth is accompanied by the downregulation of many basic cell-cycle
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factors and the upregulation of cell-cycle inhibitors [4]. Recently, it has been observed that
heart size is intrinsically controlled during development and that the anti-growth Hippo
kinase pathway plays a critical role [3] (Figure 6). Hippo limits hyperplastic (rather than
hypertrophic) cardiomyocytes’ growth during prenatal and early postnatal development.
Whether Hippo signaling also regulates later postnatal cardiac growth is still unknown.
Taken together, these studies suggest that, in concert with other signaling pathways, Hippo
signaling deregulates heart size by suppressing cardiomyocyte proliferation. Another
example is the homeobox protein Meis1; the inactivation of Meis1 in mouse cardiomyocytes
extends the postnatal cardiomyocyte proliferation and allows the reactivation of mitosis in
the adult heart, whereas the overexpression of Meis1 reduces neonatal proliferation [58].
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Shortly after birth, several transitions are triggered in the neonatal heart that initiate
a complex remodeling from the fetal state to the adult heart. As noted above, a switch
in growth mode occurs in the early postnatal heart, where cardiomyocytes terminally
differentiate, cease proliferating, and undergo hypertrophic growth that increases cell
diameter and mass, accompanied by a marked increase in heart weight (reaching adult
values in mice at approximately 3 months of age [59]). This hypertrophic cardiac growth
is regulated by multiple signals such as the phosphoinositide 3 kinase/protein kinase
B/insulin (PI3K/AKT/insulin) pathway, thyroid hormones, etc. (e.g., [3]).

To meet the metabolic demands resulting from the increasing heart size and the
workload, the heart undergoes a major metabolic transition in the early postnatal period,
from a predominantly anaerobic and glycolysis-dependent fetal-like state to an adult state
that utilizes oxidative metabolism (Figure 7). Following this switch, the postnatal heart
primarily catabolizes fatty acids, in contrast to the fetal heart, which relies predominantly
on carbohydrates as a primary source of energy [60]. The postnatal cardiomyocytes produce
a greater amount of ROS, which are generated in part by oxidative phosphorylation. ROS
can cause oxidative DNA damage, which has been shown to induce cell-cycle arrest.
However, it has been demonstrated that reducing ROS, e.g., by exposing animals to chronic
hypoxia, increases cardiomyocyte cell-cycle activity during normal postnatal development
(see above [39]).
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glycolysis dependent prenatal period to an adult state that uses oxidative metabolism. The switch in
metabolism is hypothesized to begin prior to or around the time of birth. It is, however, unknown
if a progressive change in energy metabolism instigates the switch from proliferative to quiescent
cardiomyocytes, or if the switch from proliferative to quiescent cardiomyocytes drives the change in
cardiac energy metabolism [61].

The metabolic switch from anaerobic to oxidative energy metabolism is regulated
by several nuclear receptors and their cofactors, such as the hypoxia-inducible factor
(HIF) pathway, the PGC-1/peroxisome proliferator-activated receptor (PPAR) α pathway
and the peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1)/PPAR
δ pathway; however, the underlying molecular mechanisms that drive this process have
not yet been elucidated [62,63]. The recently revealed role of HIF-1α–mediated hypoxic
responses in fetal cardiomyocyte proliferation supports a role of neonatal oxygen exposure
in promoting cell-cycle termination. HIF-1 α stabilization is critical for proliferation by
reducing genes encoding negative cell-cycle regulators and activating genes favoring the
metabolic transition to glycolytic metabolism [64].

5. Differences in Cardiac Response to the Increased Workload
during Postnatal Ontogeny

Detailed knowledge of the different ontogenetic periods will help predict and explain
the adaptive cardiac responses to various pathological stimuli, including increased work-
load. As early as 1965, Rakusan et al. suggested that the results should be different if
the growth stimulus is applied during the early postnatal period, characterized by the
combination of hyperplastic and hypertrophic growth, or later, during the exclusively
hypertrophic phase of cardiac development [65]. As noted above, the rapid switch from
hyperplastic to hypertrophic growth occurs in rats as early as between postnatal days 3
and 4 [29]. Interestingly, postnatal day 4 also represents a critical turning point in the
ontogenetic development of the relative heart weight, cardiac contractile performance and
inotropic responsiveness [66].

In order to study the effect of increased hemodynamic load on postnatal cardiac devel-
opment, an experimental model was developed to load the immature heart with additional
workload by constricting the abdominal aorta (AC) [67]. This intervention resulted in
a much more expressed increase in left ventricular mass than a similar constriction per-
formed in adult animals [68]. Unfortunately, in early studies AC was not applied in rats
younger than 5 days of age [69–71], likely because of the increased mortality associated
with abdominal surgery at younger stages. In our modification [72], the aorta was exposed
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from the dorsolateral side, causing much less trauma and allowing us to use this model
in 2-day-old rats with minimum early mortality. AC at day 2 induced a rapid increase in
the absolute and relative heart weight, already apparent at day 3 and reaching statistical
significance by day 5, whereas a significant increase in left ventricular cardiomyocyte width
first occurred on day 10. The pre-labeling of 3H-thymidine with label dilution showed
an increased number of cellular divisions in AC rats, correlating with the severity of the
phenotype. The terminal DNA synthesis index increased significantly at day 3, but did not
differ from controls at later stages of development. The apoptotic rates were not different
from controls at any sampling interval. These results thus suggest that the adaptation of
the neonatal heart to increased pressure load is rapid, and is based on transient hyperplasia
followed by hypertrophy of ventricular cardiomyocytes [73].

Pressure overload imposed in rats early after birth resulted in an accelerated bio-
genesis of the extracellular matrix and capillary angiogenesis [72] (Figure 8). However,
unchanged capillary density in both AC groups indicated that angiogenesis was stimulated
proportionally to the increase in ventricular mass. Unchanged capillarization is a spe-
cific feature of cardiomegaly induced early after birth; on the other hand, hypertrophy
caused in adults is generally associated with reduced capillary density [74]. Similarly, the
concentration of hydroxyproline in the AC myocardium was unchanged, suggesting that
the formation of collagenous proteins was also proportional to the cardiac growth. This
means that an increased workload applied early after birth leads to cardiomegaly without
myocardial fibrosis. This situation is principally different from the increased workload
induced in adults, which results in the increased accumulation of collagen and myocardial
fibrosis [75,76].
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(mg/kg dry weight) in the myocardium of control adult rats (C) and in adult rats with gradual
pressure overload, induced by abdominal aortic constriction on postnatal day 2 (AC2) or 6 (AC6)
(data from [72]).

Recently, Mohammadi et al. have precisely described the neonatal mouse model of
pressure overload induced by transverse AC applied at postnatal days 1 and 7 [77,78].
Surgery performed on day 7 induced cardiac dysfunction, fibrosis and the hypertrophy of
cardiomyocytes, similar to results in adult animals. In contrast, AC induced in 1-day-old
animals largely prevented these maladaptive changes and was associated with increased
angiogenesis and cardiomyocyte proliferation.

In conclusion, an increased workload induced in animals soon after birth (i.e., be-
fore the switch from hyperplastic to hypertrophic growth) leads to a specific type of left
ventricular enlargement which, in contrast to the same stimulus applied in adulthood, is
characteristic by hyperplasia of the cardiomyocytes, capillary angiogenesis and biogenesis
of collagenous proteins proportional to the growth of myocytes. Although neonatal rats
may differ in maturity from neonatal humans, these studies suggest that timing may be
of crucial importance in neonatal cardiac interventions. They support the current practice
of early definitive repairs to selected congenital cardiac anomalies: such an approach can
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result in the remodeling of myocardial architecture more through hyperplasia rather than
hypertrophy, which may be more beneficial for long-term results of surgical treatment
in pediatric cardiology [73]. Unfortunately, the molecular mechanisms responsible for
the developmental differences in cardiac responses to increased workload are still un-
known. More developmental studies are, therefore, necessary to expand our knowledge in
this respect.

6. Concluding Remarks

This review summarizes the recent data on cardiac adaptation to increased work-
load during phylogenetic and ontogenetic development, with particular attention to the
transition from hyperplastic to hypertrophic growth. It supports the view that develop-
mental biology and medicine form a rational combination of individual biomedical science,
describing the functional adaptation of a particular system, and evolution, which is the
science of how biological systems came to exist.

The importance of the developmental approach for experimental and clinical cardi-
ology is indisputable. Clinical–epidemiological studies have clearly demonstrated that
risk factors of serious cardiovascular diseases are already present in the early stages of
ontogenetic development, and genetic factors are present even before birth. Experimental
studies on the pathogenetic mechanisms of these disturbances must therefore move to
the early developmental periods. The investigation of developmental aspects of cardiac
adaptation to increased workload may serve as a good example. Moreover, congenital
cardiac malformations are still the most common cause of infant mortality from congenital
defects in developed countries. It is, therefore, not surprising that the interests of both
theoretical and clinical cardiologists in the developmental approach continues to grow.
Recent progress in molecular cardiology and the promising possibilities of human prenatal
cardiology [79] have significantly accelerated this trend.
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