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Abstract: Diagnosis of coronary artery disease is mainly based on invasive imaging modalities
such as X-ray angiography, intravascular ultrasound (IVUS) and optical coherence tomography
(OCT). Computed tomography coronary angiography (CTCA) is also used as a non-invasive imaging
alternative. In this work, we present a novel and unique tool for 3D coronary artery reconstruction
and plaque characterization using the abovementioned imaging modalities or their combination.
In particular, image processing and deep learning algorithms were employed and validated for
the lumen and adventitia borders and plaque characterization at the IVUS and OCT frames. Strut
detection is also achieved from the OCT images. Quantitative analysis of the X-ray angiography
enables the 3D reconstruction of the lumen geometry and arterial centerline extraction. The fusion
of the generated centerline with the results of the OCT or IVUS analysis enables hybrid coronary
artery 3D reconstruction, including the plaques and the stent geometry. CTCA image processing
using a 3D level set approach allows the reconstruction of the coronary arterial tree, the calcified and
non-calcified plaques as well as the detection of the stent location. The modules of the tool were
evaluated for efficiency with over 90% agreement of the 3D models with the manual annotations,
while a usability assessment using external evaluators demonstrated high usability resulting in a
mean System Usability Scale (SUS) score equal to 0.89, classifying the tool as “excellent”.

Keywords: coronary artery disease (CAD); 3D reconstruction; OCT analysis; IVUS analysis; CTCA

1. Introduction

During the past decades, several efforts have been made to support clinicians in the
evaluation of atherosclerosis in coronary arteries. These approaches involve the automatic
or semi-automatic extraction of arterial geometry and atherosclerotic plaques from a variety
of imaging modalities. The established coronary imaging techniques can be invasive
and non-invasive. Invasive modalities include coronary angiography (CA), intravascular
ultrasound (IVUS), and Optical Coherence Tomography (OCT), while non-invasive imaging
of the coronary arterial tree can be achieved through Computed Tomography Coronary
Angiography (CTCA).

Based on the utilization of these imaging modalities, or their fusion, a plethora of
algorithms has been developed to enable the detection and 3D reconstruction of the coro-
nary arteries and characterization of the atherosclerotic plaque types. These reconstructed
geometries can then be used to support the evaluation of the disease by clinical experts
and for the execution of in silico simulations, e.g., blood flow simulations, plaque growth,
etc. [1].
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Moreover, several commercial platforms and software are available currently for
the analysis of coronary imaging. Such software is provided by Pie Medical Imaging,
Netherlands, including the CAAS workstation which, among other things, allows CA
analysis and the 2D analysis of OCT/IVUS, without, however, information about plaque
composition or the 3D reconstruction of the vessels. Moreover, the 3mensio Coronary
software enables the CTCA analysis. MEDIS Medical Imaging, Netherlands, also offers
discrete solutions for the analysis of the most imaging modalities (Medis Suite XA, Medis
Suite CT and the Medis Suite Intravascular). Finally, the major industry in coronary
imaging, e.g., PHILIPS Healthcare, General Electric, etc., provides software and platforms
which support their imaging vendors.

In this work, for the first time in the current literature, we combine different method-
ologies in an all-in-one software which enables clinicians to assess coronary artery disease
using either invasive imaging or non-invasive imaging. Through the developed and vali-
dated methodologies, semi-automatic reconstruction of the coronary arteries and plaques
is achieved and quantitative assessment of the disease severity is provided. In particular,
using the 3D reconstruction and plaque characterization tool, IVUS and OCT image pro-
cessing analysis is performed, characterizing the lumen, outer wall borders, and plaque
(struts can also be detected from the OCT cases). The quantitative coronary angiography
(QCA) module provides the quantitative analysis of X-ray invasive coronary angiography
(CA) enabling the reconstruction of segments or bifurcations. Moreover, the CTCA module
enables the reconstruction of coronary trees and plaques, as well as the detection of stented
regions. The tool allows the fusion of the results from the modules and hybrid reconstruc-
tion options (OCT/IVUS with the QCA or CTCA). To our knowledge, the tool is the only
one available which enables comprehensive coronary imaging from various modalities. It
is the first one which also combines the plaque characterization and their 3D visualization,
as well as strut detection and the stent 3D reconstruction. The algorithms employed in the
tool have been validated and the tool has been evaluated for its performance as well as for
its usability.

2. Materials and Methods
2.1. Architecture

The overall architecture of the 3D reconstruction and plaque characterization tool is
presented in Figure 1.
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Figure 1. Architecture of the 3D coronary artery reconstruction and plaque characterization tool.

The 3D Reconstruction and plaque characterization tool is based on a three-tier ar-
chitecture consisting of the following layers: (i) Data Storage layer: this layer contains the
data of the patient to be analyzed and the filesystem where the data are stored. The data
storage proxy handles the access to the database and the filesystem. The data stored in the
filesystem are: the DICOM images of the patient to be processed, the segmentation masks
as outputs of the reconstruction tool, the vessel and stent evaluation metrics and other
metadata, and the 3D geometries of the vessel lumen, wall, plaques, and stent. (ii) Business
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Logic layer: This layer includes the modules that perform the image processing/analysis
and create the 3D geometries of the vessel, plaques, and scaffolds. Those modules also
extract measurements related to the lesion and the stent positioning. The user commu-
nicates with this layer through an API Gateway, selects the patient folder, and the Data
Manager sends the corresponding data to the layer (back-end) modules to initiate the
process. (iii) Presentation layer: includes the modules related to the user interface, the
visualization of the data and the results and the configuration of the user interfaces (UI)
and the algorithms.

2.2. Modules

This section contains the description of the 3D Reconstruction and plaque characteri-
zation tool modules, shown in Figure 1, their functionality, and their input-output.

Workflow Manager: The functionality of each module depends largely on the type
of image. The workflow manager is responsible for selecting the appropriate processing
workflow for the imaging modality which is used.

Study Manager: This manager is the interface between the user and the Data Storage
Proxy, where the user can select to view, edit, and process the specific patient data. In
particular, when a DICOM image is analyzed from any imaging module, a patient’s “study”
folder is created which includes all the produced results and metrics.

CTCA Preprocessing Module: This preprocessing module applies a vessel enhance-
ment filter in the DICOM images to remove irrelevant details and identify vessel candidate
regions. This module is used in the case when CTCA images are processed.

e  Input: CT DICOM images.
e  Output: processed CT DICOM images using the Vesselness filter [2].

Vessel Segmentation Module: Segmentation of the vessel lumen, wall, and plaques.
The segmentation method which is performed depends on the imaging modality.

e Input: The user inputs depend on the imaging modality (CTCA and CA case: starting
and ending points of segment, OCT/IVUS case: lumen and adventitia borders),
imaging data in DICOM format.

e  Output: OCT, IVUS, CTCA: Vessel lumen and wall, calcified and non-calcified plaque
segmentation masks; CA: Lumen and centerline path.

Vessel Evaluation Module: This module uses the outputs of the Vessel Segmentation
Module, more specifically the segmentation masks and the extracted centerline paths, and
provides several related metrics for the evaluation of the lesion.

e Input: Segmentation masks of the lumen, adventitia and plaques, 3D centerline path.
e  Output: Lumen area and perimeter, outer wall area and perimeter, plaque burden.

Plaque Characterization Module: Plaque characterization enables the plaque compo-
nents detection on IVUS, OCT, and CTCA images. The applied methodology depends on
the imaging modality.

Input: The required input is the masks of the lumen and outer wall borders.

Output: OCT, IVUS: plaque segmentation masks, 3D point clouds, 3D surfaces of

calcified plaques, metrics of plaque area, angle; CTCA: calcified and non-calcified

plaques segmentation masks, 3D objects, volumes, areas of the calcified and non-
calcified plaques.

3D Model Generation Module: This module uses as input the segmentation masks of
the lumen, wall, and plaques, the 3D centerline path and the transformed 3D point cloud
of the stent struts and performs triangulation and extra processing (clipping, remeshing)
in order to create the 3D geometries of the vessel (lumen and outer wall), the plaques and
the stent.

e Input: Segmentation masks of the lumen, adventitia and plaques, 3D centerline path,
3D stent transformed point cloud.
e  Output: 3D models of the vessel, plaques and stent.
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Study Registration Module: This module is used to co-register a study between the
pre- and post-stenting phases of the operation.

e Input: 3D centerline path, 3D geometries of the vessel, plaques, and stent.
e  Output: Co-registered 3D models.

The Stent Segmentation, Stent Fitting, Stent Evaluation and Centerline Projection
Modules are employed only for OCT images. Moreover, for the Stent Fitting and Centerline
Projection Modules, X-ray angiography images of the same study and a deformable model
of the stent are available.

Stent Segmentation Module: This module performs automated stent strut detection
from OCT and/or IVUS images.

e Input: Imaging data (DICOM series of the OCT/IVUS pullback), user input (manual
annotations-corrections of detected stent struts).

o  Output: Strut point cloud, metrics of struts (number of struts, malapposed struts,
in-stent restenosis).

OCT/IVUS + Angiography Fusion Module: This module uses the 3D centerline path
extracted from X-ray angiography images to transform the struts from the 2D frames to the
original 3D space of the vessel. It is also used to transform the lumen, wall, and plaques
into the 3D space.

e Input: 3D centerline points, segmented borders of the lumen and wall, strut point cloud.
e  Output: Vessel lumen, wall, plaque lesions and strut point cloud in 3D space.

Stent Evaluation Module: Uses as input the 3D stent fitted model and the detected
struts point cloud, and outputs several stent evaluation metrics to provide a series of
outputs described below:

e Input: Strut point cloud, reconstructed 3D stent model.
e  Output: Stent evaluation metrics (Stent CSA, minimum/maximum stent diameter, strut
malapposition distance, % of unapposed struts, restenosis burden, fracture detection)

Data Visualization Manager: This module is used to display the segmentation results
and related information to the user including 3D volume rendering, 3D vessel and stent
models rendering, 2D classification maps of the segmentation, etc. It is also responsible for
displaying the DICOM images and the calculated metrics of each component.

e Input: DICOM images, 3D models of the vessel, plaques and stent Vessel / plaque/stent
evaluation metrics.
e  Output: 3D rendering, 2D plots, visualization of the data.

User Settings Manager: This module enables the expert user to adjust the parameters
of the various methods and filters, which are used to improve the results (e.g.,, DICOM
window level, vesselness filter parameters, etc.).

Layout Manager: responsible for changing the layout of the User Interface in accor-
dance with the used imaging modality and the type of required visualization.

2.3. User Interfaces

The Graphical User Interface (GUI) of the 3D Reconstruction and Plaque Characteriza-
tion tool consists of two windows visible simultaneously. The main window incorporates
the menus for initiating or opening a case study of a specific patient and the parameters of
the various segmentation algorithms. However, the main functionality of this window is
the 3D Renderer where the reconstructed arteries are visualized to the user. The second
window is the Image Viewer screen, where the layout changes form according to the loaded
imaging modality. The Image Viewer screen has three types of layouts (IVUS-OCT, CTCA,
QCA). The segmentation results and various metrics are displayed to the user on top of
the original images in the Image Viewer. In addition, there are various functionalities
allowing the user to manually improve the final segmentation results (border correction,
calibration, etc.).
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The tool has been developed in C#, combined with Microsoft .Net Framework 4.6.
Therefore, it is compatible with workstations running Microsoft Windows 7 or more recent
versions. For the internal functionalities of the software (reading DICOM files, image
processing, calculation of metrics, 3D rendering, post-processing of the reconstructed ge-
ometries) various third party libraries were used. DCMTK [3] and ITK [4] were used
to read the DICOM images and the metadata required for the 3D reconstruction and to
apply pre-processing filtering. EmguCV [5], a .NET wrapper for the OpenCV library, was
used to extract segmentation metrics from the images. OpenCV [6] was used to create the
segmented maps. VIK [7] was used to develop the 3D renderer module and VMTK [8] to
calculate several metrics related to the arterial geometry (extract arterial segments, center-
lines of the segments, length, degree of stenosis, etc.). The IVUS segmentation algorithm
and the plaque characterization models were developed using the Python language and
the Keras [9] deep learning library. The OCT segmentation algorithm (lumen, adventitia,
stent detection), the 3D fusion module, the QCA module, and the CTCA segmentation
algorithm were all developed using the C++ language.

2.4. Algorithms
OCT Analysis

Analysis of OCT images provides the lumen and outer wall borders, the plaque
components, and the struts of the stent. The first step is related to the lumen and outer
wall border segmentation, which starts with guidewire artifact removal. This is achieved
using the Harris—Stephens detector scheme. Bilateral filtering is employed to smooth out
any residual noise and enhance the lumen border. Then, for the lumen extraction, a Fast
Marching algorithm is applied. In order to initialize the algorithm, we need to define a
speed function on which the Fast Marching algorithm operates and set the starting and
ending seed points of the shortest path. A novel algorithm for the segmentation of the
outer border of the adventitia layer was also developed. The methodology is based on
the detection of the sharp transition effect between bright areas representing the tissue
to dark areas representing background pixels. Initially, we perform bilateral filtering
of the OCT frame. Next, a standard deviation filtering is performed on each image for
a 11 x 11 neighborhood. The value of each output pixel is the standard deviation of
the 11 x 11 neighborhood around the corresponding input pixel. The final step of the
methodology is to apply the Frangi vesselness filter [2] on the image of the standard
deviation, to find the outer border of the adventitia. This is required because a healthy
media tissue (the pixels of the dark ring in the figure of the standard deviation) has
imaging features like a vessel (tubular and continuous structure). Therefore, using a
Frangi vesselness filter with a thickness parameter of 31 pixels provides us with the final
adventitia border.

For the characterization of the different plaque types, a new methodology was de-
veloped, which is based on deep learning techniques. Specifically, a convolutional neural
network (CNN) was trained to identify four different types of plaque from OCT images
(calcified plaque (CA), fibrous tissue (FT), lipid tissue (LT), mixed tissue (MT)). The net-
work architecture contains nine convolutional (CONV) blocks and two fully connected
(FC) layers. Each CONV block is a sequence of layers and consists of a 2D CONV Layer, a
Batch Normalization Layer and a Rectified Linear Unit layer. Two max pooling layers were
placed after the third and the sixth convolutional blocks, respectively. One average pooling
layer was placed after the ninth convolutional block. The spatial support of the filters in
each of the convolutional layers was set to 3 x 3 pixels. The number of the filters in the first
three CONV layers was set to 32. In order to compensate for the information loss caused
by max pooling, the number of filters in second CONV block and third CONV block were
set to 64 and 128, respectively. Two FC layers followed the global pooling layer. The first
FC layer included 512 neurons and the second one included three neurons. One dropout
was set between these two FC layers with a dropout ratio of 0.5 to further avoid overfitting.
Finally, a Softmax layer was placed at the end of our classifier to produce probability scores
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and the pattern is classified to the class with the highest output probability. The plaque
characterization step is executed right after the extraction of the lumen and adventitia
borders. This is crucial, because the methodology needs the borders to define the region of
interest (ROI) of the tissue where the neural network is trained and tested. For the sake of
completeness, it should be pointed out that the CNN generates predictions for five classes:
four classes representing the four plaque types (CA, FT, LT, MT) and one class [background
(BK)] representing the rest of the pixels, e.g., catheter shadow pixels, healthy tissue pixels.
Two different experts discriminated four types of plaque on 400 OCT frames. From the
400 annotated frames, 300 frames were used for training and 100 frames were kept apart
to be used for testing. Furthermore, from the 300 training frames, 1000 patches (pixels)
were randomly selected from each frame, using the procedure described previously. Each
patch was augmented, by rotating it 90 and 180 degrees, to enhance the generalization
of the model, thus resulting in a dataset of 900,000 samples. Finally, a 70-30 split was
used to split the dataset into training and validation sets. Therefore, the dataset contains
630,000 training patterns, 270,000 validation patterns, and 100 frames were used solely for
the testing. The patches included in the validation set did not come from the same OCT
frames as some of the patches in the training set.

For the detection of metallic stent struts, we extended the method of Wang et al. [10] by
including a clustering algorithm to cluster each detected strut in a separate cluster in order
to extract stent apposition metrics. Specifically, the first step of the strut detection algorithm
is to clear out the polar frame from any residual noise and to enhance the shadowed regions.
To achieve this, percentile thresholding is used. Next, we locate the candidate strut pixels
in the polar frame. The main criteria to classify if a scan line contains a strut candidate is its
shadow length and its slope. The parameters used here for the classification of candidate
strut pixels are the slope of the brightness profile and the length of the shadowed regions.
Next, the detected candidate struts are clustered in a separate cluster, using the DBSCAN
algorithm [11]. Besides the metal struts, the tool is capable to detect bioabsorbable vascular
stent (BVS) struts. The BVS struts have a rectangular morphology where the borders of the
rectangle are brighter than the core of the strut, which is usually dark. For this purpose, the
OCT images are first converted to grayscale and then they are binarized, using a threshold
of 0.15. In addition, a set of morphological operations is performed, with the first being a
morphological closing of the image using a disk with one-pixel radius and the second being
a filter to fill the holes of the image. Subtracting the thresholded image from the image with
the filled holes gives us the possible strut locations. In order to clear any false positives,
a set of morphological rules is applied, using a priori information about the BVS struts’
morphology. More specifically, for the final result, only structures with an area between 10
and 40 pixels and aspect ratio < 5 are selected [12]. Finally, the BVS struts should be located
within a 10-pixel width band around the lumen border.

2.5. IVUS Analysis

A total of 4,197 annotated IVUS frames were used for the training of a U-net-based
deep learning model to segment the lumen and adventitia boundaries of the artery. The
aforementioned model includes the “Atrous Spatial Pooling layers” and “squeeze and
excitation” blocks which boost the architecture to extract more meaningful features.

IVUS images can be used for the characterization of the various plaque types present
in the vessel tissue. For this purpose, a methodology based on deep learning techniques
was developed, as in the OCT case. Because the methodology for IVUS images is based on
the one developed for OCT, in this section we focus on the changes made to incorporate
the OCT model for IVUS plaque characterization and present the validation strategy and
results. One expert discriminated four types of plaque (Calcified Plaque, Fibrous Tissue,
Lipid Tissue, Fibro-fatty tissue) on 380 IVUS frames. From the 380 annotated frames,
295 frames were used for training and 95 frames were kept apart to be used for testing.
Furthermore, from the 295 training frames, 1000 patches (pixels) were randomly selected
from each frame, with each patch having a size of 25 by 25 pixels. The IVUS patch is
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smaller than the OCT, because of the lower resolution of the IVUS images. Each patch was
augmented by rotating it 90 and 180 degrees to enhance generalization of the model, thus
resulting in a dataset of 900,000 samples. Finally, a 70-30 split was used to split the dataset
into training and validation sets. Therefore, the dataset contained 60,000 training patterns,
265,000 validation patterns, and 95 frames used solely for testing. The model used for the
plaque characterization is a Convolutional Neural Network.

The main changes from the OCT architecture can be found in the number of filters of
the Convolutional Layers of the nine convolution blocks. The number of the filters in the
first three CONV layers was set to 16, while the number of filters in the second convolution
block and third convolution block were set to 32 and 128, respectively.

2.6. QCA Analysis

The developed methodology is based on a previously developed approach [13]. How-
ever, it has been significantly improved, since the current methodology provides the 3D
reconstruction of coronary bifurcations, a methodology that is validated with satisfactory
results [14]. The proposed approach consists of three steps. Initially, the 2D lumen borders
and centerlines are detected. Then, the 3D bifurcation path is extracted and the 3D lumen
borders are reconstructed around the 3D bifurcation path and finally, the main and side
segments are combined in order to produce the final model of the bifurcated artery.

2.7. CTCA Analysis

The current literature contains several studies which present the segmentation and
analysis of CTCA images [15-17]. In this work, the 3D reconstruction and plaque characteri-
zation tool integrates a methodology previously developed and validated in [18-20]. Briefly,
the methodology consists of six different steps and is implemented with 2D axial CTCA
images. The proposed technique provides a detailed geometry for the lumen, the outer wall,
the calcified plaques (CP), and noncalcified plaques (NCP). In the first step, a preprocessing
Frangi vesselness filter is applied for an initial identification of vessel structures and then a
coronary vessel centerline extraction methodology is applied, based on a minimum cost
path based approach. Subsequently, weight functions are estimated for the lumen, the outer
wall, and the CP. For the lumen, a combination of two sigmoidal membership functions
are utilized, whereas for the outer wall and the CP two sigmoidal functions are utilized for
the segmentation procedure. The idea of weight function estimation is that its component
weight function poses a possibility of its voxel to be characterized as lumen, outer wall,
or CP voxel. The weight functions are adapted around specific threshold values for the
lumen, the outer wall, and the CP, which are defined by the user through a calibration
procedure. More specifically, the user manually annotates some voxels, which correspond
to the lumen, around the region and the coronary stent, and additionally voxels of the
outer wall, the CP, and the NCP are annotated. This calibration procedure leads to the
estimation of the lumen, outer wall, and CP weight functions, which is utilized for the
segmentation procedure. Subsequently, a 3D level set-based segmentation technique is
implemented for the segmentation of the lumen, the outer wall, and the CP. As far as the
coronary stent detection is concerned, the identification of the voxels which correspond
to the coronary stent region is based on a procedure similar to the aforementioned one.
More specifically, a sigmoidal membership function was defined for the identification of
coronary stent position and length, which is fully adapted to the mean luminal intensity.

3. Results

Validation of the OCT borders segmentation algorithm demonstrated that the algo-
rithm is accurate enough to detect and segment the borders of lumen (R = 0.99) and outer
wall (R =0.77). The average Hausdorff Distance (HD) was 0.097 mm and the Dice Similarity
was 0.96 [21]. Moreover, the validation results of the proposed plaque characterization al-
gorithm demonstrated overall accuracy of 85.6%. The struts detection algorithm presented
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a regression coefficient of 0.82 between the manual annotations and the automatic detection
of the stent struts.

The deep learning methodology for IVUS segmentation is characterized by the in-
creased generalizability of the model due to the utilization of data acquired by different
IVUS systems (Philips VOLCANO, Boston Scientific) and this resulted in a Dice coeffi-
cient of 89% and 90% for lumen and adventitia borders, respectively, while the Jaccard
index was 81% for both borders. The plaque characterization methodology had overall
accuracy 91.43%.

Finally, the validation of the QCA-based artery segmentation and reconstruction
demonstrates that the generated models have a high resemblance to those annotated by the
expert 2D lumen borders. In detail, considering the dataset of the 26 coronary bifurcated
arteries, the mean HD between the 2D borders of the model and the 2D annotated lumen
borders is 0.34 mm for the first angiographic view and 0.26 mm for the second one. The
dataset’s mean similarity between the recovered 2D lumen borders of the model and the
true annotated 2D lumen borders is 0.93 for both the X-ray angiographic views. The mean
similarity is >90% and in some cases, the similarity is 99%.

3.1. D Fusion Evaluation

The 3D artery reconstruction and plaque characterization tool enables the generation of
arterial geometries based on the fusion of IVUS/OCT imaging with the centerline extracted
by the QCA (Supplementary Materials). The evaluation of the 3D fusion algorithm, and
specifically, the 3D reconstructed arteries, are compared to the 2D lumen borders detected
on OCT frames. Comparison was performed for the lumen area and diameter. Each
reconstructed artery is divided into 0.5 mm cross-sections, which are registered with the
OCT frames. A case example is shown in Figure 2.

Figure 2. Case example for the evaluation analysis. The red points represent all the OCT-detected
borders used for the reconstruction. The black points represent the cross-sections of the 3D model,
which is presented as the grey surface.

However, the number of OCT frames are significantly more than the 3D model’s cross-
sections. For this reason, the registration was based on landmarks visible on OCT frames
(stent, bifurcations) and the 3D model (the bifurcations were artificially created to be present
on the point cloud of the 3D artery). As metrics of comparison, the correlation coefficient,
the least residual sum of squares error, and the Bland—Altman plots were selected. Experts
performed the 3D reconstruction of the arterial segment and the registration was achieved
with the supervision of an experienced cardiologist. Data from eight patients were used for
this analysis and the comparison is presented in Figure 3.
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Figure 3. Comparison of area and diameter between the 3D model cross-sections (orange line) and
the 2D OCT frames (blue line) for the number of patients we processed. The cases (A-H), represent
the analysis of the respective eight patients.
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The evaluation analyses demonstrated a good agreement between the 3D models with
the findings from the 2D analysis. In particular, it was found that regarding the lumen area,
the correlation coefficient r? between the 3D cross sections and the 2D borders is 0.97. The
correlation coefficient r? for the lumen diameter is 0.95. The minor difference is due to the
smoothing operation during the generation of the triangulated surface of the 3D model,
and in addition due to the minor difference during the registration of the 3D model with
the 2D frames, which is clear in the vessel curvilinear length graphs. The overall regression
and Bland-Altman results for the eight patients are presented in Figure 4.
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Figure 4. Regression and Bland—-Altman plots for the lumen area for the number of patients we have
processed. The cases (A-H) represent the analysis of the respective eight patients.

3.2. Usability Assessment

The 3D reconstruction and plaque characterization tool has been developed within the
framework of the InSilc project [22]. The usability assessment of the tool was performed
using external evaluators. In particular, the tool was presented at four sites (Harvard
Medical School, Boston, Massachusetts, USA; Medstar Washington Hospital, Washington
DC, USA; University College of London, UK; University of Ioannina, Ioannina, Greece)
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with significant experience in analyzing coronary arterial imaging and performing 3D
coronary arterial reconstructions.

In order to perform the usability, a questionnaire was prepared and delivered to all
users to be filled. The demographics of the evaluators are presented in Table 1.

Table 1. Demographics of the evaluators.

Age 30% under 30 years old, 56% 30-39 years old, 11% over 40 years old
Experience 37% less than 2 years, 37% 2 to 5 years, 13% 6-10 years, 13% 11 to 15 years
Profession 44% Cardiologists /radiologists, 56% stent industry, researchers, CROs

Computer use

75% everyday, 25% all the time

The tool was tested by nine evaluators from the clinical (33% were cardiologists, 11%
were interventional cardiologists) and research domains (56%). Of the users, 76% had
expertise less than 5 years, 13% had 11-15 years of experience, and 13% with more than
13 years of experience. All evaluators had good computer skills. Most of the evaluators
used computers everyday (75%), whereas some evaluators used computers all day (25%).

The evaluators were asked to use the tool and provide their feedback on the complexity
of the usage of single modules/components, as well as of the entire tool and the complexity
of techniques involved. For the integrated 3D tool, the evaluators found the complexity
very low (56%) and not complicated at all (44%). Regarding the IVUS module, 44% of the
users found that the IVUS border segmentation and the plaque characterization modules
were not complicated at all, while 56% found that the modules introduced a very limited
or limited complexity. As far as the OCT module is concerned, most of the evaluators
(89%), found the functionality of the borders segmentation not complicated, while 44-56%
found that the plaque characterization and the stent detection functionalities are of very
limited complexity. Among all the 3D modules, it seems that the one that is perceived to be
more complex compared to the rest of the modules is the QCA, with 67% of the evaluators
finding this module to have a very limited complexity. Concerning the CTCA module,
78% of the evaluators believed that there is no complexity for the border segmentation
functionality, the plaque characterization, and the reconstruction functionalities.

The tool can be used by the different evaluators to support decision making for the
management of CAD patients. All evaluators were asked to provide their feedback on this
intended use. Again, the effectiveness was evaluated for each module separately and for
the tool as a whole. In total, 78% of the evaluators found the effectiveness of the integrated
tool fully satisfactory, while the rest of the evaluators (22%) replied that this effectiveness is
partially satisfactory. According to the replies, the modules that seem to be more effective
are the OCT and the CTCA. In more detail, 78% of the evaluators found that the OCT
border detection and plaque characterization, the X-ray (3D QCA)-based reconstruction,
the CTCA borders segmentation module and the integrated tool as a whole are fully
satisfactory. The module with the least satisfied users is the IVUS borders segmentation
module, with which only 56% of the evaluators were fully satisfied and the rest of the
evaluators (44%) were partially satisfied. Finally, as far as the IVUS plaque characterization
module, the CTCA plaque characterization module, and the 3D artery reconstruction based
on fusion of IVUS/OCT with QCA are concerned, 89% of the evaluators voted that they
are fully satisfied.

Apart from the effectiveness of the integrated tool, the interface, the way the informa-
tion is provided, and the use of language play a very important role on the acceptability
of the proposed software solution. Of the evaluators, 78% (rating 9/10 and 10/10) found
that the interfaces are very easy to use, 88% (rating 9/10 and 10/10) of the users found
that the interfaces are easy to follow, and 78% (rating 9/10 and 10/10) that the notification
messages are only presented at appropriate times. In addition, all evaluators voted that the
menus are clear and unambiguous (rating 9/10 and 10/10).



J. Cardiovasc. Dev. Dis. 2023, 10, 130

12 of 16

In addition, all evaluators agreed on the attractiveness of the interfaces, the satisfactory
“look and feel” sensation and the easy and straightforward interconnection and navigation
options (rating 8/10-10/10). Only 11% of the evaluators were not satisfied with how one
screen works, however, even for these replies, the rating was far above the average (7/10).

The next criteria for the evaluation of this software solution were the individual
modules and the integrated tools performance. In more detail: (i) 67% of the evaluators
found satisfactory the performance of the IVUS borders segmentation module, the OCT
plaque characterization module, and the X-ray (3D QCA)-based reconstruction, (ii) 78%
of the evaluators found satisfactory the performance of the IVUS plaque characterization
module and the OCT-based stent detection, (iii) 89% of the evaluators found satisfactory
the performance of the CTCA plaque characterization and reconstruction modules, the 3D
artery reconstruction based on fusion of IVUS/OCT with QCA, and the tool as a whole.
The remaining percentages of the evaluators voted for an acceptable performance for
the aforementioned modules. Only for the OCT-based stent detection, there was a small
percentage of evaluators (10%) who found the performance unacceptable.

As far as the efficiency of the integrated tool and the individual modules are concerned,
almost all evaluators believed in the provided effectiveness in the field of CAD research
and on decision making (rating 7/10-10/10). However, 11% of the evaluators were not
confident about how stent reconstruction could improve CAD management (rating 5/10).
This was a general comment and not related to the usability of the tool. Regarding the
overall intention of the users on using the 3D reconstruction and plaque characterization
tool, it seems that 78% of the evaluators were interested in using the whole tool, while the
rest of the evaluators (22%) were more interested in using only the IVUS and OCT module
and the 3D reconstruction module.

In addition, the evaluators were asked to express their feelings after using the 3D
coronary artery reconstruction and plaque characterization tool. In more detail, the System
Usability Scale (SUS) [23] was used. In fact, the SUS score is not only intended to track the
perceived ease-of-use, but in addition it can provide a global measure of system satisfaction
and sub-scales of usability and learnability. The mean SUS score was 89.4 £ 9.0, classifying
our tool as excellent according to the SUS scale (Figure 5).

User | SUS Score Passive Promoter
Userl 80.0

User? 95.0 Marginal Acceptable
User3 723 OK Good Excellent
User4 100.0 ([T
User5 95.0

User6 95.0 D C B A
User7 90.0

User8 97.5 l : I I I
User9 80.0 50 60 70 80 90

Figure 5. Results from SUS score [23].

4. Discussion

The main contribution of this work in the current literature is the development of a
novel and comprehensive all-in-one tool for the 3D reconstruction and plaque character-
ization which enables the reconstruction of the coronary arteries using several imaging
modalities or using a fusion of them (IVUS or OCT and X-ray angiography). Furthermore,
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its modules include novelties in terms of implementation and outcomes. Accuracy of all
algorithms is in most cases >90% which enables the accurate assessment of atherosclerotic
disease. Manual correction is also provided as a functionality of the tool to further increase
the resulting accuracy. For the first time, we combine the level set algorithm with clustering
techniques for lumen segmentation. The developed methodology works well with both
main IVUS modalities (Boston and Volcano), while in previous studies the methodologies
were based only on one type of IVUS imaging (Boston or Volcano). Regarding OCT analysis,
our developed methodology works independently of the stent presence. In case of stented
artery, the struts are fully automatically detected and used for the 3D reconstruction of
the stent scaffold. Additionally, it includes many novel characteristics for removing the
catheter artefacts, an issue which has not been addressed in the previous methodologies (for
example, in some OCT studies the catheter artefact is in touch with the lumen border). The
strut detection methodology was applied to a large dataset of stented arteries with different
stent types and the results demonstrate that the methodology for strut detection is indepen-
dent of the stent type (bare metal stents and bioresorbable vascular scaffolds). Regarding
the CTCA, our methodology is the only one which provides the scaffold interface with
the lumen border. The results show that the scaffold can be accurately detected. Finally,
regarding the QCA methodology, we have developed a semi-automated methodology for
the reconstruction of coronary bifurcations. The minimum user interaction is that it requires
to set the starting and ending points, while the lumen centerline and the lumen borders are
extracted automatically. Overall, the 3D reconstruction and plaque characterization tool
combines and includes several novel functionalities such as the automated calculation of
significance for the disease assessment metrics or the manual correction of the identified
borders in several views all simultaneously registered, and considering also the previous or
afterwards analyzed frames to reduce the required analysis time and improve the usability.

Currently, there are many commercial software packages available which can be
used for the clinical assessment of atherosclerotic disease. The main advantage of our
developed tool is that it is an all-in-one tool which enables the analysis of the most used
imaging modalities of coronary imaging, e.g., IVUS, OCT, X-ray angiography, and CTCA.
Another major advantage over the available commercial software is that our tool provides
fully automatically the reconstruction of the arterial models which can be used directly for
simulation purposes. The reconstruction can be achieved using any 3D centerline generated
by QCA or CTCA and the borders from IVUS or OCT. The CTCA-based reconstruction
enables the analysis of the whole arterial tree. Moreover, the plaques as well as the stent for
the first time are visualized in 3D space as objects.

Another major advantage of the developed 3D reconstruction and plaque charac-
terization tool is that all the results which are produced from any patient analysis are
automatically extracted and stored. It enables 2D assessment of the atherosclerotic disease
providing a plethora of metrics such as the lumen and outer wall areas and diameters, the
plaque composition, and the degree of stenosis, as well as stent-related metrics such as
the number of struts per frame, the in stent restenosis, the degree of malapposition and
other. Thus, they can directly be used for further analysis either for clinical or research
purposes. Moreover, the 3D reconstructed objects are extracted for simulation purposes
such as the estimation of shear stress [24,25] or the non-invasive calculation of the frac-
tional flow reserve [26]. Future steps in the development include further evaluating its
performance by installing it into more clinical centers. Moreover, as performed previously
with other tools of our lab, the reconstructed results will be used as input to other tools
such as the SmartFFR calculation [27], the prediction of atherosclerotic plaque growth, or
the simulation of stent deployment.

The current tool has some limitations. The first limitation regards the 3D reconstruction
based on the QCA approach. In that case, the tool assumes that there is at least 30 degrees
of difference between the two angiographic views. In smaller angle differences, the results
are questionable. Another limitation is that the development of the tool is based on the user
requirement that has to be almost fully automatic. For this reason, it has been developed to
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read DICOM images with the tags included. Without the DICOM tag information, the tool is
not functionable. Finally, the CTCA-based reconstruction has been developed on protocols
established during the implementation of the presented software. Newer protocols using
the last generation CT scanners may require some re-calibration of the algorithms.

5. Conclusions

We presented a single tool for the reconstruction of coronary arteries, the plaques and
the stent integrating algorithms for the analysis of IVUS, OCT, CA and CTCA images. The
tool is unique since it provides all the options for the analysis of the coronary network
imaging. The final results are also visualized in 3D space, while the results are extracted in
a format ready for further analysis for simulation purposes. The evaluation and usability
assessment of the tool demonstrated an excellent performance and effectiveness to analyze
and assess the coronary arteries.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/jcdd10030130/s1, Figure S1. Case example of plaque
characterization and borders segmentation using OCT imaging. The Show Annotations button
enables the visualization of the plaques. Figure S2. Several metrics are provided for the detected
struts. Figure S3. Case example of plaque characterization and borders segmentation of IVUS images.
Figure S4. Segmentation of the 2D lumen borders using the QCA module. Figure S5. 3D reconstruc-
tion of a coronary bifurcation including the lumen (red), the outer wall (green), the calcified plaques
(white) and non-calcified plaques (yellow) using CTCA imaging.
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