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Abstract: Background: Homocysteine (Hcy) is involved in various methylation processes, and its
plasma level is increased in cardiac ischemia. Thus, we hypothesized that levels of homocysteine
correlate with the morphological and functional remodeling of ischemic hearts. Thus, we aimed to
measure the Hcy levels in the plasma and pericardial fluid (PF) and correlate them with morpho-
logical and functional changes in the ischemic hearts of humans. Methods: Concentration of total
homocysteine (tHcy) and cardiac troponin-I (cTn-I) of plasma and PF were measured in patients
undergoing coronary artery bypass graft (CABG) surgery (n = 14). Left-ventricular (LV) end-diastolic
diameter (LVED), LV end-systolic diameter (LVES), right atrial, left atrial (LA) area, thickness of
interventricular septum (IVS) and posterior wall, LV ejection fraction (LVEF), and right ventricular
outflow tract end-diastolic area (RVOT EDA) of CABG and non-cardiac patients (NCP; n = 10) were
determined by echocardiography, and LV mass was calculated (cLVM). Results: Positive correlations
were found between Hcy levels of plasma and PF, tHcy levels and LVED, LVES and LA, and an
inverse correlation was found between tHcy levels and LVEF. cLVM, IVS, and RVOT EDA were higher
in CABG with elevated tHcy (>12 µM/L) compared to NCP. In addition, we found a higher cTn-I level
in the PF compared to the plasma of CABG patients (0.08 ± 0.02 vs. 0.01 ± 0.003 ng/mL, p < 0.001),
which was ~10 fold higher than the normal level. Conclusions: We propose that homocysteine is
an important cardiac biomarker and may have an important role in the development of cardiac
remodeling and dysfunction in chronic myocardial ischemia in humans.

Keywords: myocardial ischemia; remodeling; cardiac marker; inflammation; pericardial fluid;
homocysteine; troponin-I

1. Introduction

Ischemic heart disease, including coronary artery disease, is the leading cause of
death worldwide [1]. Impaired coronary blood supply develops due to narrowing and/or
constriction of coronary vessels of different sizes [2]. Myocardial ischemia causes injuries
to the myocardium and simultaneously initiates compensatory mechanisms in the in-
jured tissues, increases de novo protein synthesis and connective/fibrotic tissues, leading
to a structural remodeling and functional changes of the heart [3–5]. Cardiac remodel-
ing involves several signaling mechanisms, including, among others, DNA methylation,
nitric oxide/asymmetric dimethyl-arginine (NO/ADMA) pathway, endothelin-1, and
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angiotensin II [6–9]. Methionine, an essential amino acid, plays an important role by
providing methyl groups for protein and DNA methylation pathways. It is converted to
s-adenosylmethionine, a general methyl donor in the cells, which provides methyl groups
in trans-methylation reactions, for example, to the synthesis of methylarginines.

Homocysteine (Hcy) is a sulfur-containing amino acid, which is metabolized via re-
methylation by converting Hcy back to methionine, and trans-sulfuration by converting
Hcy to cysteine and taurine amino acids [10]. Although the normal plasma level of Hcy
can be disputed, in healthy young subjects, values above 15 µM/L are considered to be
high, and the optimal homocysteine levels are thought to be below 10–12 µM/L [11–15].

Despite earlier reports, as of today, there is still no consensus regarding the reference
limits for plasma homocysteine levels. Studies focusing on various parts of the population
suggest that the upper limit of 15 µmol/L is too high in normally nourished people without
vitamin deficiencies. Additionally, it seems that each 5 µmol/L increase in Hcy level
increases the risk of CHD (independently of other traditional risk factors) by about 20% and
that a continuum exists with the subsequent risk. Some reports suggest that a level around
6 µmol/L Hcy should be considered normal [16]. A systematic review and meta-analysis
of homocysteine level and coronary heart disease incidence are presented in [16]. Thus, as
Milani and Lavie posited, “homocysteine, however, remains an important field of study as
an unconventional risk factor, one facet of a complex metabolic puzzle—a veritable Rubik’s
cube—that promotes atherosclerosis” and cardiac dysfunction [17].

Indeed, elevated plasma levels of Hcy play an important role in the development
of cardiovascular diseases, such as coronary artery disease and atherosclerosis, which
may further exacerbate cardiac ischemia/infarction and fibrosis [18,19]. Supporting this
idea, previous studies by Jacob et al. have shown that hyperhomocysteinemia leads to
pathological ventricular hypertrophy in normotensive rats [20]. However, few if any data
are available in humans on whether or not plasma (PL) and pericardial fluid (PF) Hcy
correlates with ischemic cardiac remodeling.

Cardiac ischemia in humans—in many cases—is resolved by successful coronary by-
pass graft surgery (CABG) [21]. Because from the ischemic/injured cardiac muscle cardiac
troponin-I (cTn-I) is released and thus becomes elevated in the plasma, it is used as one of
the biomarkers/indicators of ischemic insult to the cardiac muscle [22–24]. Interestingly, its
level, like the level of Hcy in the PF, has not yet been measured.

Based on the aforementioned facts, we hypothesize that the levels of Hcy in the plasma
and pericardial fluid correlate with cardiac remodeling of the ischemic heart of patients
undergoing CABG treatment. Thus, we collected samples of the plasma and PF of patients
undergoing CABG surgery and measured their total Hcy and cTn-I concentrations and
correlated them with the morphological and functional characteristics of their hearts.

2. Materials and Methods
2.1. Study Description and Clinical Characterization of the Patients

In the present study, subjects were recruited at the Heart Institute of the University
of Pécs Medical School, Hungary. This is a cross-sectional investigation of 14 subjects
with coronary artery disease and 10 non-cardiac patients (NCP) as a control for echocar-
diographic measurements. Non-cardiac patients underwent physical examination with
no cardiac surgery. All patients with coronary artery disease underwent elective CABG
surgery. Age- and sex-matched subjects with mild to moderate arterial hypertension were
selected for the study. Written informed consent was obtained from all individuals before
participation in the study. The investigation and consent documents were approved by
the Ethics Committee of the Medical School of the University of Pecs (RKEB-4123/20110).
The investigation conforms to the principle outlined in the Declaration of Helsinki. Blood
plasma and PF samples were collected from the patients after median sternotomy.
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2.2. Measurements of tHcy and cTn-I

Pericardial fluid samples were collected by pericardiocentesis, together with blood
samples, simultaneously from CABG patients in heparinized vacutainer tubes during
CABG surgery, and centrifuged at 3000 rpm for 10 min. Supernatants were then kept at
−80 degrees for further use. cTn-I was measured by Microparticle Enzyme Immunoassay,
and tHcy was measured by Fluorescence Polarization Immunoassay on an Abbott Axsym
immunochemical automated analyzer (Abbott Diagnostics, Abbott Laboratories, Abbott
Park, IL, USA), according to the manufacturer’s instructions [25,26].

2.3. Echocardiography Measurements

Morphological characteristics of CABG patients’ hearts were assessed with 2-D transtho-
racic echocardiography. Two-dimensional (2-D), M-mode, and Doppler echocardiography
with automated border detection were carried out using Hewlett-Packard Sonos 5500
echocardiograph with a 2.5 MHz transducer (Hewlett-Packard, USA). Two-dimensional
echocardiographic measurements were performed according to European guidelines. In or-
der to minimize the variability and bias, echocardiographic measurements were carried out
by the same cardiologist (blinded to the patient’s identity) with an expert license in transtho-
racic echocardiography. All images were recorded and analyzed offline. The following
parameters were measured: left ventricular end-diastolic diameter (LVED), left ventricular
end-systolic diameter (LVES), the thickness of interventricular septum (IVS) and posterior
wall (PW), right ventricular outflow tract end-diastolic area (RVOT EDA), and right atrial
(RA) and left atrial (LA) area. The biplane Simpson method using the end-diastolic and
end-systolic apical 4- and 2- chamber views for estimation of LV volume and calculation of
the ejection fraction (LVEF) [27] was applied.

2.4. Statistics and Calculations

Correlations between tHcy levels and echocardiographic parameters were performed
using Pearson’s correlation analysis. Because we found a very high correlation between PF
and plasma values of Hcy for correlation analysis plasma and PF, tHcy levels (plasma + PF)/2
were averaged. Plasma and PF tHcy and cTn-I levels were compared with a two-tailed
independent t-test. For comparison of echocardiographic parameters of CABG patients with
non-cardiac patients (NCP), two-tailed independent t-test was applied. Left ventricular mass
(LVM) was calculated using the American Society of Echocardiography (ASE) convention: VM
= 0.8 (1.04 ([LVED + PW+ IVS]3- [LVED]3)) + 0.6 g, where PW is posterior wall thickness [28].
Statistically significant changes were considered at p < 0.05.

3. Results
3.1. Characteristics of Patients

Descriptive statistics of the patients are summarized in Table 1, showing the major
demographic and clinical characteristics, as well as concomitant risk factors and medica-
tions of patients. Six patients exhibited high blood pressure, and seven patients exhibited
left-ventricular hypertrophy (LVH). The types and number of CABG operations were as
follows: CABGx2: 1: CABGx3: 10; CABGx4: 3.

Homocysteine levels in the plasma and PF were similar and showed positive correla-
tion in CABG patients. We found that mean tHCy levels were similar in the PF and plasma
(PF vs. plasma: 11.5 ± 1.26 µM/L vs. 13.4 ± 1.04 µM/L, p = 0.2628) (Figure 1A). In addition,
we found a positive correlation between PF and plasma tHcy levels in this group (r = 0.9,
p < 0.0001) (Figure 1B).
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Table 1. Pre-operative characteristics and medications of CABG patients. Data are expressed as
means ± SEM. Data were compared using 2-tailed independent t-test. GABG—coronary artery
bypass graft surgery; LVH—left-ventricular hypertrophy.

Pre-Operative Data

Age (year) 62.1 ± 2.1
Sex (male/female) 7/7

Hypertension 6
Echocardiographic indices of LVH 7

Diabetes mellitus 6
Previous acute myocardial infarction 2

Pre-operative medication
Beta-blocker 13

Ca-channel blocker 2
ACE-inhibitor 5

Diuretic 1
Aspirin 12

Antiplatelet medication (Clopidogrel) 6
Anti-diabetic 6

Statin 13
Anti-arrhythmic 2
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Figure 1. Data show that homocysteine levels of the plasma and pericardial fluid (PF) are similar and
correlate to each other in patients undergoing CABG surgery (n = 14). Two-tailed independent t-test
showed no difference between plasma and PF tHcy levels (p > 0.05) (A) Pearson’s correlation analysis
showed a positive correlation between plasma and PF levels of CABG patients (B) y = 1.121x − 3.183,
r = 0.9, p < 0.0001. PF—pericardial fluid, tHcy—total homocysteine; Data expressed as mean ± SEM;
p < 0.05 was considered significant.

3.2. Echocardiographic Parameters of the Heart in CABG Patients

According to previous a publication [11] the optimal level of Hcy is considered to
be below 12 µM/L; thus, we grouped CABG patients with tHcy levels below or above
12 µM/L [11]. In Figure 2, representative echocardiographic images of a CABG patient
with tHcy < 12 µM/L (A) and a CABG patient with tHcy > 12 µM/L Hcy (B) can be seen.

We found that the LVED and LVES of CABG patients with tHcy higher than 12 µM/L
were greater than that of lower tHcy. The LA of CABG patients with elevated tHcy is higher
than that of CABG patients with lower tHcy. In CABG patients with elevated tHcy, the
cLVM was higher than that of CABG patients with lower tHcy. The LVEF, PW, and RA
were similar between the two groups (Table 2).
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Figure 2. (A) Two-dimensional transthoracic echocardiographic image of a CABG patient with tHcy
< 12 µM/L. Left panel: parasternal long axis view: normal thickness of interventricular septum
(IVS) and posterior wall (PW) can be seen (10 mm). Right panel: Apical four-chamber view shows a
normal left-ventricular end-diastolic diameter (LVED = 40 mm). (B) Two-dimensional transthoracic
echocardiographic image of a CABG patient with tHcy > 12 µM/L. Left panel: Parasternal long
axis view: considerably increased (14 mm) thickness of interventricular septum (IVS) and posterior
wall (PW) can be seen. Right panel: Apical four-chamber view shows an increased left-ventricular
end-diastolic diameter (LVED = 60 mm).

Table 2. Echocardiographic data of cardiac patients CABG with tHcy < 12 µM/L, and CABG
tHcy > 12 µM/L.

Echocardiographic
Parameter

CABG
tHcy < 12 µM/L

CABG
tHcy > 12 µM/L p

LVED (mm) 45.83 ± 1.47 52.00 ± 1.88 p < 0.05

LVES (mm) 28.17 ± 1.17 34.75 ± 2.35 p < 0.05

LA (cm2) 14.71 ± 0.68 17.12 ± 0.65 p < 0.05

LVEF (%) 60.67 ± 1.63 53.63 ± 3.46 p < 0.05

PW (mm) 11.50 ± 0.5 12.00 ± 0.27 N.S.

cLVM (g) 189.96 ± 17.34 256.14 ± 14.12 p < 0.05

IVS (mm) 11.17 ± 0.4 12.50 ± 0.57 N.S.

RVOT EDA (cm2) 27.17 ± 1.74 30.00 ± 1.41 p < 0.05

RA (cm2) 14.05 ± 0.81 14.90 ± 0.93 N.S.
Data are expressed as means ± SEM. Data were compared using independent 2-tailed t-test. p < 0.05 was
considered statistically significant. CABG—coronary artery bypass graft surgery; LVED—left-ventricular end-
diastolic diameter; LVES—left-ventricular end-systolic diameter; LA—left-atrial area; LVEF—left-ventricular
ejection fraction; PW—thickness of the posterior wall; cLVM—calculated left-ventricular mass; IVS—thickness of
interventricular septum; RVOT EDA—right-ventricular outflow tract end-diastolic area; RA—area of the right
ventricle; LVH—left-ventricular hypertrophy.
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3.3. Correlation of Echocardiographic Parameters of the Heart with Homocysteine Levels
in CABG Patients

Analyzing correlations of homocysteine levels and echocardiographic parameters
revealed meaningful information. We found that tHcy levels positively correlated with
LVED (r = 0.6, p < 0.01) (Figure 3A), LVDS (r = 0.7, p < 0.01) (Figure 3B), and LA (r = 0.7,
p < 0.01) (Figure 3C) and inversely correlated with LVEF (r = 0.5; p < 0.05) (Figure 3D).
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between tHcy levels vs. LVED (y = 0.8499x + 38.76; r = 0.6; p < 0.01), LVDS (y = 0.9713x + 19.82; r = 0.7;
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p < 0.05 was considered significant.

3.4. Cardiac Troponin-I in Levels Are Increased in PF of CABG Patients

We have found that troponin-I levels were significantly higher in the PF than the
plasma of CABG patients indicating myocardium hypoxia and injury (PF vs. plasma:
0.08 ± 0.02 ng/mL vs. 0.01 ± 0.003 ng/mL, p < 0.001) (Figure 4).
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significantly higher than that of blood plasma (0.01 ± 0.004 vs. 0.07 ± 0.01 ng/mL, respectively,
p < 0.05). PF—pericardial fluid, cTn-I—cardiac troponin-I. Data expressed as mean ±SEM. p < 0.05
was considered significant, which is indicated with an asterisk.

4. Discussion

The salient findings of the present study are as follows: (1) There is a positive correla-
tion between plasma and pericardial fluid Hcy levels. (2) The echocardiographic parame-
ters, namely, end-diastolic (LVED), end-systolic diameter of the left ventricle (LVDS), the
left atrial (LA) area, calculated left ventricular mass (cLVM), right ventricular outflow tract
end-diastolic area (RVOT EDA), and thickness of the interventricular septum (IVS) were
significantly higher in CABG patients with tHcy above 12 µM/L compared to non-cardiac
patients. (3) There are positive correlations between tHcy levels and the structural changes
in LVED, as well as LVDS, LA, and an inverse correlation between tHcy levels and left-
ventricular ejection fraction (LVEF) in CABG patients. (4) The level of cardiac troponin-I
was significantly higher in pericardial fluid than plasma.

4.1. Cardiac Ischemia, Remodeling and Homocysteine

CABG surgery is a widely used surgical solution for myocardial ischemia due to infarc-
tion or narrowing of the large coronary arteries. The persistent myocardial ischemia before
CABG surgery causes injury to the myocardium, initiating simultaneous compensatory
mechanisms that lead to changes in the size of cardiac chambers (Figure 2). Indeed, we
found an increase in the end-diastolic and systolic diameter (Table 2). In addition, we also
found an increase in the thickness of IVS, calculated LVM, and right ventricular outflow
tract end-diastolic area (RVOT EDA) (Figure 2, Table 2). These findings suggest that there is
a hypertrophic remodeling in this group of patients, which may correspond to the increased
level of Hcy in the plasma and PF. This idea is supported by the close correlation between
Hcy level and morphological changes in the present study (Figure 3) and that of previous
animal and human studies, indicating that elevated plasma Hcy levels are associated with
cardiac ischemia and remodeling [29,30].

Plasma tHcy level considered to be normal between 5–15 µmol/L, and its elevation can
contribute to coronary artery disease in humans [11,12]. Higher levels of Hcy—in addition
to remodeling—have functional consequences, as shown by the reduced ejection fraction,
suggesting contractile dysfunction (Figure 3D). An interesting novel finding of the present
study is that the tHcy levels of PF and plasma are similar, and there is a positive correlation
between the plasma and PF tHcy levels (Figure 1), suggesting that homocysteine can freely
diffuse between the coronary vessels and cardiac interstitial space, thereby reaching the
pericardial space. This could be explained by the small size of the Hcy molecule and by the
inflammation-induced increased permeability of the epicardium.

4.2. Presence of Cardiac Hypoxia in the Patient Group Studied

Cardiac troponins have been found to have high sensitivity as indicators of myocar-
dial injuries, such as in myocardial ischemia. Cardiac troponin level in the plasma is
<0.004 ng/mL or <0.005 ng/mL [23]. In the present study, we found that cTn-I levels were
approximately 10-fold higher than the normal level and in the PF were significantly higher
than in the plasma (Figure 4). This indicates that the origin of PF cTn-I is the cardiac tissues,
explaining the injury of the myocardium, and thus, it has a higher diagnostic value than
that of plasma. The upper limit for high sensitivity cTn-I was reported to be <0.004 ng/mL
or <0.005 ng/mL [23] in the plasma; however, cardiac troponin assays are regarded as a
biomarker for detecting acute myocardial necrosis, but they may also be released in the
absence of cardiac necrosis [24].

4.3. Previous Findings with Homocysteine and the Heart

The Framingham Heart Study showed that Hcy levels in the plasma of cardiac patients
are positively related to changes of the left ventricular structure and function, such as left
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ventricular wall thickness [31]. In the present study, we found positive correlations between
the chambers of the left side of the heart and PF tHcy levels in CABG patients (Figure 3).
This suggests that Hcy may contribute to cardiac remodeling in the ischemic heart. This
conclusion is supported by experimental findings in rat by Chen et al. [32].

Interestingly, we have previously found in rats with elevated homocysteine that in-
creases in flow elicit constrictions of isolated arterioles, instead of dilation, which were
attributed to enhanced production of reactive oxygen species known to decrease the
bioavailability of nitric oxide (NO).The lack of NO could contribute to hypoxia and in-
flammation [30,33], and also, —being an antigrowth factor—could contribute to cardiac
remodeling.

4.4. Pathomechanisms That May Contribute to Cardiac Remodeling and Contractile Dysfunction:
Human Pericardial Fluid ADMA and Endothelin and Cardiac Ischemia

Previously, we found elevated asymmetric dimethylarginine (ADMA) levels in cardiac
ischemic and valve diseased patients, which showed positive correlation with indices of car-
diac hypertrophy [6]. We have also shown that in the pericardial fluid, several biologically
active substances are present, such as endothelin-1, the increased level of which contributes
to pathological cardiac function [34]. In addition, cardiac ischemia can initiate inflammatory
responses—mediated by immune cells and inflammatory cytokines—eliciting adaptation
to hypoxic conditions by cellular hyperplasia or to cell death by apoptosis or necrosis. The
underlying molecular signaling of higher Hcy level is likely to involve several parallel
running events, such as cardiac ischemia, oxidative stress, and inflammation, leading to
an increased level of ADMA levels known to enhance the growth factor angiotensin II by
activating the tissue renin–angiotensin system’s [35] cell apoptosis and necrosis, and then
initiating—under these conditions—the dysmethylation of proteins and genes, all of which
are likely to be responsible for cardiac muscle remodeling and dysfunction [36].

4.5. Hypoxia and Inflammation May Contribute to Cardiac Remodeling
and Contractile Dysfunction

Hypoxia and inflammation can initiate fibrotic processes in which the heart undergoes
structural remodeling, with consequent functional changes [37]. The initial mechanism for
cardiac fibrosis is the fibroblast-to-myofibroblast transition, in which cardiac fibroblasts
become activated and converted into myofibroblasts [38]. Myofibroblasts are characterized
by the expression of α-smooth muscle actin and increased production of collagens, as well
as the capability to contract [39,40]. During the process of cardiac fibrosis, myofibroblasts
secrete excessive collagens in their extracellular matrix (ECM) and finally undergo apoptosis
resulting in irreversible fibrosis [40]. Inflammatory signals, such as transforming growth
factor beta (TGF-β), activate cardiac fibroblasts, while non-coding RNA transcripts, such as
microRNAs (miRNAs), mediate gene regulation during cell transition [41]. This process
involves epigenetic mechanisms, such as DNA methylation, and post-translational protein
modifications, which regulate the myofibroblast phenotype in fibrosis [42]. Simultaneously,
post-translational protein modifications’ methylation processes are increased during cardiac
remodeling, which are carried out by methyltransferases [43], for instance, protein-arginine
methyltransferase-1 methylates arginine forming asymmetric dimethylarginine, by which
the methyl donor S-adenosylmethionine is utilized, converting to S-adenosylhomocysteine.
In this process, S-adenosylhomocysteine is converted back into S-adenosylmethionine or
more likely into adenosine and Hcy. The sulfur-containing amino acid Hcy is a crucial
player in trans-methylation processes [10].

All of these molecular pathomechanisms can lead to changes in cardiac substrate
utilization [44], reduced contractility, and eventually heart failure. Supporting this idea,
Okuyan et al. reported that NT-proBNP, hs-CRP, E/A ratio, and HbA1C were independently
associated with hyperhomocysteinemia in a patient with diastolic heart failure. [45].

In Figure 5, we summarized some of the main mechanisms of action of homocysteine,
which can lead to functional and morphological cardiac remodeling and microvascular
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constrictions due to the free movement of endothelin in the pericardial fluid/sac, reaching
remote cardiac muscle areas.
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adenosylhomocysteine, ADMA: asymmetric dimethylarginine NOS: nitric oxide synthase, PON:
peroxynitrite, ET: endothelin.

4.6. Clinical Importance of the Present Findings

Our data suggest that it is important to measure homocysteine level in patient popula-
tions with ischemic heart disease, because higher but still normal levels of homocysteine
may represent risk factors for morphological and functional remodeling of the heart in this
condition. On the basis of our findings in Figure 6 we are showing two hypothetical cardiac
cycles curves indicating that in a condition of higher homocysteine level end-diastolic
volume increases, contractility decreases, resulting in a reduced ejection fraction.
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The higher level of Hcy may be due to—among other factors—low vitamin B6, B12,
and folate levels, which, however, can be corrected with appropriate therapy in most
cases [46]. The normal range for Hcy (like many other parameters) usually refers to young
(25-year-old) healthy individuals. However, in diseased conditions, the normal—or, as we
can call, optimal—range of homocysteine may shift to higher or lower values/range. For
example, it is thought that systemic blood pressure in diabetic patients should be lower
than in non-diabetics [47]. Thus, it is possible that in cardiac ischemia, reducing Hcy levels
below the “normal” range is beneficial to prevent cardiac remodeling and fibrosis. Since
the level of Hcy can be influenced by appropriate treatment, it could be recommended
to do so in ischemic heart disease. The pericardial fluid Hcy and cardiac troponin levels
could be important biomarkers of cardiac ischemia when their plasma levels are still in the
normal range.

4.7. Clinical Aspects Related to Medications

It is of note that the long-term administration of glucose-lowering drugs such as
metformin may attenuate cardiac hypertrophy and improve cardiac function, as suggested
by clinical and animal studies [48–50]. However, studies have also shown that anti-diabetic
drugs could increase plasma homocysteine levels [51]. In the present study, 6 out of 14
patients had diabetes and received anti-diabetic drugs (such as metformin or Levemir);
however, the LVM values of these six patients were similar to those of patients with no
anti-diabetic medication. We also found that the tHcy levels of patients with diabetes were
similar to those with no diabetes, suggesting that these differences did not significantly
affect the morphological findings in these groups of patients. Another important aspect
is that plasma lipid levels may influence cardiac morphology and function. Indeed, a
recent clinical study showed a positive correlation between higher LDL cholesterol and
higher LV end-diastolic volume, as well as higher LVM [52]. Among our patients, only
one had borderline high total cholesterol and high triglyceride level, and both the LVM
and LVEF values of this patient were in the average range. Additionally, it is known
that cholesterol-lowering drugs, e.g., statins, inhibit cardiac hypertrophy [53]. In the
present study, all patients but one received statins, and half of the patients exhibited left-
ventricular hypertrophy, but their other cardiac parameters were similar. Likewise, there
was a consistent correlation between Hcy levels and the echocardiographic parameters,
suggesting that statins were unlikely to have influenced the findings of the present study.
Thus, cardiac morphology and function of patients included in the present study were
unlikely to be affected by glucose-lowering drugs or plasma cholesterol levels.

Limitations of the Study

As in most human studies, there are no appropriate controls; thus we used findings
from experimental (animal) studies to draw our conclusions regarding the underlying
mechanisms. In this human study, we were limited by the amount of coronary bypass graft
surgery (CABG) performed at our institution. Due to the great advances in percutaneous
intervention (PCI), fewer patients need this type of open chest surgery. In addition, we were
limited regarding the number of patients available in our clinic, which fall into the category
of our investigation. Nevertheless, the homogeneity of patients allowed for the statistical
analysis of data. For this reason, more data are necessary to support our conclusions
regarding the role of homocysteine metabolism in cardiac remodeling due to long-lasting
ischemia. In addition, it is of note that the anti-diabetic medication may influence the
homocysteine levels of these CABG patients [54].

5. Conclusions

In conclusion, the findings of the present investigation suggest that in chronic ischemic
cardiac patients—as indicated by the increased troponin level in the pericardial fluid—the
higher levels of homocysteine (but still in the “normal range”) in the pericardial fluid and
plasma contribute to the development of cardiac remodeling and contractile dysfunction.
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Thus, in this special patient population, plasma homocysteine levels should be measured,
considered, and lowered with appropriate therapy.
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