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Abstract: The interplay between neurology and cardiology has gained significant attention in recent
years, particularly regarding the shared pathophysiological mechanisms and clinical comorbidities
observed in epilepsy and arrhythmias. Neuro-cardiac electrophysiology mapping involves the com-
prehensive assessment of both neural and cardiac electrical activity, aiming to unravel the intricate
connections and potential cross-talk between the brain and the heart. The emergence of artificial
intelligence (AI) has revolutionized the field by enabling the analysis of large-scale data sets, complex
signal processing, and predictive modeling. AI algorithms have been applied to neuroimaging,
electroencephalography (EEG), electrocardiography (ECG), and other diagnostic modalities to iden-
tify subtle patterns, classify disease subtypes, predict outcomes, and guide personalized treatment
strategies. In this review, we highlight the potential clinical implications of neuro-cardiac mapping
and AI in the management of epilepsy and arrhythmias. We address the challenges and limitations
associated with these approaches, including data quality, interpretability, and ethical considerations.
Further research and collaboration between neurologists, cardiologists, and AI experts are needed to
fully unlock the potential of this interdisciplinary field.

Keywords: epilepsy; arrhythmia; electrophysiology mapping; autonomic nervous system; artificial
intelligence

1. Introduction

The intricate relationship between the nervous and cardiovascular systems has long
fascinated researchers and clinicians. Recent advancements in neuro-cardiac electrophys-
iology have shed light on the interconnected nature of epilepsy and arrhythmias, two
complex disorders affecting the brain and heart, respectively. The mapping of neuro-
cardiac electrophysiology has emerged as a promising avenue for unraveling the shared
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mechanisms, common etiological factors, and potential therapeutic interventions that
bridge these seemingly disparate conditions.

Epilepsy, characterized by recurrent seizures originating from abnormal electrical
activity in the brain, affects approximately 70 million people worldwide [1]. Arrhythmias,
on the other hand, encompass a spectrum of irregular heart rhythms, ranging from benign
palpitations to life-threatening conditions such as ventricular fibrillation (VF) [2]. While
epilepsy and arrhythmias have traditionally been studied and managed as distinct entities,
emerging evidence suggests a bidirectional relationship between the two, with shared
pathophysiological pathways and overlapping risk factors.

Epilepsy is a neurological disease characterized by spontaneous repetitive seizures
that result in an excessive abnormal electrical discharge in the cortical neurons [3]. This
phenomenon causes a sympathetic nervous system (SNS) predominance and a subsequent
catecholamine surge, which is known to trigger abnormal cardiac electrical activity known
as arrhythmias [4]. Some studies suggest the concept of the lateralization of the insular
cortex with respect to cardiac function. The right insula is more involved in sympathetic
cardiac regulation whereas the left insula is more involved in parasympathetic regula-
tion [5]. Seizures, which are abnormal electrical discharges in the brain, can, indeed,
impact the autonomic nervous system and potentially lead to cardiac arrhythmias. The
specific mechanisms are complex and can involve various brain regions, including the
insula. Seizures can trigger changes in sympathetic and parasympathetic activity, lead-
ing to alterations in heart rate and rhythm. This suggests that the mechanism of cardiac
arrhythmias may depend on the region involved during a seizure. Arrhythmias can be
divided into two categories: bradyarrhythmias (slow heart rhythms) and tachyarrhythmias
(fast heart rhythms). Bradyarrhythmias can include sinus bradycardia, atrioventricular
block, and asystole. Tachyarrhythmias can include ventricular tachycardia (VT), VF, and
atrial fibrillation (AF).

According to a nationwide inpatient analysis by Desai et al., the most frequent arrhyth-
mia in epilepsy patients was AF [6]. Distinct arrhythmias may manifest during the ictal,
postictal, and interictal phases of epilepsy. Ictal asystole is the most commonly identified
cardiac arrhythmia during the ictal phase, whereas sinus tachycardia, bradycardia, atrioven-
tricular (AV) block, and AF have also been reported [4,7]. In the postictal phase, patients
can develop asystole, bradycardia, AV block, AF, atrial flutter, VT, or VF [4,8]. Postictal
arrhythmias were mostly found to be associated with SUDEP (Sudden Unexplained Death
in Epilepsy) [4]. In addition to this, epilepsy has been shown to have a correlation with
long QT syndrome (LQTS) due to ion channel mutations. Overall, epileptic patients have a
higher prevalence of arrhythmias than the general population [8].

In this review, we describe the correlation between epilepsy and cardiac arrhythmias.
We provide an overview of the various arrhythmias, their prevalence, and associated
seizure types, characterize the pathophysiological mechanism for the onset of arrhythmias
in epilepsy patients, and present insights into which types of arrhythmias predispose
an individual to higher rates of SUDEP. We also provide a comprehensive summary of
contemporary neuro-cardiac electrophysiology studies, focusing specifically on the inter-
play between epilepsy and arrhythmias, and seeking to establish a unified framework for
understanding the complex relationship between the brain and the heart. Furthermore, we
address the potential of AI-driven advancements in clinical practice and highlight avenues
for further research. Harnessing the power of AI in uncovering the shared pathophysiology
and mechanisms underlying epilepsy and arrhythmia can enable personalized treatment
strategies and targeted interventions that optimize patient outcomes.

2. Brain–Heart Interplay

The autonomic nervous system (ANS) plays a vital role in regulating cardiac elec-
trophysiological functions and in triggering conditions that cause cardiac dysregulation.
It comprises the sympathetic (SNS) and parasympathetic nervous systems (PNS), which
interact using a complex network of intrinsic cardiac nerves and ganglia, stellate ganglia,
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the spinal cord, the brainstem, and the higher brain centers, thus regulating the ANS [9–12].
The order of the neuro-cardiac interconnections has been described as a three-level hi-
erarchy. It starts from the central nervous system (CNS), specifically the insular cortex,
extending to the medulla and to the intrinsic cardiac nervous system (ICNS) [13,14]. This
Level 1 of the hierarchy includes the higher cortical centers, the brainstem, and the spinal
cord. The intrathoracic extracardiac neurons and the stellate ganglia form Level 2, while
Level 3 is the ICNS [13,14].

The ICNS pathways comprise a network of neurons and ganglionated-plexi (GPs)
present within the epicardial fat pads. They act as a relay station that processes information
from the heart and trans-conducts the local signals to regulate cardiac function, independent
of the higher ANS [15]. The ICNS is sometimes referred to as the heart’s “little brain” [14].
The ICNS consists of efferent parasympathetic and sympathetic neurons, afferent sensory
neurons, local neurons, and interneurons acting via the diverse neurotransmitters [16]. The
epicardial ganglia are distributed widely and their sizes range from those that are micro-
scopic to those that are discernible with the naked eye. In addition, afferent neurons may
mediate the reverse heart-to-brain communication by continuously sending information
to the CNS, which impacts the neuronal circuits involved in perception, cognition, and
emotional processing [17].

The extrinsic cardiac nervous system mediates information between the heart and the
cervical, stellate, and thoracic ganglia forming sympathetic connections, and the medulla
oblongata forming the parasympathetic connections [15]. The ganglia of the parasympa-
thetic division are distributed mainly within the epicardial area and are intrinsic, while
the ganglia of the sympathetic division are present in the sympathetic chain or in the
paravertebral ganglia [18–20].

The heart receives sympathetic innervation through a complex network of nerve fibers.
The sympathetic nerves responsible for innervating the heart originate from paravertebral
ganglia, which are located adjacent to the spinal cord. Of particular importance in the
sympathetic innervation of the heart are the superior thoracic ganglia, also known as
stellate ganglia, which are situated in the lower neck region near the base of the cervical
spine. The postganglionic fibers arising from the stellate ganglia form a complex network
called the cardiac plexus. This intricate network extends along the anterior surface of the
tracheal bifurcation, behind the ascending aorta. From the cardiac plexus, sympathetic
nerve fibers project to different regions of the heart, including the myocardium (heart
muscle) and specialized structures such as the sinoatrial (SA) node and AV node.

Upon activation, sympathetic nerves release norepinephrine (noradrenaline) as the
main neurotransmitter. Norepinephrine binds to β-1 adrenergic receptors located in the
heart. This binding triggers a cascade of intracellular events, leading to increased calcium
influx into cardiac muscle cells during each action potential. The elevated intracellular
calcium levels enhance the contractility of the myocardium, resulting in a more forceful
and efficient contraction of the heart (positive inotropic effect) [21].

The parasympathetic effect on the heart is mediated by the M2 receptors [22]. The PNS
comprises the parasympathetic preganglionic neurons located in the medulla oblongata
within and ventrolateral to the nucleus ambiguous (NAmb) as well as in the dorsal motor
nucleus of the vagus (DMNX) and the reticular formation between the two nuclei. Parasym-
pathetic postganglionic fibers innervate the cardiac conduction system along with the
atrial and ventricular working myocardium, which releases Acetylcholine and vasoactive
intestinal peptide [23,24]. When the Acetylcholine released by the vagus nerves binds to the
M2 muscarinic receptors it significantly slows heart rates (mediated by G-protein inwardly
rectifying potassium [GIRK] channels), shortens atrial action potentials, increases smooth
muscle contraction, inhibits the funny current, activates the IKACh channel, and decreases
contractility [22], which produces negative chronotropic, negative homotopy as well as
negative inotropy and lusitropy in the heart [23,24].

Under normal physiological conditions, the heart is controlled by a fine balance of
parasympathetic and sympathetic signals, the peripheral nervous system, and the CNS [25].
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The role of parasympathetic innervation is more significant in the atria compared to the
ventricles. Additionally, the sympathetic innervation of the ventricles is more influential
than the parasympathetic innervation of the ventricles. However, autonomic imbalance
has been associated with various cardiovascular abnormalities (Figure 1).
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Figure 1. Brain–heart interplay.

3. Ictal Arrhythmias

Cardiac rhythm changes often accompany seizures, and the most common among
them are ictal tachycardia (IT) and ictal bradycardia (IB) [26], although other forms of
rhythm alterations have been described in the literature. The increasing use of elec-
troencephalogram (EEG), electrocardiogram (ECG), and video EEG (vEEG) monitoring
has recently resulted in a greater recognition and characterization of interictal cardiac
arrhythmias [27].

3.1. Pathophysiology of Heart Rate Changes in Epilepsy

The ANS control of the cardiovascular system is multifocal. Alterations in heart rate
(HR) take place in distinct regions of the brain, such as the prefrontal cortex, insular cortex,
brainstem, thalamus, hypothalamus, and the limbic system, which includes the cingulate
gyrus and amygdala [28,29]. If there is an epileptic focus in any of the structures, it could
lead to an arrhythmia [30]. Oppenheimer et al. have shown that the left-sided stimulation
of the insular cortex leads to an HR increase, whereas the stimulation of the right-sided
insular cortex causes a deceleration in the HR [31]. Thornton and associates have reported
that the stimulation of the midbrain could lead to increased HR [32]. In 2007, Leung et al.
demonstrated a decrease in HR upon stimulation of the left cingulate gyrus, which may
lead to asystole [33].

The major mechanisms through which seizures can trigger an arrhythmia are altered
cardiac electrophysiological parameters, ion channel abnormalities, and autonomic im-
balance [34]. IT (HR > 100 bpm) is caused due to the increased sympathetic stimulation
of the heart. Tachycardia leads to increased myocardial oxygen demand and a higher
risk of cardiovascular mortality [26,35]. IB (HR < 50 bpm) is caused by a sympatho-vagal
imbalance wherein the PNS is in overdrive. Ictal asystole (IA) is a subtype of IB wherein
there is an absence of QRS complexes for longer than 4 s with seizure onset. IA often
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leads to a cardiac “vagal storm” and may cause a loss of consciousness and subsequent
injuries [4]. Chronic epilepsy often leads to secondary cardiac ion channelopathies due to
long-term alterations in the ANS control of the heart [36]. Channelopathies in the cardiac
conduction system can lead to alterations in the transmission of action potentials and
adversely affect the pacemaker activity and AV nodal conduction, leading to arrhythmias.
A commonly associated channelopathy in epilepsy and SUDEP is LQTS, which can affect
voltage-gated K+ channels, ryanodine receptors, and voltage-gated Na+ channels [37,38].
The altered ion channels in the cardiac action potential can lead to abnormal Na+ and K+

currents during the plateau phase, resulting in several changes in the electrical activity of
the heart. These changes include an increase in cytosolic Ca2+ content, the prolongation
of the ventricular action potential, and delayed repolarization. These alterations in the
electrical properties of the heart can predispose individuals to ventricular arrhythmias and
increase the risk of sudden cardiac death [39]. Finally, partial and generalized seizures may
induce chronic alterations in the central autonomic network (which includes the insular
cortex, amygdala, and periaqueductal grey matter). The altered autonomic firing in the
central autonomic tone due to long-term epilepsy may induce downstream changes in
the medullary autonomic structures, mainly the nucleus tractus solitarius and nucleus
ambiguous [40], which, in turn, may lead to abnormal cardiac action potential generation
and arrhythmias.

3.2. Ictal Tachycardia

IT is commonly defined as a HR in excess of 100 bpm [28]. However, some studies
have included differing definitions, including HR > 120 bpm and HR > 10 bpm above
the baseline HR [35]. Several studies over the years have attempted to characterize its
prevalence in both small and large groups of epilepsy patients [41–43]. Egglestone et al.
reported that the cumulative weighted average percentage of patients with IT was 82% [35].
IT may begin during a seizure [44] but may also commence in the moments preceding the
episode of seizure [45,46]. While IT is predominantly composed of sinus tachycardia [28], in
some cases, AF/flutter and VT may occur. Van der Linde and associates reported 13 cases
of ictal AF, 1 case of ictal atrial flutter, and 3 cases of ictal VF in 17 cases of observed
tachycardia associated with seizures. However, it is important to be aware that only 5 of
the 17 subjects reported to demonstrate IT had an ictal [GA2] arrhythmia as detected by
video EEG (which is more sensitive and accurate than conventional EEG) [4].

With regards to seizures that accompany IT and its variants, both partial and gen-
eralized seizures have been associated with IT episodes. Partial seizures, both with and
without secondary generalization, resulted in tachycardia in a cumulative average of 71%
across the studies reviewed by Egglestone and colleagues [35], with the lowest percentage
in the report by Garcia et al. being 32.9% [44] to 100% [97 events in 38 pts (18 M/20 F);
aged 3–53 yrs (mean: 27)] being reported in others [47,48]. The same review examined
seven studies and found that generalized seizures were associated with 64% of IT episodes.
While the above review found that partial seizures have a greater association with IT/HR
changes, some studies have documented that generalized seizures are associated with a
higher risk of IT compared to partial seizures [49,50]. These studies also found that there
is a predisposition to developing IT in cases of partial seizures that ultimately result in
a secondary generalization. Opherk et al. studied HR and ECG changes in 102 cases of
seizures (71 non-generalized and 31 generalized) from 41 patients and found that ictal HR
was significantly higher in generalized seizures vs. non generalized seizures (p < 0.03) [50].

With regards to the locations of epileptic foci that predispose to IT, seizures arising
from the right side of the insular cortex are more strongly associated with the development
of IT [31,45]. Furthermore, studies have also reported increased HR changes with seizures
of temporal origin vs. those of extra-temporal origin [44,51]. Garcia et al. analyzed
100 seizures from 38 patients, whereas Weil et al. analyzed vEEG data from 21 patients
with epilepsy over 24 h [51]. In these studies, compared to 22% and 11% of extratemporal
seizures, it was observed that 78% and 62% of seizures with temporal lobe onset were
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related to an increase in HR, respectively [44,51]. In another study, it was demonstrated
that, out of 90 partial seizures, 56 had a temporal lobe origin, 29 had a frontal origin, and
5 had an unknown origin [52]. Of the 90 seizures, 44 (49%) had an association with early
HR increase (early HR being defined as the HR in the first 10 s of recorded ictal discharge
on EEG) [52]. Notably, the authors reported that 50% (22/44) of the seizures in which early
HR was increased were of temporal lobe origin, while 80% (18/23) of the seizures where
there was a decrease in early HR were of temporal lobe origin. Their data suggest that
temporal-lobe-based partial seizures play an important role in HR changes, and may be
associated with both increase and decrease in HR [52].

3.3. Ictal Bradycardia

Conventionally defined as HR < 50 bpm, IB is thought to be much rarer compared to
IT and affects less than 5% of epilepsy patients [4,28,53]. However, the recognition of IB and
its subtypes is important because it could potentially lead to life-threatening complications
and SUDEP [53]. The types of IB can be classified as IA, ictal sinus bradycardia, and ictal
AV-conduction block [4]. In contrast to IT, IB usually starts 10–30 s following the onset
of seizures on EEG [27,54], although some authors have reported IBs preceding [55] and
starting simultaneously [56] with the seizure episode. Nonetheless, the typical course of
an episode of IB starts with initial sinus tachycardia followed by a progressive decrease in
the HR, occasionally terminating in an episode of asystole of variable length [53]. This is
important, as most of these asystolic episodes last for 3–20 s and are not life-threatening,
but, sometimes, longer pauses may result in SUDEP. Van der Lende et al. studied a total of
164 cases of IB in their systematic review and documented 103 cases of IA (with a further
13 being postictal asystoles) [4]. They also compiled 25 cases of IB without an asystolic
episode via vEEG, [GA2] and a further 11 cases of ictal AV block (with 9 being complete
AV blocks and 2 being second-degree AV blocks) [4].

A consistent finding in all subtypes of IB is that they almost always occur in people
suffering from focal dyscognitive seizures (FDS), which is also called a complex partial
seizure. It was also strongly associated with an origin in the temporal lobe [4,28,53]. A
comprehensive study of 103 cases of IA demonstrated that 99% were associated with FDS,
25 cases of IB without asystole had 100% association with FDS, and, of the 11 cases of ictal
AV block, 90% were associated with FDS [57]. Clinically, however, there is a high chance of
IBs being missed, because the association with loss of cognition, awareness, and muscle
tone makes these episodes hard to distinguish from syncope.

4. Postictal Arrhythmia

Postictal arrhythmias are abnormal cardiac rhythms that occur after a seizure due to
autonomic dysregulation, typically characterized by increased sympathetic and decreased
parasympathetic output in the early postictal phase and impaired vagal recovery seen in
the late phase. These changes may generate fatal arrhythmias and lead to SUDEP [4,58,59].
Moreover, the direct activation of central autonomic networks may be the cause of the link
between arrhythmia and seizures [57,60,61]. When compared to the general population,
people with epilepsy were found to have a three-fold higher risk of developing VT/VF [62].
Most cases of VT/VF in epilepsy were, however, not seizure-related and were probably
related to cardiovascular comorbidities. Nevertheless, in a subset of cases, seizure-induced
VF may have played a role. However, the exact mechanism underlying the increased risk
of ventricular tachycardia (VT) or ventricular fibrillation (VF) in people with epilepsy is not
fully understood. Some potential factors that could contribute to this association include a
rise in catecholamines, and various other factors may contribute to postictal VF, including
a higher prevalence of ECG markers for sudden cardiac arrest, peri-ictal QTc prolongation,
ST changes, and increased troponin levels [62].

Convulsive seizures were associated with the detection of postictal asystole, AF, and
VF [4]. Postictal VF is always categorized as (near) SUDEP, and postictal asystole is
commonly linked to SUDEP [63]. Postictal generalized electrographic suppression (PGES)
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and apnea were the main triggers of the majority of postictal asystoles [4]. Prolonged apnea
activates the carotid chemoreceptors, resulting in arousal, and, ultimately, vagally mediated
bradycardia or even cardiac collapse [58,64]. These statements highlight the complex
relationship between convulsive seizures, postictal events, and cardiac complications,
particularly in the context of SUDEP. It is important to note that SUDEP is rare but has
significant implications for individuals with epilepsy.

Postictal AF, although rarely reported, is a highly dangerous complication of Gen-
eralized Tonic-Clonic Seizure (GTCS). It is associated with PGES and autonomic dysreg-
ulation [58]. About 21 documented cases of postictal AF were found in the literature,
with 19 cases being associated with GTCS and 2 with focal seizures [65]. Prolonged PGES,
medically refractory epilepsy, and genetic abnormalities like sodium (SCN1A) and potas-
sium (KCNA1) channelopathies highly increase the risk of developing SUDEP [65,66]. The
decreased ventricular output seen in AF could be a precipitating factor for SUDEP [58].

5. Long QT Syndrome and Epilepsy

LQTS is a hereditary condition that affects the electrical activity of the heart and raises
the risk of irregular heartbeats. It affects about 1 in every 2500 individuals, and symptoms
typically appear in children and adolescents. If left untreated, the 10-year mortality rate
among symptomatic individuals can be as high as 50% [67]. The prevalence of LQT2 is
higher at 3.7% compared to other LQTS variants (0.7%) in the general population.

There is said to be a genetic interplay between LQTS and an increased risk of epilepsy.
These genes include the following: KCNQ1, associated with LQTS type 1; KCNH2, associ-
ated with LQTS type 2; SCN5A gene, associated with LQTS type 3; and ANK2, associated
with LQTS type 4 [68].

The pathophysiology between the two is explained by a few theories. One theory for
the cause of epilepsy in LQTS is that mutations in the ion channel genes that control calcium
and potassium currents cause aberrant calcium fluxes and neuronal hyper-excitability. This
may cause abnormal electrical activity to be generated, presenting as seizures. The second
theory is suggestive of dysfunction of the ANS in LQTS due to ion channel mutations
that can lead to the abnormal regulation of cardiac and neuronal activity, potentially
contributing to seizures. The third theory suggests that prolonged reduction in blood flow
to the brain leads to epilepsy because of an irregular heart rhythm [69].

To diagnose LQTS, it is important to identify key symptoms in the patient’s medical
history, such as sudden syncope, near syncope, or prolonged syncope with seizures [70], and
to carry out a standard 12-lead ECG test. The ECG test should be repeated if the frequency
or nature of the seizures changes or if the seizures do not respond to the therapy [70].
If a sudden loss of consciousness is followed by myoclonic jerks, arrhythmias such as
bradycardia or torsade de pointes ventricular tachycardia should be considered. The key
indicators that may help differentiate between LQTS and epilepsy in pediatric age groups
include brief seizure episodes with no postictal drowsiness, syncope, and a strong family
history of LQTS [69].

Misdiagnosis can be avoided by some ECG and EEG indicators. Prolonged QT interval,
torsades de pointes, and bradyarrhythmias in ECG with epileptiform discharges, interictal
abnormalities, and seizure activity in an EEG are usually suggestive of epilepsy [71]. Both
the test findings along with a comprehensive clinical evaluation are necessary for an
accurate diagnosis. Machine learning algorithms and AI tools can be utilized to help better
analyze the data.

As many anti-epileptic drugs (AEDs) have the potential to worsen QT prolongation
and increase the risk of cardiac arrhythmias, the AEDs that have been associated with QT
prolongation and increased risk of cardiac arrhythmias include the following: (1) some
Sodium Channel Blockers—AEDs that block sodium channels, like Flecainide and Pro-
cainamide, can slow down cardiac repolarization and prolong the QT interval; (2) some
Potassium Channel Blockers—certain AEDs, such as Sotalol and Amiodarone, block potas-
sium channels, which can delay potassium efflux during repolarization; (3) some Calcium
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Channel Blockers—AEDs like Verapamil and Diltiazem, which block calcium channels, can
affect the timing of calcium ion flow during the action potential; and (4) Multiple Drug
Interactions—in some cases, combining multiple AEDs or combining AEDs with other
medications may increase the risk of QT prolongation. Choosing an appropriate mode
of therapy is necessary. The treatment options for epilepsy in LQTS patients include the
following: (1) non-pharmacological therapies such as vagus nerve stimulation, ketogenic
diet, or surgery; (2) the use of specific AEDs which are less likely to cause QT prolongation,
like lamotrigine, levetiracetam, and topiramate, and the avoidance of high-risk AEDs such
as phenytoin, carbamazepine, and valproate; and (3) close monitoring for cardiac events
for patients on medication [72]. A multidisciplinary approach is essential to ensure the best
possible outcomes for patients.

6. Sudden Unexplained Death in Epilepsy

Compared to the general population, people with epilepsy have a higher risk of death,
with SUDEP being the main direct epilepsy-related cause of premature death [60]. SUDEP
is described as the sudden and unexpected death of a person with epilepsy that is not
related to trauma or drowning and occurs without a toxicological or anatomical cause of
death being found during the post-mortem examination. Seizures are typically the cause
of SUDEP, and changes in cardiorespiratory function brought on by seizures are the most
likely precipitating factor [73]. The incidence of SUDEP in the general epilepsy population
ranges from 1.2 to 1.3 per 1000 person-year, with a peak incidence among teenagers and
young adults (under 45 years) [74].

Although the pathology is still poorly understood, research has established that most
cases of SUDEP are a result of postictal dysfunction in the central respiratory center that
ultimately leads to terminal apnea and cardiac arrest. However, interictal SUDEP is most
likely associated with episodes of IA and VF [29,43,75]. Some studies, however, have found
that IA may have a protective effect against SUDEP [76]; however, further studies are
required to validate these findings.

7. Discussion

Epilepsy, a neurological condition, is defined by meeting any of the following criteria:
experiencing at least two unprovoked seizures that are separated by more than 24 h,
having experienced a single unprovoked seizure along with a 60% chance of having
a recurrent seizure within the next decade, or having received a clinical diagnosis of
epilepsy [77–79]. SUDEP refers to the sudden and unexpected death of individuals who
had a prior diagnosis of epilepsy, and were in a healthy condition, but for which an autopsy
could not determine the cause of death. The factors increasing the likelihood of SUDEP
are (a) the sleep state, (b) seizures (most commonly General Tonic-Clonic Seizures), and
(c) seizure clusters. The increased vagal tone and autonomic instability during the above-
mentioned conditions are the factors responsible for SUDEP. The likelihood of sudden
death resulting from arrhythmia is higher in individuals who already have pre-existing
structural heart diseases [61].

Syncope and psychogenic events are the two most common forms of non-epileptic
paroxysmal events (NEPEs). Misdiagnosed epileptic cases account for 20–30% of all the
diagnoses [79,80]. Hence, the accurate diagnosis of NEPE becomes important before the
initiation of long and rigorous epileptic treatment. Simultaneous EEG and ECG become
important in the early diagnosis of patients with epilepsy or convulsive syncope and further
possible arrhythmic episodes. Epilepsy is also known to cause cardiac syncope through
secondary tachycardia and bradycardia mediated via the ANS [81].

The concurrent recording of an Electrocardiogram (ECG) and an Electroencephalo-
gram (EEG) is a crucial clinical requirement to identify and understand the coexisting
abnormalities in both heart and brain functions. This combined testing helps determine the
clinical significance of ECG and EEG abnormalities. It is particularly useful in distinguish-
ing potentially rare life-threatening causes of fainting (syncope) that might mimic seizures
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or conditions that could lead to resistance to antiepileptic therapy [82]. Some cardiological
conditions which may coexist with seizures, and that warrant simultaneous ECG and EEG
recordings, are as follows:

A LQTS: Simultaneous EEG and ECG recording becomes important in detecting the QT
interval and T wave abnormalities, and in the evaluation of convulsive syncope [83].

B Brugada syndrome: An arrhythmic disorder that may coexist with epileptic disorder.
Simultaneous ECG and EEG recording can help in distinguishing arrhythmic from
epileptic forms, as epileptic forms carry a higher risk of sudden death [84].

C Myocardial-ischemia-related ST segment changes: Ventricular arrhythmia may pre-
cede the development of ST segment changes during myocardial ischemia. It is
sometimes associated with syncope and can be monitored using simultaneous EEG
and ECG recording.

EEG detects the neural activity generated by the cortical pyramidal neurons that are
located perpendicular to the surface of the brain. It is the summation of the excitatory and
inhibitory postsynaptic signals synchronously fired by the neurons [85]. Surface EEG and
accurate annotation is the gold standard method for diagnosing epilepsy [86]. Delayed
diagnosis or misdiagnosis can result in serious consequences [86,87]. False positives can
result in the unnecessary prescription of medications. Recording simultaneous ECG and
EEG is crucial as it not only helps identify the cardiac rhythm abnormalities that may be
present during an epileptic episode but also allows for the detection of the clinical features
and rhythm abnormalities associated with seizures. The early prediction of seizures has also
been made possible by studying the EEG and ECG simultaneously [88–92], for example,
in predicting events of temporal lobe epilepsy by analyzing heart rate variability (HRV)
in children. An early decrease in HR was found to be associated with temporal lobe
seizures [42]. ECG recordings can also provide markers of seizure events that may not be
detectable by EEG [52,93]. The side effects caused by antiepileptic drugs like lethal cardiac
arrhythmia, or AV conduction block could be observed through simultaneous EEG and
ECG monitoring. This enables the neurologist to detect abnormal resting ECG and serious
cardiac rhythm disturbances [81].

While simultaneous ECG recording with EEG is necessary in clinical settings to detect
and clarify abnormalities in both EEG and ECG, analyzing long recordings can be a time-
consuming process. The possible reasons for the abnormally high number of false positives
include a lack of formal standards or mandatory EEG training. The difficulties in reading
and interpreting EEG might be missed upon clinician-reading, as a delayed diagnosis can
also delay the initiation of treatment in patients and impact outcomes. This issue is also
compounded by a treatment gap attributed to inequalities in distribution and access to
healthcare. Practicing it every time a patient presents with a history of seizure or arrhythmia
can be cumbersome and can lead to the unnecessary utilization of resources.

The use of AI-based analysis in ECGs has demonstrated encouraging outcomes in
the diagnosis of hypertrophic cardiomyopathy, in the screening of first-degree relatives
of patients with dilated cardiomyopathy, and in the detection of left ventricular dysfunc-
tion [94–96]. By analyzing ECG signals, AI algorithms can help identify the specific site of
origin of certain arrhythmias in the myocardium [97]. Similar success has been recorded in
the field of neurology in analyzing EEG results, localizing epileptic regions, and predicting
the surgical outcomes of epilepsy [97]. Hence, AI can minimize the need for repeated EEG
and ECG measurements and assist in the diagnosis and prediction of impending seizures
and arrhythmias. Factors like patient demographics, type of seizure or arrhythmia, data
collection, and storage methods can all enhance detection using AI. Categorizing patients
based on the likelihood of experiencing seizures would give us an edge in putting patients
on prophylactic antiepileptic medications. Analyzing the different kinds of seizures would
give us warning about the type of impending arrhythmia and enable the timely mitigation
of risk (Figure 2).
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However, despite its promising potential, some challenges are being anticipated while
clinically implementing AI. The involvement of AI in the decision-making process can
challenge patients’ trust in their physicians [98]. Professional liability, in cases of incorrect
decisions being made, is still under question. Moreover, physicians who lack experience in
AI may fail to understand its algorithms. Furthermore, medical malpractice may become
more complicated as different stakeholders will be involved. Incorporating the technology
could potentially reduce the time and cost associated with diagnostic tests and monitoring
devices. However, there is currently insufficient evidence to support the cost-effectiveness
of the system.

As a result of the significant dependence on electronic health record systems, it is
possible that some data may be missing. People from certain economic classes may not have
access to healthcare services or diagnostic tests. In such scenarios, AI may interpret the lack
of data as a low disease burden in this group of the population. Another potential challenge
is the interpretation of the EEG and ECG records, as they might be stored in different
formats, or can be ambiguous, heterogeneous, or incomplete. This can lead to data sparsity
and redundancy. Cybersecurity is another challenge that needs to be addressed. As they
are potential targets for hacking, regulatory frameworks are put in place. Machine learning
apps, like Apple health apps, have to comply with these rules as they put individuals’
privacy at risk [99].

8. Conclusions

Mapping neuro-cardiac electrophysiology has yielded valuable insights into the con-
nection between epilepsy and arrhythmia. Advanced imaging techniques, like EEG and
ECG, have identified shared pathways involving abnormal neural activity, autonomic dys-
function, and structural abnormalities. This understanding has significant implications for
diagnosing and managing patients with epilepsy and arrhythmia, enabling comprehensive
evaluations and guiding treatment decisions. Collaboration among healthcare professionals
is crucial in delivering holistic care for these conditions. Despite this progress, further
research is needed to uncover the precise mechanisms and develop personalized therapies.
The AI analysis of EEGs and ECGs shows promise in improving diagnosis and manage-
ment, benefiting both patients and healthcare providers. Future work should address the
limitations and assess cost-effectiveness. Ultimately, AI-assisted decision-making holds the
potential to revolutionize diagnostic and prognostic services in healthcare.
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