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Abstract: Increased mechanical forces on developing cardiac valves drive formation of the highly
organized extracellular matrix (ECM) providing tissue integrity and promoting cell behavior and
signaling. However, the ability to investigate the response of cardiac valve cells to increased me-
chanical forces is challenging and remains poorly understood. The developmental window from
birth (P0) to postnatal day 7 (P7) when biomechanical forces on the pulmonary valve (PV) are altered
due to the initiation of blood flow to the lungs was evaluated in this study. Grossly enlarged PV,
in mice deficient in the proteoglycan protease ADAMTS5, exhibited a transient phenotypic rescue
from postnatal day 0 (P0) to P7; the Adamts5−/− aortic valves (AV) did not exhibit a phenotypic
correction. We hypothesized that blood flow, initiated to the lungs at birth, alters mechanical load on
the PV and promotes ECM maturation. In the Adamts5−/− PV, there was an increase in localization of
the proteoglycan proteases ADAMTS1, MMP2, and MMP9 that correlated with reduced Versican
(VCAN). At birth, Decorin (DCN), a Collagen I binding, small leucine-rich proteoglycan, exhibited
complementary stratified localization to VCAN in the wild type at P0 but colocalized with VCAN in
Adamts5−/− PV; concomitant with the phenotypic rescue at P7, the PVs in Adamts5−/− mice exhibited
stratification of VCAN and DCN similar to wild type. This study indicates that increased mechanical
forces on the PV at birth may activate ECM proteases to organize specialized ECM layers during
cardiac valve maturation.

Keywords: ADAMTS; MMP; proteoglycanase; cardiac valve; pulmonary valve; mechanotransduc-
tion; versican; decorin; ADAMTS5

1. Introduction

Adult cardiac valves comprise a specialized, stratified extracellular matrix (ECM) that
gives structural support to ensure unidirectional blood flow. In addition to imparting the
mechanical properties of tissues, the ECM instructs cell behavior and signaling [1,2]. The
reciprocal interactions of cells and ECM are driven by biomechanical forces. However, mech-
anisms that integrate cell-matrix responses with mechanical load are not well understood.

The provisional ECM within endocardial cushions, the precursors of the cardiac valves,
is rich in hyaluronic acid and the aggregating proteoglycan Versican (VCAN). This early
ECM provides an environment conducive to cell migration and proliferation. As the
embryo grows and mechanical forces are increased, the provisional ECM is remodeled by
synthesis of fibrillar collagens, assembly of elastin, and proteolytic cleavage and clearance of
VCAN [3]. The mature ECM components become stratified within the developing cusp (also
referred to as leaflet) while the cusp morphology changes from block shaped to sculpted.
Previous studies have revealed that the valvular endocardium senses changes in mechanical
forces and propagates the signals to underlying valvular interstitial cells (VICs, specialized
fibroblasts) through multiple mechanotransductive pathways [4,5]. Although cardiac valve
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ECM mirrors the biomechanical forces it endures, the ECM factors activated in response to
mechanotransductive pathways remain elusive and challenging to investigate [1,6].

Transitioning of the ECM requires ECM proteases and their cleaved substrates which
are components of the degradome, a relatively understudied subset of the ECM proteome.
Activation of ECM proteases can elicit a transformative impact on the ECM architecture
through proteolytic cleavage of their ECM substrates for bioassembly as well as activa-
tion, degradation, and clearance [7]. Cleavage of the aggregating proteoglycans VCAN
and Aggrecan (ACAN) also generates bioactive fragments referred to as Versikine [8]
and Aggrekine [9,10], respectively. Use of mouse models deficient in ECM proteoglycan
proteases (i.e., proteoglycanases) together with neo-epitope specific antibodies that identify
the corresponding cleaved ECM substrates [11–13] has uncovered critical in vivo ECM
proteolytic events emphasizing the importance of the degradome [14–22]. Specifically
with respect to cardiac valve development, mice deficient in A Disintegrin and Metallo-
proteinase with Thrombospondin motifs-5 (ADAMTS5) or ADAMTS9 proteoglycanases
exhibit enlarged malformed cardiac valves due to excess of their proteoglycan substrates
VCAN and ACAN [14,23]; the VCAN and ACAN proteolytic profiles, as identified by
neo-epitope specific antibodies, are also disrupted [8–10]. In vivo reduction of VCAN
rescues the enlarged ADAMTS5-deficient (Adamts5−/−) valve phenotype, indicating that
cleavage and clearance of VCAN are essential for cardiac valve maturation [14]. There is
also evidence that mutations in ADAMTS5 and ADAMTS19 contribute to cardiac valve
anomalies and disease in the patient population [24–26]; however, the ECM substrates
of ADAMTS19 have not been identified. Since excess proteoglycans are associated with
human cardiac valve disease and aortopathies [27–30], determining how proteoglycan
content is controlled by ECM proteoglycanases in response to mechanical load may be
important for therapeutic and regenerative approaches to treat cardiac valve diseases.

This study focuses on our observation that the grossly enlarged PVs in mice deficient
in the proteoglycan protease ADAMTS5, exhibited a transient phenotypic rescue from P0
to P7; the Adamts5−/− aortic valves (AV) did not exhibit significant morphological changes
during this timeframe. Shortly after birth, the closure of the ductus arteriosus and foramen
ovale routes blood to the lungs through the PV, thereby increasing its mechanical load.
Coincident with birth, ECM proteoglycanases ADAMTS1, MMP2, and MMP9 exhibited
increased expression profiles in the in the PVs of Adamts5−/− mice, indicating a potential to
compensate for the loss of ADAMTS5. These data indicated that ECM proteoglycanases
may be amplified in response to increased mechanical load at birth to promote specialized
ECM formation during postnatal cardiac valve maturation.

2. Materials and Methods
2.1. Valve Cusp and Hinge Quantification

To quantify the cusps and hinge regions of the PV as well as the AV, histological
sections over a depth of 30 µM were quantified for each heart; i.e., the widest portion of
the anterior, right, and left cusps of the PV, and the right coronary, left coronary, and non
coronary cusps of the AV were measured. The narrowest part of the hinge regions was
also measured and quantified. Measurements were averaged then used for graphs and
statistical analysis. Of note, hearts that exhibited a bicuspid phenotype or had other cardiac
anomalies such as a ventricular septal defect were not utilized in this study. Amira™
3D 2021.1 (Visage Imaging, Andover, MA, USA) was used to generate three dimensional
(3D) reconstructions from 5 µm-thick paraffin sections. For each P0 or P7 reconstruction,
approximately 100–140 sections per valve were used.

2.2. Immunohistochemistry

Standard histological procedures were used [31]. Decorin (DCN) antibody (AF1060)
was purchased from R & D Systems Inc. Antibodies to α-smooth muscle actin (SMA) (Sigma,
A 5228) were used to identify smooth muscle cells. Fluor-conjugated secondary antibodies
were purchased from Jackson ImmunoResearch (West Grove, PA, USA). Antibodies were
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used in murine tissues fixed in Amsterdam (Amst: 5% methanol, 35% acetone, 5% acetic
acid) [14] or 4% paraformaldehyde (para). All para-fixed tissue was treated with either
citric acid antigen unmasking (H-3300, Vector laboratories, Burlingame, CA, USA) for ECM
antibodies to murine VCAN (gift from Dr. S. Hoffman) and DCN or proteinase K treatment
for ADAMTS1 (SC5468), MMP2 (AB19167) and MMP9 (AB38898) localization. Post-fixation
involved 80% ethanol for 5 min, followed by 50% ethanol for 5 min, and then two rinses
in phosphate-buffered saline. Imaging was performed on the Leica TCS SP5 or SP8 AOBS
Confocal Microscope System (Leica Microsystems Inc., Exton, PA, USA). Images in panels
are an example of a minimum of three different experimental replicas of Adamts5−/− and
littermate controls (Adamts5+/+; wild type—WT). Digital images of Adamts5−/− and WT
heart sections were acquired at identical confocal settings using the Leica TCS SP5 or SP8
AOBS Confocal Microscope System.

2.3. Statistics

For quantification of the valve cusp and hinge width, data were analyzed using Graph-
Pad Prism 9.1 (GraphPad Software Inc.). A one-way analysis of variance (Anova) or the
nonparametric Kruskal–Wallis test was used to determine the differences between the
groups wild type (+/+) and Adamts5−/− (−/−), at timepoints, P0, P7 and 1 mo. When
Anova assumptions of normality and equal variances could not be met, a Kruskal–Wallis
test was used to compare groups. Adjusted p-values are indicated for each group com-
parison, with α = 0.05. Anova and Kruskal–Wallis tests revealed significant differences
between groups. GraphPad was utilized to generate graphs. In graphs, each symbol
represents data from a single mouse (n = 1) for evaluation of cardiac valve cusp and hinge
regions. The colored bar height represents the mean of the measurements, with small bars
above and below indicating the standard deviation. The animal numbers were assigned
randomly prior to genotyping, and this served to blind the investigators until the grouping
for statistical analysis. To ensure the fidelity of the Adamts5−/− homozygous phenotype
Adamts5−/+ het X Adamts5−/+ het matings were performed; this approach also generated
Adamts5−/− and Adamts5+/+ littermate controls. The number of mice utilized in this study
represents a minimum of 10 different litters per timepoint to obtain an appropriate n for
this study for each developmental stage analyzed.

3. Results

3.1. The Pulmonary Valves of Adamts5−/− Mice Exhibited a Transient Phenotypic Rescue at
Postnatal Day 7

We previously published that mice deficient in the ADAMTS5 protease have larger
PV, AV, and MVs at embryonic day 17.5 (E17.5) and in adult mice (>6 mo) [14]. In this
study, the PV and AV of Adamts5−/− mice at P0 (birth), P7, and 1 mo were analyzed.
Histological sections and 3D reconstructions of the WT at P0 (n = 6) and P7 (n = 3) as well
as Adamts5−/− PV at P0 (n = 7) and P7 (n = 4) were generated and analyzed (Figure 1).
Histological comparisons revealed significant morphological correction of the Adamts5−/−

enlarged valve cusps from P0 to P7 (Figure 1). Comparisons of PV 3D reconstructions from
P0 (Figure 1D), and P7 Adamts5−/− mice (Figure 1H) highlighted the thinner and more
symmetric valve cusps that were similar to WT at P7. The morphological changes in valve
shape and size indicated an apparent rescue of the enlarged valve phenotype found in
prenatal and P0 Adamts5−/− mice to the sculpted morphology observed in WT.

Quantification of the cusp and hinge regions of the PV and AV of Adamts5−/− at P0
(n = 7), P7 (n = 4), and 1 mo (n = 6) as well as WT mice at P0 (n = 6), P7 (n = 3), and
1 mo (n = 6), revealed that the PV exhibited a significant transient rescue of the enlarged
phenotype and was indistinguishable from WT littermates at P7 (Figure 2A,B). Although
the Adamts5−/− mice exhibited a significantly enlarged PV throughout embryological
development, including P0, by P7 there was no significant difference in the Adamts5−/−

PV cusp (Figure 2A) or hinge regions (Figure 2B) compared to WT. However, once the
Adamts5−/− mice reached 1 mo of age, the PV cusps were significantly enlarged (Figure 1),
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indicating that the ‘rescued’ phenotype was transient. In contrast, the Adamts5−/− AV
exhibited different morphological dynamics than the PV. The AV cusps of Adamts5−/−

mice (n = 9) were not significantly larger than WT (n = 7) at P0 or P7 (Adamts5−/−, n = 9;
Adamts5−/−, n = 5; Figure 1I–L; Figure 2C,D; (P0-p = 0.306; P7-p = 0.332). Of note the
Adamts5−/− hinge regions of the PV and AV also differed in their phenotypic progression
(Figure 2B,D). There were no significant differences in the AV cusps between P0 and P7,
i.e., no ‘AV phenotypic rescue’ (Figure 2C,D; p = 0.332; (WT, n = 5), (Adamts5−/−, n = 9)).
However, as postnatal development progressed to 1 mo, both the AV and PV cusps from
Adamts5−/− mice (n = 5) were significantly larger than WT (n = 6; p < 0.020).
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PV; RC—right coronary cusp of the aortic valve (AV), LC—left coronary cusp of the AV. At postna-
tal day 7, (P7) the normal sculpted morphology of the PV cusps of +/+ and −/− PV (E,F) at P7 was 
evident in the 3D reconstructions (G,H; Blue—An PV cusp, Green—Rt PV cusp, and White—Lt PV 
cusp). Black bar in A = 150 μm and applies to (B–L). Orientation to 3D reconstructions (C): A—
Anterior, P—Posterior, R—Right, L—left. Blue bars on each (H & E) section indicates hinge region 
measurement; yellow bars indicate the area of the cusp that were measured, related data is in Figure 
2. Histological sections and 3D reconstructions were representative of each genotype and timepoint. 
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Figure 1. Three-dimensional reconstructions and histological sections revealed that the abnormal enlarged
morphology of the Adamts5−/− pulmonary valves at birth was transiently corrected at postnatal day 7.
Histological sections (A,B,E,F) and three-dimensional (3D) reconstructions (C,D,G,H) indicate the
morphological correction of the Adamts5−/− pulmonary valve (PV). Hematoxylin and Eosin-stained
(H & E) sections show the normal morphology of the wild type (+/+; A) PV compared to the
Adamts5−/− PV (−/−; B) at postnatal day 0 (P0). 3D reconstructions at P0 revealed the enlarged, block-
like shape of the Adamts5−/− PV (D). Rt—right cusp of the PV, Lt—left cusp of the PV, An—anterior
cusp of the PV; RC—right coronary cusp of the aortic valve (AV), LC—left coronary cusp of the
AV. At postnatal day 7, (P7) the normal sculpted morphology of the PV cusps of +/+ and −/− PV
(E,F) at P7 was evident in the 3D reconstructions (G,H; Blue—An PV cusp, Green—Rt PV cusp, and
White—Lt PV cusp). Black bar in A = 150 µm and applies to (B–L). Orientation to 3D reconstructions
(C): A—Anterior, P—Posterior, R—Right, L—left. Blue bars on each (H & E) section indicates hinge
region measurement; yellow bars indicate the area of the cusp that were measured, related data
is in Figure 2. Histological sections and 3D reconstructions were representative of each genotype
and timepoint.
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ADAMTS1 was observed in PVs at late stages of valve maturation. Images are repre-

sentative of n=3 for each genotype and at each stage. At E17.5, there was prominent stain-
ing of ADAMTS1 in the endocardium of WT PV cusps with localization to the arterial side 
(Figure 3; white arrows). At E17.5, the enlarged cusps in the Adamts5−/− PV exhibited re-
duced ADAMTS1 localization compared to WT (Figure 3B; white outline arrow). How-
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Figure 2. The widths of the Adamts5−/− pulmonary valve cusp and hinge regions were indistinguishable from
wild type at postnatal day 7, indicative of a phenotypic rescue. The thickness of the pulmonary valve (PV)
cusp (A), PV hinge (B) aortic valve (AV) cusp (C) and AV hinge (D) were quantified at postnatal day
0 (P0, red), postnatal day 7 (P7, blue) and 1 month of age (1 mo, purple) in the wild type (+/+) and
Adamts5−/− (−/−) mice. Green bars-denote the transient loss of PV Adamts5−/− cusp phenotype
(A) and hinge phenotype (B) from P0 to P7. Yellow bar—denotes the transient correction of the hinge
regions of the AV. Open circles on each graph-wild type; open squares- Adamts5−/−. *—p < 0.05;
**—p < 0.01; ns—not significant. Each symbol on the graph denotes data from one mouse.

3.2. Proteoglycan Proteases ADAMTS1, MMP2, and MMP9 Were Present in Postnatal Cusp and
Hinge Regions of the Pulmonary Valve

We reasoned that the transient phenotypic correction of the Adamts5−/− PV may be
due to proteolytic cleavage and clearance of VCAN from proteoglycanases other than
ADAMTS5 that were upregulated at birth in the Adamts5−/− mice.

3.2.1. ADAMTS1 Is the Closest Family Member to ADAMTS5, Exhibits Catalytic Activity
to VCAN, and May Compensate for the Loss of ADAMTS5 from P0 to P7

ADAMTS1 was observed in PVs at late stages of valve maturation. Images are rep-
resentative of n = 3 for each genotype and at each stage. At E17.5, there was prominent
staining of ADAMTS1 in the endocardium of WT PV cusps with localization to the arterial
side (Figure 3; white arrows). At E17.5, the enlarged cusps in the Adamts5−/− PV exhib-
ited reduced ADAMTS1 localization compared to WT (Figure 3B; white outline arrow).
However, shortly after birth there was considerably more ADAMTS1 in the Adamts5−/−

PV cusp VICs than late-stage gestation (Figure 3D, white asterisks). At P0, the WT cusps
exhibited a stratified expression of ADAMTS1, with predominant localization on the ar-
terial side and undetectable expression on the ventrialis side (Figure 3C,D; white arrows,
yellow asterisk). In WT cusps at P7, ADAMTS1 was expressed in the cusps but not in
the hinge regions (Figure 3E, yellow asterisks), while the Adamts5−/− P7 cusps exhibited
ADAMTS1 localization in both the cusp and hinge regions (Figure 3F). At 1 mo, ADAMTS1
was localized to the distal regions of the cusps in the WT but observed throughout the
Adamts5−/− cusps (Figure 3G,H).
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Figure 3. ADAMTS1 localization is evident in a subset of valve ECM and is increased after birth in the
Adamts5−/− pulmonary valve. ADAMTS1 immunolocalization (green) at embryonic day 17.5 (E17.5;
A,B), postnatal day 0 (P0; C,D), postnatal day 7 (P7; E,F) and 1 month of age (1 mo; G,H) in wild
type PV (+/+; A,C,E,G) and Adamts5−/− PV (−/−; B,D,F,H). c—valve cusp; h—valve hinge region.
White asterisk (D), increased localization in cusp; white outline arrow (B)—loss of ADAMTS1 in the
endocardium; Red—propidium iodide; Blue—αSMA (used as a marker of smooth muscle cells in the
arterial wall.) Solid white arrows—endocardial expression of ADAMTS1; yellow asterisk—layer of
cusp devoid of ADAMTS1 localization. Bar in (A) = 150 µm and applies to (B–H).

3.2.2. MMP2 Was Evident in the Pulmonary Valve and May Play a Role in Late-Staged
Valve Maturation

MMP2 was localized within the endocardium and valvular interstitial cells of the
cusps in late gestation (Figure 4A,B). MMP2 expression was stratified on the arterial side
of the cusps shortly after birth in WT mice but was not observed in the ventricularis
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region (Figure 4C; white arrows and yellow asterisk). Adamts5−/− cusps exhibited a more
homogenous staining pattern of MMP2 in the cusp than WT (Figure 4D). At P7, the WT and
the Adamts5−/− cusps exhibited similar MMP2 localization in the endocardium and VICs.
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Figure 4. MMP2 localization is present in the endocardium and valvular interstitial cells of developing
cardiac valves. MMP2 immunolocalization (green) at embryonic day 17.5 (E17.5; A,B), postna-
tal day 0 (P0; C,D), and postnatal day 7 (P7; E,F) in wild type (+/+; A,C,E) and Adamts5−/−

PV (−/−; B,D,F). c—valve cusp; h—valve hinge region. Red—propidium iodide. Solid white
arrows—endocardial expression of MMP2; white asterisk—localization of MMP2 throughout the
VICs; yellow asterisk—region of VICs devoid of MMP2 localization. Bar in (A) = 150 µm and applies
to (B–F).

3.2.3. MMP9 Was Localized in the Maturing Valve Cusps in Regions where the
Mesenchymal Cells Were Highly Compacted

At E17.5, MMP9 was localized in the PV hinge and cusp regions of the WT (Figure 5A,
arrows) but MMP9 was not detected in the distal cusp regions of the Adamts5−/− (Figure 5B,
white asterisk) where the VICs are not as condensed as the WT [14]. At P0, MMP9 exhibited
a stratified expression pattern in the WT cusps (Figure 5C, yellow asterisk-no staining,
arrows-staining); and was localized in the hinge regions (Figure 5C, h); the Adamts5−/−

cusps exhibited homogeneous expression throughout the cusps and localization in the
hinge regions (Figure 5D). At P7, the localization of MMP9 was similar in the hinge and
cusp regions in WT and Adamts5−/− PV (Figure 5E,F).
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(Figure 6D,E). In the WT PV at P0, the immunolocalization of DCN (Figure 6B, green, 
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plementing pattern while in the Adamts5−/− PV at P0, DCN and VCAN were overlapping 
(Figure 6E,F, yellow line). However, at P7, the organization of DCN in the Adamts5−/− PV 
was similar in the WT (Figure 6G–L); i.e., there was a distinction in the ECM layers of 
DCN and VCAN expression in the WT (Figure 6G,H, yellow asterisks) as well as the 
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Figure 5. MMP9 is localized in valvular interstitial cells of developing cardiac valve cusp and hinge regions.
MMP9 immunolocalization (green) at embryonic day 17.5 (E17.5; A,B), postnatal day 0 (P0; C,D), and
postnatal day 7 (P7; E,F) in wild type (+/+; A,C,E) and Adamts5−/− PV (−/−; B,D,F). c—valve cusp;
h—valve hinge region. Red—propidium iodide. White asterisk—localization of MMP9 throughout
the VICs, yellow asterisk-region of VICs devoid of MMP9 localization. Bar in (A) = 150 µm and
applies to (B–F).

3.3. Localization of the Small Leucine-Rich Proteoglycan Decorin Was Overlapping with Versican
at P0 in the Adamts5−/− Cusps, but at P7 DCN and VCAN Were Restricted to Separate Layers
Consistent with ‘Phenotypic Rescue’

The Small Leucine Rich Proteoglycan (SLRP) Decorin (DCN), named because it dec-
orates Collagen I, was evident in the venticularis of the cusps, as well as the anchor and
hinge regions by P0 in both the WT and Adamts5−/− PV (Figure 6A–F). The organization of
DCN at P0 in the PVs appeared more prominent in the WT (Figure 6A,B) than Adamts5−/−

(Figure 6D,E). In the WT PV at P0, the immunolocalization of DCN (Figure 6B, green,
yellow asterisk) and versican (VCAN) (Figure 6C, blue, yellow asterisk) exhibited a com-
plementing pattern while in the Adamts5−/− PV at P0, DCN and VCAN were overlapping
(Figure 6E,F, yellow line). However, at P7, the organization of DCN in the Adamts5−/− PV
was similar in the WT (Figure 6G–L); i.e., there was a distinction in the ECM layers of DCN
and VCAN expression in the WT (Figure 6G,H, yellow asterisks) as well as the Adamts5−/−

PV at P7 (Figure 6J,K, yellow asterisks).
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Figure 6. DCN and VCAN exhibit stratified localization in the Adamts5−/− PV at P7 that display a transient
phenotypic rescue and similar to WT. DCN localization (green) at postnatal day 0 (P0; B,D,E) and P7
(H,I,K,L) and VCAN (blue) at P0 (C,F) and P7 (G,J). c—valve cusp; h—valve hinge region. Yellow
asterisks (B,C,G,H,J,K) indicate complementary expression patterns of DCN and VCAN while yellow
lines (E,F) designate overlapping expression patterns of DCN and VCAN. Red-propidium iodide. Bar
in (A) = 150 µm and applies to (D); Bar in (B) = 50 µm and applies to (C,E,F,I,L); Bar in G = 225 µm
and applies to (H,J,K).

The immunolocalization of DCN and VCAN indicated that the mature fibrosa and
spongiosa layers, respectively, were distinct at P7 in both the WT and Adamts5−/− PV which
correlated with the P7 phenotypic rescue of the enlarged Adamts5−/− PV.

4. Discussion

In this study, we investigated ECM protease–substrate localization in the early post-
natal timeframe where biomechanical forces are altered due to the initiation of blood
circulation to the lungs. The fully penetrant enlarged PV cusp and hinge phenotypes
in the Adamts5−/− mice were resolved to a sculpted appearance indistinguishable from
WT at P7. This apparent phenotypic rescue of the Adamts5−/− PV may be the result of
increased ECM proteoglycanase activity in the VICs and endocardium after birth; of note,
these proteoglycanases were reduced in the Adamts5−/− PV compared to WT prior to birth.
ADAMTS1, MMP2, and MMP9, that also cleave VCAN, may compensate for the loss of
ADAMTS5 by decreasing VCAN levels thereby restoring normal PV morphology. The
apparent increase in proteoglycanase activity at birth in the PV may be the result of in-
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creased blood flow to the lungs. It is likely that ADAMTS-VCAN-substrate interactions are
activated by mechanotransducive pathways that drive cardiac valve maturation (Figure 7).
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Figure 7. Schematic depicting the transient morphological rescue of the pulmonary valve in Adamts5−/−

mice after birth. Timeline of late prenatal and early postnatal phenotype of the pulmonary valve (PV),
at embryonic day 17.5 (E17.5), birth (P0), and postnatal day 7 (P7). The schematic shows the left
cusp of the PV drawn to relative scale within timepoints to compare the Adamts5+/+ (+/+; wild type,
WT) and Adamts5−/− (−/−) PVs. Yellow lines indicate width measurements of the cusps while blue
lines indicate the width measurements of the hinge regions. At P7, Both the cusp and the hinge
regions are reduced in the −/− cusps and similar to +/+ (asterisks yellow and blue, respectively).
Red arrow indicates birth with onset of blood flow to the lungs. ADAMTS1, MMP2, and MMP9
exhibited expanded localization profiles in the −/− PV after birth. The rescued Adamts5−/− PV also
exhibited complementary localization of DCN and VCAN which had overlapping expression at E17.5
and birth.

Mechanosensors of shear force such as Krüppel-like factor 2 (Klf2/4) and endothelial
nitrous oxide synthetase are expressed by endocardial cells of developing valves and their
genetic perturbation in mice disrupts cardiac valve development [32–36]. Proteoglycanases
ADAMTS5 [14], ADAMTS1 [37], and MMP2 are localized to the valvular endocardium,
where shear and compressive forces are generated. Moreover, ADAMTS-cleaved VCAN
fragments are found in the endocardial ECM as well as the adjacent VICs [14]. ADAMTS5 in-
teracts with Klf2/4 as part of the endothelial cell cerebral cavernous malformation pathway
which, when disrupted, leads to over-expression of Adamts5 and premature loss of provi-
sional cardiac valve ECM (cardiac jelly) with reduced proliferation of adjacent myocardial
cells. Loss of endocardial expression of Adamts19 also perturbs shear stress signaling and
leads to increased mesenchymal cells and proteoglycan deposition in cardiac valves [26].
Klf2 together with Adamts5 are upregulated in the Adamts19−/− valvular endocardium [26].
It is not clear if Adamts5 and Adamts19 are direct targets of the mechano-induced Klf2, but
they are integrated within mechanosenstive pathways localized to the endocardium.

During valve development, mechanical signals are transmitted from the endocardium
to the underlying VICs, in part through incorporation of nitrous oxide. Mechanosensitive
ion channels also regulate endothelial response to shear flow [38,39]. By mid-gestation,
a subset of VICs, adjacent to the endocardium, is differentiated from others by their
condensed cell behavior, as well as localization of cytoskeletal proteins, αSMA and Filamin
A [16]. This subset of VICs is devoid of intact VCAN, but resides in an ECM of cleaved
VCAN (referred to as DPEAAE or Versikine) [14]. Deletion of ADAMTS5 with loss of
cleaved VCAN results not only in the disruption of VIC condensation, but also loss of
αSMA, and Filamin A localization [16]. Since the actin cytoskeleton is highly responsive
to changes in mechanical forces [40,41], this further implicates the ADAMTS5-VCAN,
protease–substrate pair as an essential component of mechanically responsive pathways
during cardiac valve development. The mechanisms by which cleaved VCAN facilitates
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a cytoskeletal response, and/or increased VCAN inhibits the cytoskeletal organization, will
require further investigation.

The limitations of this study include the assumption that mechanical load changes
on the PV when blood circulation to the lungs is initiated at birth. Proteoglycans are also
regulated by transcription, not evaluated here. ADAMTS and MMP activity is inhibited
by TIMP3 and not investigated in this study. While the known repertoire of substrates
for the ADAMTS proteoglycanases is limited, our understanding of their role in devel-
opment and disease will be significantly advanced as additional in vivo substrates are
identified [7,42,43].

5. Conclusions

This study indicates that proteolytic cleavage of proteoglycans may be induced by
altered mechanical load to promote ECM maturation during cardiac valve development. In
the murine model of ADAMTS5 deficiency, loss of this protease results in enlarged cardiac
valves that contain excess VCAN; the increased localization of other proteoglycanases
in the maturing valve cusps corrects the morphological defect by P7 and correlates with
ECM organization, specifically VCAN in the spongiosa and DCN in the Collagen I-rich
fibrosa layer. This study indicates that proteoglycanase activity may be an essential down-
stream mechanism of mechanotransduction that is important for normal cardiac valve
maturation. Since increases in proteoglycans are evident in diseased cardiac valve tissues,
understanding mechanisms that reduce proteoglycan content is essential for developing
effective therapeutic strategies to treat cardiac valve diseases.
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