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Abstract: Mechanical circulatory support (MCS) allows for functional left and right heart ventricle
replacement. MCS induces a systemic inflammatory reaction and prothrombotic state leading to an
increased risk of thrombus formation. The extracellular vesicles (EVs) are nanoparticles released from
active/injured cells characterized by prothrombotic properties. Simple inflammatory parameters
from whole blood count analysis have established a clinical role in everyday practice to describe
immune-inflammatory activation. We hypothesized that increased plasma concentrations of EVs
might be associated with the proinflammatory and pro-thrombotic characteristics of left ventricle
assist device (LVAD) and right ventricle assist device (RVAD) devices. We presented a pilot study
showing the concentration of peripheral blood serum, right and left ventricle mechanical assist
device extracellular concentration in relation to thrombotic complication in patients treated with
a biventricular pulsatile assist device (BIVAD). The observation was based on 12 replacements of
pulsatile pumps during 175 days of observation. The proinflammatory characteristics of LVAD were
noted. The proinflammatory and procoagulant activation by RVAD was observed. The results may
provide possible explanations for the worse results of right-sided mechanical supports observed in
clinical practice.

Keywords: NLR 1; SIRI 2; SII 3; left ventricular assist device 4; mechanical circulatory support 5;
BIVAD 6

1. Introduction

A continuous remarkable development in mechanical circulatory support (MCS) has
become an interesting alternative to heart transplantation, achieving satisfactory long-term
results [1,2]. The superiority of the centrifugal pump in comparison to organ transplantation
was postulated in a recent trial [3] since the centrifugal pump presents satisfactory results
with a relatively low risk for complications [4].

MCS can be configurated to support the left, right, or both ventricles, giving a chance
for both physiological pumps’ function replacement. Currently, the HeartMate3 (Abbott,
Chicago, IL, USA) as a centrifugal pump is routinely applied to support the left heart cham-
ber [5]. The pulsatile paracorporeal pumps, though not routinely applied, are available,
including Excor (Berlin Heart Company, Berlin, Germany) [6] for pediatric patients or
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POLVAD (FRK IntraCordis, Zabrze, Polska) for adults [7], and allow for long-term support
in contrast to results obtained from the combined two left ventricle assist devices [8].

Pulsatile pneumatic pumps presented optimal results in children [9] including pul-
monary hypertension reversal and satisfactory post-transplantation survival. The compara-
ble results between the use of axial pumps and paracorporeal pulsatiles were presented
in adults [10], though the increased risk for thrombus formation required frequent (every
30 days) pumps exchange [11] and in-hospital stays are of the greatest concern.

MCS induces systemic inflammatory reaction and prothrombotic state [12] leading to
an increased risk for thrombus formation [13]. Inflammatory activation may be measured by
simple indexes obtained from the whole blood count, such as neutrophil to lymphocyte ratio
(NLR), monocyte to lymphocyte ratio (MLR), or indexes, such as systemic inflammatory
index (SII), aggregate index of systemic inflammation (AISI) and systemic inflammatory
response index (SIRI) [14–16]. However, these indicated markers were previously evaluated
and did not allow one to identify patients treated with MCS who are at high risk of
thrombotic complications. Hence, new biomarkers are needed to improve risk stratification
in this challenging patient population [17].

Extracellular vesicles (EVs) are heterogenous nanoparticles released from cells to body
fluids, composed of cellular membrane fragments and cytoplasmic material [18]. They
contain phospholipids, proteins, and non-coding fragments of ribonucleic acid (RNA) and
expose surface antigens such as CD45+ [19], CD61+ [20], CD235+ [21] derived from the
parent cells, which allow one to identify their cellular origin [22,23]. EVs are released by
erythrocytes, endothelial cells, leucocytes, and platelets [24] as fragments of a submicron
size following activation or apoptosis. EVs contribute to intercellular communication,
inflammation, and coagulation processes [25–32]. The increased concentrations of plasma
EVs were postulated to reflect cells’ activations and to be associated with an increased risk
of cardiovascular complications, including acute myocardial infarction or stroke [33]. We
hypothesized that increased plasma concentrations of EVs might be associated with the
proinflammatory and pro-thrombotic characteristics of left ventricle assist device (LVAD)
and right ventricle assist device (RVAD).

The Aim of the Study

The aim of the study was to analyze plasma concentration of EVs from leukocytes
(CD45+), platelets (CD61+) and erythrocytes (CD235+) in the peripheral blood, LVAD, and
RVAD chambers and to evaluate EVs correlation with (i) peripheral blood inflammatory
parameters and indices (C-reactive protein (CRP), procalcitonin, large unstained cells (LUC),
NLR, MLR, PLR, SII, AISI, SIRI) and (ii) thrombotic debris detected in RVADs and LVADs.

2. Materials and Methods

The study was performed on 12 pumps (POLVAD-MED, FRK Intra-cordis, Poland)
analysis in one patient awaiting heart transplantation. The 42-years-old patient with dilated
cardiomyopathy, with the end-stage heart failure (class IV according to New York Heart
Association Functional Classification), and a history of aortic valve replacement with me-
chanical prosthesis three years before, was referred for qualification to heart transplantation.
The imaging examinations (echocardiography, coronary angiography and computed to-
mography) revealed a severely dilated left ventricle (93 mm) with reduced ejection fraction
(15%), a proper function of mechanical aortic prosthesis, and no atherosclerotic changes
in coronary arteries. Despite aggressive pharmacotherapy, he developed cardiac arrest
and after successful resuscitation, extracorporeal membrane oxygenation (ECMO) therapy
was implemented, followed by BIVAD by implantation of POLVAD after 7 days. The
patient was on an urgent heart transplant list; however, he waited for an organ donor for
175 days. During the whole hospitalization, he required 12 pump exchanges due to fibrotic
debris collections which were observed during daily checkups. The typical heart failure
pharmacotherapy was used, as well as antiplatelet therapy (aspirin, 75 mg daily) combined
with oral anticoagulation (reference international normalized ratio (INR) 2.0–3.0). The aim
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of the study was to analyze the relation between inflammatory markers as extracellular
vesicles and the risk of clots formation. The study was approved by the local Institutional
Ethics Committee (approval number 695/20).

In patients with POLVAD, the pumps’ replacement during the POLVAD function was
related to visual signs of thrombus formation on paracorporeal chambers observed during
daily controls [11].

During each procedure of deplantation, blood samples were taken simultaneously
from both chambers and peripheral blood samples were collected and processed according
to the current guidelines for studying EVs [34]. The peripheral blood and intra-pump EVS
concentration were measured during each deplantation. The following day, the peripheral
blood for EVs concentration was measured again to distinguish the EVs concentration
related to pumps by themselves and by the clots gathering in the chambers.

2.1. EVs Examination

Briefly, blood samples for EVs concentration were collected in 10 mL 0.109 mol/L
citrated plastic tubes (S-Monovette, Sarstedt, Hildesheim, Germany) and 4.9 mL K3-EDTA
plastic probes (S-Monovette, Sarstedt, Hildesheim, Germany). Within a maximum of
15 min from blood collection, platelet-depleted plasma was prepared by double centrifuga-
tion (Centrifuge MPW-56, MPW Med. Instruments, Warsaw, Poland). The centrifugation
parameters were: 2500× g, 15 min, 20 ◦C, acceleration speed 1, no brake. The first cen-
trifugation step was done with 10 mL whole blood collection tubes. Supernatant was
collected 10 mm above the buffy coat. The second centrifugation step was done with
3.5 mL plasma in 15 mL polypropylene centrifuge tubes (Greiner Bio-One B.V). Super-
natant (platelet-depleted plasma) was collected 5 mm above the buffy coat, transferred into
5 mL polypropylene centrifuge tubes (Greiner Bio-One B.V., Vilvoorde, Belgium), mixed by
pipetting, transferred to 1.5 mL low-protein binding Eppendorfs (Thermo Fisher Scientific,
Waltham, MA, USA), and stored in −80 ◦C until analyzed.

Concentrations of EVs were measured by flow cytometry (A60-Micro, Apogee Flow
Systems, Hertfordshire, UK). We diluted samples 2-fold to 1500-fold in in Dulbecco
phosphate-buffered saline (DPBS) to achieve a count rate of less than 3000 events/s to
prevent swarm detection [35]. Diluted samples were measured during 120 s at a flow rate
of 3.01 µL per min. The trigger threshold was set at 14 arbitrary units of the side scatter
detector, which corresponds to a side scattering cross section of 10 nm2. The reported
concentrations describe the number of particles (a) that exceed the side scatter threshold,
(b) have a diameter >200 nm as determined by Flow-SR [36], (c) have a refractive index
<1.42 to exclude positively labelled chylomicrons [37], and (d) that are positive at the
fluorescence detector(s) corresponding to the used label(s), per mL of platelet-depleted
plasma. We measured concentrations of EVs from erythrocytes (CD235a+), leukocytes
(CD45+), and platelets (CD61+). To ensure the reproducibility of our EV flow cytometry
experiments, we applied the new reporting framework for the standardized reporting of
EV flow cytometry experiments (MIFlowCyt-EV) [38], calibrated all detectors, determined
the EV diameter and refractive index by the flow cytometry scatter ratio (Flow-SR) [36],
and applied custom-built software to fully automate data calibration and processing.

2.2. Inflammatory Biomarkers

Peripheral blood samples were collected during each deplantation and 24 h after the
procedure to assess standard inflammatory parameters and indices, which were measured
with a routine hematology analyzer (Sysmex Europe GmbH, Norderstedt, Germany). C-
reactive protein (CRP) and procalcitonin levels were measured by a high-sensitive enzyme-
linked immunosorbent assay technique (ELISA) according to the manufacturer’s instruc-
tions. The indices, including NLR, MLR, PLR, SIRI, AISI, SII, were calculated according to
the usual formulas as presented in previous reports [39].
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2.3. Statistical Analysis

Data were tested for normality using the Shapiro–Wilk test. Continuous variables
were expressed as mean (standard deviation (SD)) or median (interquartile range [IQR]),
as appropriate. Categorical variables were presented as numbers (percentage). Unpaired
continuous variables were compared using t-test or nonparametric Mann–Whitney test,
as appropriate. Paired variables (pre- versus post-deplantation) were compared with the
Wilcoxon signed-rank test. For multiple groups, one-way ANOVA was used with post hoc
Bonferroni correction. The correlation between two continuous variables was measured
with the bivariate Pearson correlation. All reported probability values were 2-tailed. A
P value less than 0.05 was considered significant. Data were processed using the SPSS
software, version 23 (IBM SPSS Statistics, New York, NY, USA).

3. Results
3.1. Extracellular Vesicles

The EVs concentration in peripheral blood (1.38 (1.35–1.51) × 109/mL) in LVAD
(2.77 (1.25–4.24) × 109/mL) and in RVAD (3.88 (2.41–4.24) × 109/mL) were noted. The re-
sults of EVs-CD45 concentration were (3.2 (2.45–5.3) × 107/mL vs. 3.12 (2.67–4.42) × 107/mL
vs. 5.12 (4.31–5.32) × 107/mL in peripheral blood, LVAD, and RVAD, respectively. The
EVs-CD61 peripheral blood, LVAD, and RVAD concentration was measured and presented
the following concentrations: 8.35 (8.15–14.23) × 107/mL vs. 7.68 (7.21–8.41) × 107/mL vs.
9.41 (8.28–14.71) × 107/mL, respectively. The EVs-CD235 concentrations were noticed in
peripheral blood with mean values of 1.27 (1.24–2.68) × 107/mL, in an LVAD concentration
of 1.41 (1.31–2.79) × 107/mL, and in an RVAD concentration of 2.04 (1.49–3.28) × 107/mL,
respectively. The graphical comparison of EVs, CD45, CD61, and CD235 concentrations in
peripheral blood, LVAD, and RVAD represent Figure 1A–D.
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Figure 1. The comparison of EVs (A), CD61 (B), CD45 (C), CD235 (D) concentration in peripheral
blood, left ventricle assist device (LVAD), and right ventricle assist device (RVAD). Abbreviations:
LVAD—left ventricle assist device, RVAD—right ventricle assist device.

3.2. Whole Blood Count and Indices Analysis

The mean values of peripheral whole blood count and inflammatory markers mea-
sured during deplantation and one day (24 h) after the procedure are presented in Table 1.
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Table 1. Laboratory results obtained from the peripheral blood samples during deplantation and 24 h
following the procedure.

Parameters Deplantation At 24 h p

Whole blood count:
WBC (median (IQR) (K/µL)) 7.67 (5.55–8.18) 6.70 (5.72–7.83) 0.236

Neutrophils (median (IQR) (K/µL)) 5.16 (3.10–5.67) 4.84 (3.27–5.03) 0.444
Lymphocytes (median (IQR) (K/µL)) 1.34 (1.24–1.47) 1.22 (0.86–1.28) 0.026 *

Monocytes (median (IQR) (K/µL)) 0.59 (0.57–0.74) 0.57 (0.46–0.66) 0.034 *
NLR (median (IQR)) 3.52 (2.31–4.51) 3.89 (2.88–4.67) 0.073
MLR (median (IQR)) 0.44 (0.41–0.51) 0.54 (0.36–0.65) 0.088
PLR (median (IQR)) 185 (159–195) 222 (203–331) 0.003 *
SII (median (IQR)) 823 (539–1118) 1014 (822–1382) 0.023 *

SIRI (median (IQR)) 2.09 (1.41–2.60) 2.37 (1.62–2.85) 0.197
AISI (median (IQR)) 555 (318–637) 562 (460–737) 0.728

LUC (median (IQR) (K/µL)) 0.21 (0.18–0.29) 0.29 (0.17–0.40) 0.273
Hb (median (IQR) (mmol/µL)) 6.2 (5.70–6.50) 6.30 (6.00–6.40) 0.533

Hct (median (IQR) (%)) 30 (28–32) 31 (30–32) 0.243
MCHC (median (IQR) (mmol/L)) 20.54 (20.15–20.80) 20.39 (19.92–20.58) 0.012 *

RDW (median (IQR) (%)) 15.7 (14.3–18.0) 16.9 (14.4–19.1) 0.006 *
Platelets (median (IQR) (K/µL)) 235 (233–265) 271 (237–285) 0.161

MPV (median (IQR) (fL)) 7.4 (7.1–7.5) 7.30 (6.90–7.60) 0.497

Inflammatory markers:
CRP (median (IQR) (mg/L)) 46 (24–62) 46 (38–84) 0.754

Procalcitonin (median (IQR) (ng/mL)) 0.21 (0.03–1.33) 0.86 (0.03–2.48) 0.221

Abbreviations: AISI—aggregation inflammatory systemic index, CRP—C reactive protein, Hb—hemoglobin,
Hct—hematocrit, MCHC—mean corpuscular hemoglobin concentration, MLR—monocyte to lymphocyte ratio,
MPV—mean platelet volume, NLR—neutrophil to lymphocyte ratio, PLR—platelets to lymphocyte ratio, RDW—
red cells width, SII—systemic inflammatory index, SIRI—systemic inflammatory response index, WBC—white
blood count. * statistical significance.

Pumps Analysis

During a total of 175 days of pump function, 29 thrombi were found in the LVAD,
including 6 large and 23 small thrombi located in the inflow tract (n = 7) and the outflow
tract (n = 10). In the RVAD, 5 large and 14 small thrombi were detected, including 5 located
in the inflow tract and 6 in the outflow tract. Figure 2A–C present the representative images
of the thrombotic material. The mean (SD) time for pump function was 25 (9) days.
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material (arrow) in the RVAD pump, (B) thrombotic material (arrow) in the LVAD pump, (C) no
pathological debris in the mechanical assist device.

3.3. Left Ventricle Assist Device (LVAD)

The correlation between obtained data regarding EVs detected in the left chamber was
performed and presented in Table 2.
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Table 2. Correlation matrix for LVAD and peripheral blood parameters and EVs.

EVs CD61 CD45 CD235

CRP pre −0.541 −0.162 0.559 0.739

CRP post −0.286 −0.714 0.214 0.857

PCT pre −0.018 −0.216 0.775 0.937

PCT post 0.144 −0.234 0.739 0.955

Crea pre 0.750 −0.179 0.286 0.250

Crea post 0.071 −0.286 −0.214 0.286

WBC −0.571 −0.321 −0.179 0.464

Neutrophils −0.643 −0.250 0.179 0.679

Lymphocytes −0.071 −0.536 −0.179 0.464

Monocytes −0.432 0.378 −0.703 −0.595

NLR −0.536 0.107 0.357 0.607

MLR −0.393 0.536 −0.571 −0.821

PLR −0.036 0.750 0.286 −0.393

SII −0.536 0.107 0.357 0.607

SIRI −0.714 0.036 0.036 0.393

AISI −0.750 0.107 −0.071 0.250

LUC −0.071 −0.857 0.143 0.714

Rbc 0 0.536 0.393 0.250

Hb 0.523 0.505 0.126 −0.180

Hct 0.509 0.473 0.036 −0.255

MCHC −0.214 −0.107 −0.179 −0.107

RDW −0.072 −0.270 0.775 0.847

Platelets −0.393 0.536 0.286 0.179

MPV 0.324 0.144 0.901 0.541
Abbreviations: AISI—aggregation inflammatory systemic index, crea—serum creatinine, CRP—C reactive protein,
Hb—hemoglobin, Hct—hematocrit, LUC—large unstained cells, MCHC—mean corpuscular hemoglobin concen-
tration, MLR—monocyte to lymphocyte ratio, MPV—mean platelet volume, NLR—neutrophil to lymphocyte
ration, PCT—procalcitonin, PLR—platelets to lymphocyte ratio, post—24 h after deplantation, pre—before de-
plantation, RDW—red cells width, SII—systemic inflammatory index, SIRI—systemic inflammatory response
index, WBC—white blood count.

The eVs including (separate measurements of CD61, CD45, CD235) concentrations in
RVAD and LVAD compared to peripheral blood eVs concentration during every system
deplantation are presented in Figure 3.
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Figure 3. EVs, CD45, CD61, CD235 concentration in LVAD, RVAD, and peripheral blood presented
in a timely manner. Abbreviations: eVs—extracellular vesicles, LVAD—left ventricle assist device.
Blue line—right ventricle assist device (RVAD), red line—left ventricle assist device (LVAD), gray
line—peripheral blood.

3.4. Right Ventricle Assist Device (RVAD)

The results of correlation between EVs concentrations in the RVAD and laboratory
data are presented in Table 3.

Table 3. Correlation matrix for RVAD blood biomarkers and microparticles.

EVs CD61 CD45 CD235

CRP pre −0.108 −0.703 0.595 0.667

CRP post −0.429 −0.786 0.357 0.987

PCT pre −0.342 −0.775 0.432 0.685

PCT post −0.144 −0.847 0.523 0.739

Crea pre −0.214 −0.429 −0.179 0.179

Crea post 0.071 0 0.250 0.357

WBC −0.143 −0.107 0.536 0.607

Neutrophils −0.143 −0.464 0.714 0.750

Lymphoctes −0.321 −0.071 0.107 0.536

Monocytes 0.505 0.667 0.324 −0.342

NLR 0.036 −0.393 0.857 0.536

MLR 0.607 0.643 0.107 −0.607

PLR 0.571 0.071 0.214 −0.536

SII 0.036 −0.393 0.857 0.536

SIRI 0.286 −0.321 0.893 0.536

AISI 0.286 0 0.750 0.321

LUC −0.357 −0.714 0 0.857

Rbc 0.179 0.143 0.536 −0.107

Hb 0.108 0.523 −0.090 −0.541
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Table 3. Cont.

EVs CD61 CD45 CD235

Hct 0.036 0.600 −0.182 −0.582

MCHC −0.250 0.429 −0.321 −0.179

RDW −0.216 −0.955 0.378 0.703

Platelets 0.536 0.071 0.750 −0.036

MPV 0.306 −0.685 0.252 0.180
Abbreviations: AISI—aggregation inflammatory systemic index, crea—serum creatinine, CRP—C reactive protein,
Hb—hemoglobin, Hct—hematocrit, LUC- large unstained cells, MCHC—mean corpuscular hemoglobin concen-
tration, MLR—monocyte to lymphocyte ratio, MPV—mean platelet volume, NLR—neutrophil to lymphocyte
ration, PCT—procalcitonin, PLR—platelets to lymphocyte ratio, post—24 h after deplantation, pre—before de-
plantation, RDW—red cells width, SII—systemic inflammatory index, SIRI—systemic inflammatory response
index, WBC—white blood count.

4. Discussion

The results of our study present the first, to our best knowledge, results of EVs
concentration in mechanical circulatory support and their relation to inflammatory and
thrombotic indices. Left-sided mechanical support proinflammatory characteristics were
noted in our analysis as reflected by platelet EVs (CD61+) and erythrocytes EVs (CD235+)
concentrations, which correlated with peripheral blood MLR. The right-sided mechanical
pumps (RVAD) had proinflammatory and procoagulant activation, as reflected by leukocyte
EVs (CD45+) and platelet EVs (CD61+) concentrations and peripheral blood NLR and SII.
The proinflammatory and prothrombotic results in RVADs may explain the worse clinical
results in RVADs [40] also after heart transplantation [41].

Extracellular vesicles (EVs) are involved in atherosclerosis, thrombosis, and inflamma-
tion. We evaluated EVs exposed from red cells (CD235+), platelets (CD61+), lymphocytes
(CD45+), a total concentration of EVs above the detection threshold of our flow cytometer,
and showed their proinflammatory and prothrombotic significance during biventricular
mechanical support use.

Our analysis results indicate that inflammatory activation in the left-sided mechanical
system is triggered by red cells and platelets. The CD235+/CD41− erythrocyte-derived
antigens concentrations are related to inflammatory markers procalcitonin and MLR. The
CD235+ antigens belong to red cell fragments of the submicron size that can be regarded as
a prothrombotic marker [42].

The increased levels of procalcitonin and MLR were [43,44] obtained from left-sided
MCS [45,46]. Procalcitonin is a marker for sepsis but has a limited sensitivity since its
secretion was also observed in non-infectious states [47] and was suggested as a prognostic
factor of poor prognosis in acute coronary syndromes [48]. Its increased levels were
proposed, by Xiong et al., as a risk biomarker for thrombotic complications following
surgery [49]. Monocyte to lymphocyte ratio (MLR) is a simple index that is mainly related
to inflammatory activation, however increased thrombotic risk was also postulated [50,51].

In our study, the relation was noted between LUC and platelet CD61 in left-sided
mechanical support analysis. The LUC are large unstained peroxidase negative cells that
reflect to activated lymphocytes, monocytes, and lymphoblasts [52]. Their increase was
observed in different clinical situations related to acute immune activation [53,54]. CD61
(platelet glycoprotein IIIa) plays a significant role in aggregation. CD61 is a protein that in-
dicate platelets secretion due to activation secondary to the procoagulant surface presented
in the Reddel et al. study [55]. The complex GP IIb-IIIa binds to fibronectin, fibrinogen, and
to vitronectin and von Willebrand factor [56]. CD61 was related to microparticles released
as the result more of activation than of apoptosis by Vasina et al. [57].

Right sided mechanical circulatory support stimulates pro-thrombotic action by CD61
that plays a crucial role in platelets aggregation [58]. Our finding indicates the neutrophil
to lymphocyte ratio (NLR) and systemic inflammatory index (SII) as two inflammatory
indices related to EVs detected in RVAD chambers. The NLR was presented as an ominous
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prognostic marker for inflammatory activation in previous reports [59–61]. It can be
regarded as a novel prospective marker related to ongoing antagonism between adaptive
and innate immunity [62]. The relation between RVAD and SII indicate activation of
three components: neutrophils, platelets, and lymphocytes [63]. The CD45 as a marker
for lymphocytes activation by signal transduction [64] was related to RVAD in our study,
emphasizing the significance for inflammatory activation. CD45+ lymphocyte-derived EVs
play a significant role in vascular function. They are characterized by potential paracrine
function [65]. The RVAD chamber content revealed significance for EVs. Based on our
results, we suggest proinflammatory and pro-thrombotic characteristics of RVAD.

Our results indicate the relation between platelets activation in RVAD expressed by
CD61+ and its peripheral response by extracellular vesicles (EVs) serum concentration.
EVs were revealed to transfer functional receptors as triggering platelets antigen CD61,
promoting target cells proliferation and adhesion [66].

After left -sided mechanical support (LVAD) implantation, the decrease of circulating
EVs was presented in follow-up irrespectively to disease etiology or gender [67], suggesting
a potential improvement of endothelial function. A Roka-Moiia et al. study [68] presented
the platelets dysfunction as related to EVs shear stress generation in mechanical support.
Radley et al. in their review postulated leukocytes activation as a significant contribution
to thrombus formation in mechanical support [69]. The proinflammatory and prothrombo-
genic EVs are released by leukocytes after foreign surfaces contact and shear stress. We
noticed differences in erythrocytes, leucocytes, and platelet activation related to mechanical
support location (RVAD vs. LVAD). Moreover, we found a relation with inflammatory
activation presented by MLR, NLR, and SII indexes.

Study Limitation

Patients with heart failure are extremely different in origin and advancement of disease,
treatment regiments and pathophysiological response to pharmacotherapy. Indeed, this
observation led us to evaluate changes in EVs in one particular patient, in whom the
thrombotic and inflammatory milieu would not result from patient-to-patient differences
but from disease and response to therapy. We avoided the risk of discrepancies between
patients in terms of different hematological and inflammatory conditions in course of
mechanical support. Moreover, our observations show thrombotic phenomena related
to inflammatory activation which occur in BIVAD therapy and may be assigned to this
population of patients.

We are, however, aware about possible limitations and difficulties in applying the
conclusions of this patient study to the treatment of others. Therefore, we believe that
larger studies are necessary to confirm our assumptions in different types of heart failure
and transfer our results into therapeutic applications.

Despite the fact that the pulsatile pneumatic paracorporeal pumps are considered
outdated due to centrifugal incorporable systems, this type of mechanical support allows
satisfactory maintenance of both ventricles.

5. Conclusions

The proinflammatory characteristics of LVAD was presented based on CD235 as
compared to peripheral blood MLR. The proinflammatory and procoagulant activation by
RVAD were revealed based on CD45 and peripheral blood NLR, SII, SIRI, indicating an
increased risk of thrombus formation. The results may provide the possible explanations
of the worst results of right-sided mechanical supports observed in clinical practice. We
are aware that these preliminary patient study results may be individual and should be
confirmed in the analysis of larger population of heart failure patients.

Author Contributions: Conceptualization, T.U., A.O.-W. and A.G.; methodology, A.G.; software,
M.G. and Ł.M.; validation, K.G. and A.G.; formal analysis, K.G.; investigation, T.U., A.O.-W. and
A.G.; resources, A.G., M.G. and Ł.M.; data curation, T.U., A.G. and A.O.-W.; writing—original draft
preparation, T.U.; writing—review and editing, A.O.-W., A.G., K.J.F. and M.J.; visualization, T.U.;



J. Cardiovasc. Dev. Dis. 2023, 10, 21 10 of 13

supervision, M.J.; project administration, M.J.; funding acquisition, K.J.F. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Poznan University of Medical Sciences in Poznan, Poland Ethics
Committee (protocol code 695/20, 4 November 2020 date of approval).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data will be available for 3 years following publication via contacting
the corresponding author (tomasz.urbanowicz@skpp.edu.pl) after reasonable requirements.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mehra, M.R.; Cleveland, J.C., Jr.; Uriel, N.; Cowger, J.A.; Hall, S.; Horstmanshof, D.; Naka, Y.; Salerno, C.T.; Chuang, J.; Williams,

C.; et al. Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: A
study of 2200 HeartMate 3 left ventricular assist device implants. Eur. J. Heart Fail. 2021, 23, 1392–1400. [CrossRef]

2. Vieira, J.L.; Ventura, H.O.; Mehra, M.R. Mechanical circulatory support devices in advanced heart failure: 2020 and beyond. Prog.
Cardiovasc. Dis. 2020, 63, 630–639. [CrossRef] [PubMed]

3. Pettit, S.J. HeartMate 3: Real-world performance matches pivotal trial. Eur. Heart J. 2020, 41, 3810–3812. [CrossRef]
4. Florisson, D.S.; Conte, S.M.; De Bono, J.A.; Newcomb, A.E. Do patients with the centrifugal flow HeartMate 3 or HeartWare left

ventricular assist device have better outcomes compared to those with axial flow HeartMate II? Interact. Cardiovasc. Thorac.Surg.
2019, 29, 844–851. [CrossRef] [PubMed]

5. Schmitto, J.D.; Mariani, S.; Li, T.; Dogan, G.; Hanke, J.S.; Bara, C.; Pya, Y.; Zimpfer, D.; Garbade, J.; Rao, V.; et al. Five-year
outcomes of patients supported with HeartMate 3: A single-centre experience. Eur. J. Cardiothorac. Surg. 2021, 59, 1155–1163.
[CrossRef]

6. Hetzer, R.; Kaufmann, F.; Delmo Walter, E.M. Paediatric mechanical circulatory support with Berlin Heart EXCOR: Development
and outcome of a 23-year experience. Eur. J. Cardiothorac. Surg. 2016, 50, 203–210. [CrossRef] [PubMed]
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K.J.; Perek, B.; Jemielity, M. Diagnostic and Prognostic Value of miRNAs after Coronary Artery Bypass Grafting: A Review.
Biology 2021, 10, 1350. [CrossRef] [PubMed]

23. Hu, Q.; Lyon, C.J.; Fletcher, J.K.; Tang, W.; Wan, M.; Hu, T.Y. Extracellular vesicle activities regulating macrophage- and
tissue-mediated injury and repair responses. Acta Pharm. Sin. B 2021, 11, 1493–1512. [CrossRef]

24. Van Der Pol, E.; Böing, A.N.; Harrison, P.; Sturk, A.; Nieuwland, R. Classification, Functions, and Clinical Relevance of
Extracellular Vesicles. Pharmacol. Rev. 2012, 64, 676–705. [CrossRef]

25. van der Pol, E.; Böing, A.N.; Gool, E.L.; Nieuwland, R. Recent developments in the nomenclature, presence, isolation, detection
and clinical impact of extracellular vesicles. J. Thromb. Haemost. 2016, 14, 48–56. [CrossRef]

26. Dignat-George, F.; Boulanger, C.M. The many faces of endothelial microparticles. Arterioscler. Thromb. Vasc. Biol. 2022, 31, 27–33.
[CrossRef] [PubMed]

27. Yuana, Y.; Sturk, A.; Nieuwland, R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013, 27, 31–39.
[CrossRef]

28. Buzas, E.I.; György, B.; Nagy, G.; Falus, A.; Gay, S. Emerging role of extracellular vesicles in inflammatory diseases. Nat. Rev.
Rheumatol. 2014, 10, 356–364. [CrossRef]

29. Dey-Hazra, E.; Hertel, B.; Kirsch, T.; Woywodt, A.; Lovric, S.; Haller, H.; Haubitz, M.; Erdbruegger, U. Detection of circulating
microparticles by flow cytometry: Influence of centrifugation, filtration of buffer, and freezing. Vasc. Health Risk Manag. 2010, 6,
1125–1133. [PubMed]

30. Morel, O.; Morel, N.; Jesel, L.; Freyssinet, J.M.; Toti, F. Microparticles: A critical component in the nexus between inflammation,
immunity, and thrombosis. Semin. Immunopathol. 2011, 33, 469–486. [CrossRef] [PubMed]

31. Sadallah, S.; Eken, C.; Schifferli, J.A. Erythrocyte-derived ectosomes have immunosuppressive properties. J. Leukoc. Biol. 2008, 84,
1316–1325. [CrossRef] [PubMed]

32. Kondratov, K.; Nikitin, Y.; Fedorov, A.; Kostareva, A.; Mikhailovskii, V.; Isakov, D.; Ivanov, A.; Golovkin, A. Heterogeneity of
the nucleic acid repertoire of plasma extracellular vesicles demonstrated using high-sensitivity fluorescence-activated sorting.
J. Extracell. Vesicles 2020, 9, 1743139–1743156. [CrossRef] [PubMed]

33. Amabile, N.; Cheng, S.; Renard, J.M.; Larson, M.G.; Ghorbani, A.; McCabe, E.; Griffin, G.; Guerin, C.; Ho, J.E.; Shaw, S.Y.; et al.
Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur. Heart
J. 2014, 42, 2972–2979. [CrossRef] [PubMed]

34. Coumans, F.A.W.; Brisson, A.R.; Buzas, E.I.; Dignat-George, F.; Drees, E.E.E.; El-Andaloussi, S.; Emanueli, C.; Gasecka, A.;
Hendrix, A.; Hill, A.F.; et al. Methodological Guidelines to Study Extracellular Vesicles. Circ. Res. 2017, 120, 1632–1648. [CrossRef]

35. van der Pol, E.; Van Gemert, M.J.C.; Sturk, A.; Nieuwland, R.; Van Leeuwen, T.G.; Nieuwl; Van Leeuwen, T.G. Single vs. swarm
detection of microparticles and exosomes by flow cytometry. J. Thromb. Haemost. 2012, 10, 919–930. [CrossRef]

36. van der Pol, E.; de Rond, L.; Coumans, F.A.W.; Gool, E.L.; Böing, A.N.; Sturk, A.; Nieuwland, R.; van Leeuwen, T.G. Absolute
sizing and label-free identification of extracellular vesicles by flow cytometry. Nanomedicine 2018, 14, 801–810. [CrossRef]
[PubMed]

37. de Rond, L.; Libregts, S.F.M.W.; Rikkert, L.G.; Hau, C.M.; van der Pol, E.; Nieuwland, R.; van Leeuwen, T.G.; Coumans,
F.A.W. Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry. J. Extracell. Vesicles 2019, 8,
1643671–1643680. [CrossRef]

38. Welsh, J.A.; Van Der Pol, E.; Arkesteijn, G.J.A.; Bremer, M.; Brisson, A.; Coumans, F.; Dignat-George, F.; Duggan, E.; Ghiran, I.;
Giebel, B.; et al. MIFlowCyt-EV: A framework for standardized reporting of extracellular vesicle flow cytometry experiments.
J. Extracell. Vesicles 2020, 9, 1713526. [CrossRef] [PubMed]
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