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Abstract: Objective: Global longitudinal strain (GLS) is a sensitive and reproducible predictive factor
in patients with ischemic heart disease (IHD), although its correlation with exercise tolerance is
unknown. We aimed to identify the correlation between global longitudinal strain (GLS) and car-
diopulmonary exercise testing (CPX) parameters and assess the prognostic implications and accuracy
of GLS in predicting exercise intolerance in populations with ischemic heart disease (IHD) using CPET
criteria. Methods: Prospectively, 108 patients with IHD underwent CPX and 2D speckle-tracking
echocardiography. Correlation between GLS and multiple CPX variables was assessed using Spear-
man’s correlation analysis and univariate regression analysis. A receiver operating characteristic
(ROC) curve analysis was performed on GLS to detect exercise intolerance. Results: GLS was corre-
lated with peak oxygen uptake (peak VO2; r = −0.438, p = 0.000), %PPeak VO2 (−0.369, p = 0.000),
peak metabolic equivalents (METs@peak; r = −0.438, p < 0.01), and the minute ventilation–carbon
dioxide production (VE/VCO2) slope (r = 0.257, p < 0.01). Weak-to-moderate correlations were also
identified for the respiratory exchange rate at the anaerobic threshold (RER@AT), end-tidal carbon
dioxide at the anaerobic threshold (PETCO2@AT), oxygen consumption at the anaerobic threshold
(VO2@AT), carbon dioxide production at the anaerobic threshold (VCO2@AT), and metabolic equiva-
lents at the anaerobic threshold (METs@AT; p < 0.01). On multivariate analysis, the results showed
that age, the BMI, and GLS are independent predictors for reduced exercise capacity in patients with
IHD (p < 0.01). The area under the ROC curve value of GLS for identifying patients with a peak VO2

of <14 mL/kg/min was 0.73 (p = 0.000). Conclusion: As a sensitive echocardiographic assessment
of patients with ischemic heart disease, global longitudinal strain is an independent predictor of
reduced exercise capacity and has a sensitivity of 74.2% and a specificity of 66.7% to detect exercise
intolerance.

Keywords: 2D speckle-tracking echocardiography; global longitudinal strain; cardiopulmonary
exercise testing; exercise intolerance; ischemic heart disease

1. Introduction

Catheter coronary angiography (CCA), the traditional gold standard for diagnosing
coronary artery disease (CAD), identifies visual obstructive lesions [1]. Despite its advan-
tages, the widespread clinical application of CCA remains limited due to the relative risk,
technical dependence, and substantial equipment costs. Furthermore, two-thirds of females
and one-third of males with stable ischemic heart disease (IHD) have no obstructive CAD
on CCA [2], which is associated with worse outcomes. Conventional echocardiography pre-
dominantly depends on assessing the left ventricle (LV) ejection fraction (EF) and abnormal
wall motion. However, since regional wall motion abnormalities (WMAs) are not evident
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at rest in approximately 50% of patients, transthoracic echocardiography (TTE) is not di-
agnostically informative in patients with IHD [3–6]. Two-dimensional speckle-tracking
echocardiographic (2D-STE) imaging is a novel, effective method to measure myocardial
deformation and provides a comprehensive quantitative assessment of cardiac function. In
patients with ST-elevation myocardial infarction (STEMI), 2D longitudinal strain allows
a more objective assessment of myocardial regional and global kinetic injuries and the
severity of CAD [7].

Cardiopulmonary exercise testing (CPX) is another non-invasive test that can assess
cardiovascular, respiratory, and skeletal physiology. Compared to traditional electrocar-
diogram (ECG) stress testing, CPX gas exchange variables, such as peak oxygen pulse
(O2 pulse), peak oxygen uptake (peak VO2), peak carbon dioxide exertion (peak VCO2),
anaerobic threshold (AT), VO2/WR, and respiratory equivalent during anaerobic threshold
(VE/VCO2), provide more sensitive and specific information to detect the onset of ischemia,
mortality, and hospitalization [8–11].

Previous studies have failed to identify the correlation between the EF and peak VO2,
except for diastolic function and right ventricular (RV) function [12–14]. However, these
studies predominantly focused on patients with heart failure (HF), and there have been
no studies on the correlation between the exercise capacity determined with CPET and
2D-STE in patients with IHD. This study aims to identify and evaluate this correlation to
assess whether GLS can predict the exercise capacity and cardiorespiratory fitness (CRF) of
these patients.

2. Materials and Methods
2.1. Study Population

This prospective study was conducted at Tongji Hospital, Tongji Medical College, and
Huazhong University of Science and Technology from November 2021 to May 2022.

A total of 108 patients with stable IHD, which also means chronic coronary syndromes
(CCS), as defined by the European Society for Cardiology (ESC) guidelines in 2019. The
patients were treated through either percutaneous coronary intervention (PCI) or optimal
medical therapy following coronary stenosis on cardiac catheterization examination. They
also underwent conventional 2D-ECG and symptom-limited CPX within 1 day. Comorbidi-
ties and hematological examinations were recorded. The exclusion criteria were patients
with acute myocardial infarction or unstable angina in the previous 6 months, reduced
LVEF (<40%), intermittent claudication, mitral stenosis, aortic valve disease, atrial fibrilla-
tion, and premature ventricular complexes; patients with abnormal resting regional wall
motion on ECG; and patients with suboptimal-quality images to assess strain.

2.2. Cardiopulmonary Exercise Testing

All patients underwent symptom-limited CPX on a CARDIOVIT CS-200 (Schiller,
Barr, Switzerland) on the same day before/after 2D-STE, and the procedure complied
with the American Heart Association (AHA) statement concerning exercise Standards for
Testing and Training [15,16]. The test was performed using modified Bruce protocols via
cycle ergometry with a gradual increase in the work rate within 1 min. The increased
value was tailored based on the individual’s physical conditioning and exercise tolerance,
resulting in a test duration of 8 to 12 min until the subject could no longer maintain a
consistent pedaling frequency [17]. A 12-lead ECG and oxygen saturation were monitored
continuously during the test, with blood pressure measured every 2 min. Peak VO2 was
the average value of the highest 20 s at the last stage of the exercise test and was expressed
as absolute (L/min) or relative (mL/kg/min). The VE/VCO2 slope was calculated using
linear regression during exercise (y = mx + b, m = slope), while the anaerobic threshold
(AT) was determined using the V-slope technique [18,19]. The following formula was
used to calculate the percentage of predicted peak VO2 (%PPeak VO2): %PPeak VO2 =
achieved peak VO2/predicted peak VO2 obtained using the Wasserman equation× 100 [20].
A %PPeak VO2 of <80% is considered the best stratification of patients with functional
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impairment (New York Heart Association Class II or higher) compared with those without
limitations [21]. The slope of the relationship between the rise in VO2 over the rate of
increase in the work rate (4VO2/4work rate) was expressed as follows: 4VO2/4work
rate = (peak VO2 − unloaded VO2)/[(T − 0.75) × S], where T is the time of incremental
exercise and S is the slope of work rate incremental in watts per minute [22].

2.3. Conventional Echocardiography

Standardized transesophageal echocardiogram (TEE) examinations were performed
using Vivid E9 Ultrasound systems (GE Healthcare Vingmed Ultrasound AS, Horten,
Norway) under the guidelines of the American Society of Echocardiography [23]. The
electrocardiogram (ECG) data included left end-diastolic dimensions (LVEDD), the LVEF
(calculated according to Simpson’s method), peak early diastolic filling (E) and late diastolic
filling (A) velocities, the E/A ratio, and early and late diastolic septal mitral annular
velocities (E’ and A’, respectively), obtained from the pulsed-wave tissue ratio [24].

2.4. Two-Dimensional Speckle-Tracking Echocardiography (2D-STE)

As previously described, a strain specialist blind to the clinical data of the patients
performed longitudinal strain assessments of the LV from three apical views (4-chamber,
2-chamber, and 3-chamber) using EchoPAC (GE Healthcare Vingmed Ultrasound AS) [24].
The endocardial border and myocardium were automatically tracked throughout the
cardiac cycle. A region of interest was traced along the endocardial border from an end-
systolic frame, and the thickness of the region of interest was adjusted to include the
maximum wall thickness. The mean peak longitudinal systolic strain of all LV segments
from the three apical views was used to calculate GLS and generated a 17-segment bull’s-
eye display (Figure 1). GLS values were presented as negative values. According to a
previous report, the normal value of GLS is ≤−17.6 [25].
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2.5. Statistical Analysis

Continuous data were presented as the mean ± SD or the median (interquartile range,
IQR). Categorical variables were expressed as numbers and percentages. Student’s t-test
and the Mann–Whitney test were performed for quantitative variables, while Pearson’s
chi-square test and Fisher’s exact test were performed for categorical variables to compare
the differences between the two groups (normal GLS group vs. impaired GLS group).
Correlations between GLS and multiple CPX variables were performed using Spearman’s
correlation analysis. The significant variables (p < 0.05) from the univariate analysis were
included in the multiple stepwise regression analysis for assessing independent correlations
to peak VO2. Receiver operating characteristic (ROC) curves were generated, and area
under the curve (AUC) values were calculated to determine the discrimination value of GLS
to predict a peak VO2 of <14 mL/kg/min. A p-value of <0.05 was considered statistically
significant. All data were analyzed using SPSS Statistics software. (SPSS 18, SPSS Inc.,
Chicago, IL, USA).

3. Results
3.1. Patients’ Baseline Characteristics

Of the 108 patients included in the study, 56.5% (n = 61) had impaired GLS (>−17.6),
while 43.5% (n = 47) had normal GLS (≤−17.6). The baseline characteristics of the two
groups are presented in Table 1. No significant differences were found between the two
groups except for angiotensin-converting enzyme inhibitor/angiotensin receptor blocker
(ACEI/ARB) usage.

Table 1. Baseline characteristics stratified by a GLS median of −17.6%.

Variable GLS ≥ −17.6 (n = 61) GLS < −17.6 (n = 47) p-Value

Age (years) 57.21 ± 10.89 60.96 ± 5.95 0.025
Gender (%)

Male 39 (63.93) 28 (59.57) 0.643
Female 22 (36.07) 19 (40.43) 0.643

Height (cm) 164.74 ± 7.19 163.12 ± 7.64 0.262
Weight (kg) 163.12 ± 7.64 66.29 ± 11.20 0.1

BMI (kg/m2) 25.65 ± 2.97 24.80 ± 3.03 0.145
Comorbidities (%)

Hypertension 31 (50.82) 30 (63.83) 0.176
Diabetes 18 (29.51) 13 (27.66) 0.833

Dyslipidemia 24 (39.34) 13 (27.66) 0.205
SBP (mmHg) 135.79 ± 28.73 142.04 ± 15.52 0.151
DBP (mmHg) 73.74 ± 15.21 73.55 ± 9.36 0.942

HR (bpm) 101.33 ± 13.30 98.28 ± 12.24 0.224
Medications (%)

β-Blocker 38 (62.30) 24 (51.06) 0.242
ACE inhibitors/ARB 22 (36.07) 26 (55.32) 0.046 *

Statin 57 (93.44) 47 (100.00) 0.074
Aspirin 57 (93.44) 44 (93.62) 0.971

Clopidogrel 55 (90.16) 46 (97.87) 0.107
CCB 14 (22.95) 14 (29.79) 0.422

Serum marker
Creatinine (umol/L) 82.03 ± 23.00 76.82 ± 20.28 0.233

CK (mmol/L) 258.11 ± 802.31 96.77 ± 42.57 0.15
Cholesterol (mmol/L) 4.39 ± 1.30 4.05 ± 1.12 0.155

Glucose (mmol/L) 6.320 (5.4, 8.4) 6.510 (5.9, 8.2) 0.479
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Table 1. Cont.

Variable GLS ≥ −17.6 (n = 61) GLS < −17.6 (n = 47) p-Value

HDL (mmol/L) 1.050 (0.9, 1.3) 1.080 (0.9, 1.2) 0.942
LDL (mmol/L) 2.67 ± 1.03 2.35 ± 0.94 0.111
Lipoprotein (a)

(mmol/L) 40.12 ± 47.97 45.81 ± 57.46 0.59

Triglycerides
(mmol/L) 1.560 (1.0, 2.7) 1.600 (0.9, 2.7) 0.829

Hemoglobin (g/L) 137.49 ± 16.41 135.30 ± 16.79 0.507
NT-proBNP 315.26 ± 789.62 286.42 ± 1077.99 0.898

IHD (%)
Non-PCI 27 (44.26) 28 (59.57) 0.115

PCI 34 (55.74) 19 (40.43) 0.115
Abbreviations: GLS, global longitudinal strain; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic
blood pressure; HR, heart rate; ACE, angiotensin-converting enzyme; ARB, angiotensin II receptor blockers; CCB,
calcium channel blocker; CK, creatine kinase; HDL, high-density lipoprotein; LDL, low-density lipoprotein; NT-
proBNP, N-terminal pro-B-type natriuretic peptide; IHD, ischemic heart disease; PCI, percutaneous intervention.
* p < 0.05.

3.2. ECG and CPX data

ECG and CPX parameters between the two groups are shown in Table 2. Com-
pared with the impaired GLS group, patients with normal GLS exhibited significantly
higher VO2/kg@AT, Load@AT, VCO2/kg@AT, RER@AT, metabolic equivalents (METs)@AT,
VO2/kg@peak, VCO2/kg@peak, RER@peak, and %PPeak VO2, which indicated a better
exercise capacity. TEE data were similar across both groups.

Table 2. Echocardiographic characteristics, global longitudinal strain, and primary CPET variables
between groups.

Variables GLS ≥ −17.6 (n = 61) GLS < −17.6 (n = 47) p-Value

GLS (%) −14.68 ± 2.16 −19.61 ± 1.45 0.000
LVEDD (mm) 47.68 ± 4.84 47.14 ± 4.68 0.568

LVEF (%) 0.580 (0.5,0.6) 0.630 (0.6, 0.7) 0.003
E (cm/s) 71.53 ± 24.19 71.02 ± 19.26 0.911
A (cm/s) 83.96 ± 24.05 75.27 ± 20.77 0.061

E/A 0.94 ± 0.44 0.96 ± 0.28 0.796
E’ (cm/s) 5.84 ± 1.76 6.23 ± 1.58 0.254
A’ (cm/s) 9.58 ± 2.28 9.64 ± 2.43 0.909
RER@ AT 1.02 ± 0.07 1.05 ± 0.06 0.030 *

VO2/kg@ AT (mL/kg/min) 11.32 ± 1.92 12.22 ± 1.59 0.010 *
Load@ AT (w) 52.52 ± 19.90 52.91 ± 13.11 0.908

VE@ AT (L/min) 24.80 ± 5.04 24.27 ± 4.42 0.573
VE/kg@ AT (mL/kg/min) 351.52 ± 73.47 368.50 ± 55.74 0.19

VCO2/kg@ AT (mL/kg/min) 11.57 ± 2.13 12.83 ± 2.08 0.003 **
HR@ AT (beats) 101.33 ± 13.30 98.28 ± 12.24 0.224

Metabolic equivalents@ AT (Mets) 3.24 ± 0.55 3.50 ± 0.45 0.009 **
RER@ peak 1.21 ± 0.09 1.24 ± 0.08 0.028 *

VO2/kg@ peak (mL/kg/min) 17.01 ± 3.22 19.19 ± 3.42 0.001 **
VO2 peak/predicted 0.66 ± 0.14 0.76 ± 0.09 0.000 **

Load@ peak (w) 88.39 ± 30.73 92.60 ± 24.83 0.446
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Table 2. Cont.

Variables GLS ≥ −17.6 (n = 61) GLS < −17.6 (n = 47) p-Value

VE@ peak (L/min) 43.79 ± 10.89 45.82 ± 11.88 0.358
VE/kg@ peak (mL/kg/min) 622.35 ± 159.42 691.72 ± 145.81 0.022 *

VCO2/kg@ peak (mL/kg/min) 20.65 ± 4.55 24.01 ± 5.30 0.001 **
HR@ peak (beats) 123.97 ± 18.77 126.09 ± 21.18 0.584

Metabolic equivalents@ peak (Mets) 4.86 ± 0.92 5.49 ± 0.97 0.001
VE/VCO2 slope 28.91 ± 5.83 26.65 ± 5.98 0.051

dVO2/d Work rate (mL/min/watt) 9.19 ± 1.77 9.72 ± 1.64 0.112
FEV1 (L) 2.44 ± 0.70 2.47 ± 0.61 0.8
FVC (L) 3.05 ± 0.79 3.13 ± 0.80 0.622

FEV1/FVC (%) 0.80 ± 0.09 0.80 ± 0.10 0.978
VC max 3.19 ± 0.79 3.23 ± 0.78 0.784

Abbreviations: LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; RER,
respiratory exchange ratio; AT, anaerobic threshold; VO2, oxygen uptake; VCO2, ventilatory carbon dioxide; HR,
heart rate; VE, exercise ventilation; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; VC, vital
capacity. * p < 0.05, ** p < 0.01.

3.3. Correlation of GLS with CPX Variables

The Pearson correlation of GLS with CPX data (Table 3) revealed that GLS is inversely
related to some of the analyzed CPX variables, including RER@peak (r = −0.341, p < 001),
VO2/kg@peak (r = −0.432, p < 0.01), METs@peak (r = −0.438, p < 0.01), VE/kg@peak
(r = −0.328, p < 0.01), and %PPeak VO2 (r = −0.37, p < 0.01), and directly related to
VE/VCO2slope (r = 0.257, p < 0.01); see Figure 2. Correlations were also found for RER@AT,
PETCO2@AT, VO2/kg@AT, VCO2/kg@AT, and METs@AT (p < 0.01). The EF value showed
no significant correlation with any of the analyzed CPET variables (Table 3).

Table 3. Correlations between numerical parameters of CPX with the left ventricular ejection fraction
(LVEF) and global longitudinal strain (GLS).

Values
GLS EF

r p-Value r p-Value

dVO2/dWR (mL/min/W) −0.177 0.067 −0.023 0.82
VE @AT (L/min) 0.007 0.944 −0.064 0.526
HR @AT (bpm) 0.151 0.118 −0.007 0.445

Load @AT (watts) −0.04 0.682 0.037 0.711
RER@ AT −0.305 0.001 ** 0.081 0.421

PETCO2 @AT (mmHg) −0.274 0.004 ** 0.187 0.062
PETO2 @AT (mmHg) 0.047 0.63 −0.086 0.394

Systolic BP@A (mmHg) −0.077 0.431 0.144 0.151
Diastolic BP@AT (mmHg) 0.019 0.848 0.028 0.784
VE/kg @AT (mL/kg/min) −0.158 0.102 0.097 0.335

VO2/kg @AT (mL/kg/min) −0.267 0.005 ** 0.202 0.042
VCO2/kg @AT (mL/kg/min) −0.335 0.000 ** 0.192 0.054

Metabolic equivalents (METs)@ AT −0.271 0.005 ** 0.205 0.04
VE @peak (L/min) −0.2 0.038 −0.077 0.445
HR @peak (bpm) −0.098 0.313 −0.087 0.39

Load @peak (watts) −0.151 0.118 −0.025 0.808
RER@ peak −0.341 0.000 ** 0.016 0.875

PETCO2 @peak (mmHg) −0.244 0.011 0.078 0.438
PETO2 @peak (mmHg) 0.035 0.717 −0.126 0.209
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Table 3. Cont.

Values
GLS EF

r p-Value r p-Value

Systolic BP@peak (mmHg) −0.167 0.085 0.131 0.19
Diastolic BP@peak (mmHg) −0.093 0.339 −0.031 0.762
VE/kg @peak (mL/kg/min) −0.328 0.001 ** 0.035 0.725

VO2/kg @peak (mL/kg/min) −0.432 0.000 ** 0.075 0.459
VCO2/kg @peak (mL/kg/min) −0.456 0.000 ** 0.068 0.499

Metabolic equivalents (METs)@ peak −0.438 0.000 ** 0.076 0.448
VE/VCO2slope 0.257 0.007 ** −0.242 0.015

%PPeak VO2 (%) −0.369 0.000 ** 0.135 0.178
VC max (L) −0.087 0.369 −0.045 0.655

FEV1 (L) −0.024 0.808 −0.009 0.931
FVC (L) −0.1 0.308 0.004 0.966

FEV1/FVC (%) 0.116 0.238 −0.019 0.852

Abbreviations: dVO2/dWR: oxygen-consumption-to-work-rate ratio; VE, exercise ventilation; HR, heart rate;
RER, respiratory exchange ratio; AT, anaerobic threshold; PETCO2, end-tidal carbon dioxide; PETO2, end-tidal
partial pressures of oxygen; BP, blood pressure; VO2, oxygen uptake; VCO2, ventilatory carbon dioxide; FEV1,
forced expiratory volume in 1 s; FVC, forced vital capacity; VC, vital capacity. ** p < 0.01.
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Figure 2. Correlation between GLS and %PPeak VO2, peak VO2, VE/VCO2slope, peak VE, peak
RER, and peak METs.

On univariate analysis, the results showed that age (p < 0.01) and GLS (p < 0.01) appear
to be associated with reduced exercise tolerance in subjects with IHD, while on multivariate
analysis, age, the BMI, and GLS were independent predictors of reduced exercise capacity
(Table 4).
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Table 4. Univariate and multivariate predictors to predict reduced exercise capacity (peak VO2) in
patients with IHD.

Variables
Univariate Analysis Multivariate Analysis

OR 95%CI p-Value OR 95%CI p-Value

Gender 4 1.258–12.72 0.019 3.998 0.766–20.859 0.1
Age 0.869 0.791–0.954 <0.01 0.793 0.684–0.919 <0.01
BMI 0.824 0.681–0.997 0.047 0.663 0.487–0.903 <0.01
EF 0.975 0.010–97.809 0.991 0.028 0.000–4.464 0.167

GLS 0.737 0.606–0.896 <0.01 0.618 0.445–0.859 <0.01
LV 0.946 0.844–1.060 0.34 0.876 0.731–1.05 0.152

Abbreviations: BMI, body mass index; EF, ejection fraction; GLS, global longitudinal strain; LV, left ventricular;
OR, odds ratio; CI, confidence interval.

The area under the ROC curve (AUC) value for GLS in the detection of peak VO2 of
<14 mL/kg/min was 0.73 (95% confidence interval (CI) 0.6–0.86), with a sensitivity of 74.2%
and a specificity of 66.7%, for a cut-off GLS value of −15.2% (p = 0.000); see Figure 3.
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4. Discussion

To the best of our knowledge, this is the first study to describe the relationship
between GLS and CPX parameters in the population with IHD. The study highlights
weak-to-moderate correlations between GLS and functional CPX parameters and further
demonstrates that GLS can detect reduced exercise capacity in these patients.

The non-invasive detection of ischemia for non-obstructive CAD remains a clinical
challenge. Previous studies have recognized GLS as one of the most sensitive and repro-
ducible indicators of ischemia and have shown that GLS is superior to the EF in detecting
an early reduction in contractile function [26]. The LVEF is not correlated with functional
capacity [27]. Most evidence on the association between exercise tolerance and cardiac
strain has predominantly focused on patients with HF [28]. However, this relationship
has not been investigated and demonstrated in patients with IHD. GLS has emerged as a
promising parameter of exercise capacity [29]. This study is the first to show the correlation
between GLS and exercise capacity in patients with IHD, which has not been investigated
in prior studies of 2D-STE and CPX after a coronary angiogram. More than half of the
patients referred for coronary angiography are reported to have normal or non-obstructive
CAD, and compared to optimal medical treatment, revascularization is only beneficial
in patients with severe ischemia [30,31]. Further coronary angiograms should be consid-
ered for symptomatic patients with cardiac dysfunction of reduced peak VO2 (<70% of
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predicted) on CPET. Furthermore, revascularization does not improve the peak VO2 for
patients with multivessel disease, suggesting that CPET plays a vital role in characterizing
the functional consequences of myocardial ischemia [32]. Hence, a more sensitive index for
coronary revascularization is needed.

Patients with IHD frequently have reduced exercise capacity, even when the con-
ventional parameters of left ventricular function, such as ejection fraction (LVEF), are
within the normal range. In addition, the role of disability, particularly in the context of
exercise intolerance, is not fully understood. GLS is associated with the extent of viable
myocardial tissue in patients with chronic IHD, where the load has less of an impact. Since
sub-endocardial fibers are more sensitive to ischemia, numerous studies have demonstrated
that GLS is more accurate at detecting early myocardial disturbances caused by ischemia
compared with the EF value [3,25]. Previous research has suggested that GLS is related to
the ability to exercise through poor contractile reservation during exercise [33]. Peak VO2
and VE/VCO2 slope are critical parameters in the detection of obstructive CAD, and in
this study, patients with normal GLS had a higher peak VO2 (19.19 ± 3.42 mL/kg/min vs.
17.01 ± 3.22 mL/kg/min), and compared with the resting EF, GLS showed a relationship
with peak VO2 (r =−0.432, p < 0.01) and the VE/VCO2 slope (r = 0.257, p = 0.000). Moreover,
multivariable analysis demonstrated that GLS is independently associated with reduced
peak VO2. Thus, reduced GLS may be an effective indicator of exercise intolerance in this
group of patients.

Peak VO2, defined as cardiorespiratory fitness (CRF), is a vital clinical sign of all-cause
and cardiovascular mortality in patients with cardiovascular diseases, as well as in healthy
individuals [34]. Reduced peak VO2 is recognized as an independent risk factor for adverse
cardiovascular events in populations with IHD. The correlations between GLS and exercise
capacity identified in this study further highlight the potential importance of early detection
of LV dysfunction in individuals with IHD with exercise intolerance.

Ng et al. reported that GLS at rest was −16.3 ± 2.4 in patients with CAD vs.
−19.1 ± 2.9 in patients with non-significant CAD [35]. Similar results were obtained by
Biering-Sørensen et al. [36], Gaibazzi et al. [37], Evensen et al. [38], and Shimoni et al. [39].
In this study, the cut-off value of GLS to detect a peak VO2 of <14 mL/min/kg was −15.2,
with a sensitivity of 74.2% and a specificity of 66.7%. Collectively, these findings indicate
the quantifiable and prognostic significance of GLS as a suitable alternative to evaluate
patients with reduced exercise capacity.

The value of using CPX in detecting macrovascular ischemia has been previously
reported [9]. However, the direct measurement of CPX requires specialized equipment and
trained personnel to accurately interpret the results. In addition, patients may be unable or
unwilling to undergo this testing. Thus, CPX remains underused in China. Simultaneously,
despite numerous attempts to develop surrogates and regression models based on non-
experimental test data to predict peak VO2, the models are not specific enough to classify
CRF as routine practice. Hence, determination of the relationship between GLS and exercise
intolerance could potentially allow the prediction of CRF of patients with IHD based solely
on ECG-derived GLS. The exercise intolerance prediction results from this study extend
the findings of Maia et al. [40] regarding GLS measured in patients with systolic heart
failure. In this study, the GLS cut-off value for detecting a peak VO2 of <14 mL/min/kg
was −15.2. Therefore, GLS could be a valuable tool to discriminate patients with normal
exercise capacity from those with reduced exercise capacity.

4.1. Limitations

Despite the valuable findings of this study, there are several significant limitations that
should also be considered. First, as a single-center study, the small size of the population
in the study may limit the generalizability of the findings. Second, more than 50% of
the participants in both experimental groups were taking β-receptor blocker medication,
a primary treatment for IHD, which significantly lowers the peak VO2 in CPX. Further
studies should be conducted on subjects using 3D STE.
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4.2. Conclusions

The study presented the value of GLS measured with 2D speckle-tracking echocardio-
graph in patients with IHD. The assessment of GLS was able to detect exercise intolerance
and identify what has a poor prognosis.
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