Redox Status and Hematological Variables in Melatonin-Treated Ewes during Early Pregnancy under Heat Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Laboratory Assays
2.2.1. Hematological Variables
2.2.2. Cortisol Measurement
2.2.3. Redox Status Biomarkers
2.3. Data Management and Analysis
2.3.1. Temperature—Humidity Index
2.3.2. Reproductive Competence
- Mating rate: number of ewes mated by a ram/number of ewes exposed to rams in each group × 100.
- Pregnancy rate: number of ewes diagnosed as pregnant on D73 / number of ewes mated in each group × 100.
- Lambing rate: number of ewes that lambed/number of ewes mated subsequently to oestrous synchronization in each group × 100.
- Total lambs born per ewe: number of liveborn and stillborn newborns/number of ewes that lambed in each group.
2.3.3. Statistical Analysis
3. Results
3.1. Clinical Results—THI Estimation
3.2. Reproductive Performance
3.3. Complete Blood Count
3.4. Cortisol Measurement
3.5. Redox Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, A.; Steinheim, G.; Mysterud, A. Do different sheep breeds show equal responses to climate fluctuations? Basic Appl. Ecol. 2013, 14, 137–145. [Google Scholar] [CrossRef]
- do Prado Paim, T.; Borges, B.O.; de Mello Tavares Lima, P.; Gomes, E.F.; Dallago, B.S.; Fadel, R.; de Menezes, A.M.; Louvandini, H.; Canozzi, M.E.; Barcellos, J.O.; et al. Thermographic evaluation of climatic conditions on lambs from different genetic groups. Int. J. Biometeorol. 2013, 57, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Abhijith, A.; Joy, A.; Prathap, P.; Vidya, M.; Niyas, P.A.; Madiajagan, B.; Krishnan, G.; Manimaran, A.; Vakayil, B.; Kurien, K.; et al. Role of Heat Shock Proteins in Livestock Adaptation to Heat Stress. J. Dairy Vet. Anim. Res. 2017, 5, 00127. [Google Scholar] [CrossRef]
- Tilbrook, A.J.; Turner, A.I.; Clarke, I.J. Effects of stress on reproduction in non-rodent mammals: The role of glucocorticoids and sex differences. Rev. Reprod. 2000, 5, 105–113. [Google Scholar] [CrossRef]
- Marai, I.F.M.; El-Darawany, A.A.; Fadiel, A.; Abdel-Hafez, M.A.M. Physiological traits as affected by heat stress in sheep—A review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Hansen, P.J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2009, 364, 3341–3350. [Google Scholar] [CrossRef]
- Sakatani, M.; Yamanaka, K.; Balboula, A.Z.; Takahashi, M. Different thermotolerances in in vitro-produced embryos derived from different maternal and paternal genetic backgrounds. Anim. Sci. J. = Nihon Chikusan Gakkaiho 2017, 88, 1934–1942. [Google Scholar] [CrossRef]
- Al-Gubory, K.H.; Fowler, P.A.; Garrel, C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int. J. Biochem. Cell Biol. 2010, 42, 1634–1650. [Google Scholar] [CrossRef]
- Roth, Z.; Aroyo, A.; Yavin, S.; Arav, A. The antioxidant epigallocatechin gallate (EGCG) moderates the deleterious effects of maternal hyperthermia on follicle-enclosed oocytes in mice. Theriogenology 2008, 70, 887–897. [Google Scholar] [CrossRef]
- Sakamoto, N.; Ozawa, M.; Yokotani-Tomita, K.; Morimoto, A.; Matsuzuka, T.; Ijiri, D.; Hirabayashi, M.; Ushitani, A.; Kanai, Y. DL-alpha-tocopherol acetate mitigates maternal hyperthermia-induced pre-implantation embryonic death accompanied by a reduction of physiological oxidative stress in mice. Reproduction 2008, 135, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Matsuzuka, T.; Sakamoto, N.; Ozawa, M.; Ushitani, A.; Hirabayashi, M.; Kanai, Y. Alleviation of maternal hyperthermia-induced early embryonic death by administration of melatonin to mice. J. Pineal Res. 2005, 39, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Calvo, J.R.; Karbownik, M.; Qi, W.; Tan, D.X. Melatonin and its relation to the immune system and inflammation. Ann. N. Y. Acad. Sci. 2000, 917, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Radogna, F.; Diederich, M.; Ghibelli, L. Melatonin: A pleiotropic molecule regulating inflammation. Biochem. Pharmacol. 2010, 80, 1844–1852. [Google Scholar] [CrossRef] [PubMed]
- Hardeland, R.; Cardinali, D.P.; Srinivasan, V.; Spence, D.W.; Brown, G.M.; Pandi-Perumal, S.R. Melatonin—A pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 2011, 93, 350–384. [Google Scholar] [CrossRef] [PubMed]
- Mauriz, J.L.; Collado, P.S.; Veneroso, C.; Reiter, R.J.; Gonzalez-Gallego, J. A review of the molecular aspects of melatonin’s anti-inflammatory actions: Recent insights and new perspectives. J. Pineal Res. 2013, 54, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tan, D.X.; Korkmaz, A.; Rosales-Corral, S.A. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum. Reprod. Update 2014, 20, 293–307. [Google Scholar] [CrossRef]
- Carpentieri, A.; Diaz de Barboza, G.; Areco, V.; Peralta Lopez, M.; Tolosa de Talamoni, N. New perspectives in melatonin uses. Pharmacol. Res. 2012, 65, 437–444. [Google Scholar] [CrossRef]
- Abecia, J.A.; Forcada, F.; Casao, A.; Palacin, I. Effect of exogenous melatonin on the ovary, the embryo and the establishment of pregnancy in sheep. Anim. Int. J. Anim. Biosci. 2008, 2, 399–404. [Google Scholar] [CrossRef]
- Tamura, H.; Nakamura, Y.; Korkmaz, A.; Manchester, L.C.; Tan, D.X.; Sugino, N.; Reiter, R.J. Melatonin and the ovary: Physiological and pathophysiological implications. Fertil. Steril. 2009, 92, 328–343. [Google Scholar] [CrossRef]
- Tsiligianni, T.; Valasi, I.; Cseh, S.; Vainas, E.; Faigl, V.; Samartzi, F.; Papanikolaou, T.; Dovolou, E.; Amiridis, G.S. Effects of melatonin treatment on follicular development and oocyte quality in Chios ewes—Short communication. Acta Vet. Hung. 2009, 57, 331–335. [Google Scholar] [CrossRef]
- Casao, A.; Abecia, J.A.; Cebrián Pérez, J.A.; Muiño Blanco, T.; Vázquez, M.I.; Forcada, F. The effects of melatonin on in vitro oocyte competence and embryo development in sheep. Span. J. Agric. Res. 2010, 8, 35–41. [Google Scholar] [CrossRef]
- Chemineau, P.; Malpaux, B.; Pelletier, J.; Leboeuf, B.; Delgadillo, J.A.; Deletang, F.; Pobel, T.; Brice, G. Emploi des implants de mélatonine et des traitements photopériodiques pour maitriser la reproduction saisonnière chez les ovins et les caprins. INRAE Prod. Anim. 1996, 9, 45–60. [Google Scholar] [CrossRef]
- Rondon, Z.; Forcada, F.; Zarazaga, L.; Abecia, J.A.; Lozano, J.M. Oestrous activity, ovulation rate and plasma melatonin concentrations in Rasa Aragonesa ewes maintained at two different and constant body condition score levels and implanted or reimplanted with melatonin. Anim. Reprod. Sci. 1996, 41, 225–236. [Google Scholar] [CrossRef]
- Forcada, F.; Abecia, J.A.; Cebrian-Perez, J.A.; Muino-Blanco, T.; Valares, J.A.; Palacin, I.; Casao, A. The effect of melatonin implants during the seasonal anestrus on embryo production after superovulation in aged high-prolificacy Rasa Aragonesa ewes. Theriogenology 2006, 65, 356–365. [Google Scholar] [CrossRef]
- Bouroutzika, E.; Kouretas, D.; Papadopoulos, S.; Veskoukis, A.S.; Theodosiadou, E.; Makri, S.; Paliouras, C.; Michailidis, M.L.; Caroprese, M.; Valasi, I. Effects of Melatonin Administration to Pregnant Ewes under Heat-Stress Conditions, in Redox Status and Reproductive Outcome. Antioxidants 2020, 9, 266. [Google Scholar] [CrossRef]
- Kumar, A.; Mehrotra, S.; Singh, G.; Narayanan, K.; Das, G.K.; Soni, Y.K.; Singh, M.; Mahla, A.S.; Srivastava, N.; Verma, M.R. Sustained delivery of exogenous melatonin influences biomarkers of oxidative stress and total antioxidant capacity in summer-stressed anestrous water buffalo (Bubalus bubalis). Theriogenology 2015, 83, 1402–1407. [Google Scholar] [CrossRef]
- Senger, P.L. (Ed.) Pathways to Pregnancy & Parturition; Current Conceptions Inc.: Pullman, WA, USA, 2012. [Google Scholar]
- Bull, B.S.; Koepke, J.A.; Simson, E.; Van Assendelft, O.W. Procedure for Determining Packed Cell Volume by Microhematocrit Method. In Approved Standard, 3rd ed.; NCCLS Document H7-A3; NCCLS: Wayne, PA, USA, 2000; Volume 20, p. 18. [Google Scholar]
- Katsogiannou, E.G.; Athanasiou, L.V.; Katsoulos, P.D.; Polizopoulou, Z.S.; Tzivara, A.; Christodoulopoulos, G. Estimation of white blood cell and platelet counts in ovine blood smears, and a comparison with the ADVIA 120 hematology analyzer. Vet. Clin. Pathol. 2020, 49, 222–226. [Google Scholar] [CrossRef]
- Janaszewska, A.; Bartosz, G. Assay of total antioxidant capacity: Comparison of four methods as applied to human blood plasma. Scand. J. Clin. Lab. Investig. 2002, 62, 231–236. [Google Scholar] [CrossRef]
- Veskoukis, A.S.; Nikolaidis, M.G.; Kyparos, A.; Kokkinos, D.; Nepka, C.; Barbanis, S.; Kouretas, D. Effects of xanthine oxidase inhibition on oxidative stress and swimming performance in rats. Appl. Physiol. Nutr. Metab. = Physiol. Appl. Nutr. Et Metab. 2008, 33, 1140–1154. [Google Scholar] [CrossRef]
- Veskoukis, A.S.; Kyparos, A.; Paschalis, V.; Nikolaidis, M.G. Spectrophotometric assays for measuring redox biomarkers in blood. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2016, 21, 208–217. [Google Scholar] [CrossRef]
- Oikonomidis, I.L.; Brozos, C.; Kiossis, E.; Kritsepi-Konstantinou, M. Combined and breed-specific RIs for hematologic, biochemical, and hormonal analytes in Chios and Florina adult rams. Vet. Clin. Pathol. 2018, 47, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Basiricò, L.; Morera, P.; Dipasquale, D.; Vitali, A.; Piccioli Cappelli, F.; Calamari, L. Effect of summer season on milk protein fractions in Holstein cows. J. Dairy Sci. 2015, 98, 1815–1827. [Google Scholar] [CrossRef] [PubMed]
- Sejian, V.; Bhatta, R.; Gaughan, J.; Malik, P.K.; Naqvi, S.M.K.; Lal, R. (Eds.) Sheep Production Adapting to Climate Change; Springer, The Gateway: Singapore, 2017. [Google Scholar] [CrossRef]
- Dutt, R.H. Detrimental effects of high ambient temperature on fertility and early embryo survival in sheep. Int. J. Biometeorol. 1964, 8, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Ealy, A.D.; Drost, M.; Hansen, P.J. Developmental Changes in Embryonic Resistance to Adverse Effects of Maternal Heat Stress in Cows1. J. Dairy Sci. 1993, 76, 2899–2905. [Google Scholar] [CrossRef]
- Matsuzuka, T.; Ozawa, M.; Nakamura, A.; Ushitani, A.; Hirabayashi, M.; Kanai, Y. Effects of heat stress on the redox status in the oviduct and early embryonic development in mice. J. Reprod. Dev. 2005, 51, 281–287. [Google Scholar] [CrossRef]
- Ozawa, M.; Hirabayashi, M.; Kanai, Y. Developmental competence and oxidative state of mouse zygotes heat-stressed maternally or in vitro. Reproduction 2002, 124, 683–689. [Google Scholar] [CrossRef]
- Ealy, A.D.; Drost, M.; Barros, C.M.; Hansen, P.J. Thermoprotection of preimplantation bovine embryos from heat shock by glutathione and taurine. Cell Biol. Int. Rep. 1992, 16, 125–131. [Google Scholar] [CrossRef]
- Tamura, H.; Takasaki, A.; Taketani, T.; Tanabe, M.; Kizuka, F.; Lee, L.; Tamura, I.; Maekawa, R.; Asada, H.; Yamagata, Y.; et al. Melatonin as a free radical scavenger in the ovarian follicle. Endocr. J. 2013, 60, 1–13. [Google Scholar] [CrossRef]
- Abecia, J.-A.; Forcada, F.; Vázquez, M.-I.; Muiño-Blanco, T.; Cebrián-Pérez, J.A.; Pérez-Pe, R.; Casao, A. Role of melatonin on embryo viability in sheep. Reprod. Fertil. Dev. 2019, 31, 82–92. [Google Scholar] [CrossRef]
- Abecia, J.A.; Forcada, F.; Zuniga, O. The effect of melatonin on the secretion of progesterone in sheep and on the development of ovine embryos in vitro. Vet. Res. Commun. 2002, 26, 151–158. [Google Scholar] [CrossRef]
- Barros, V.R.P.; Monte, A.P.O.; Santos, J.M.S.; Lins, T.; Cavalcante, A.Y.P.; Gouveia, B.B.; Muller, M.C.; Oliveira Junior, J.L.; Barberino, R.S.; Donfack, N.J.; et al. Effects of melatonin on the in vitro growth of early antral follicles and maturation of ovine oocytes. Domest. Anim. Endocrinol. 2020, 71, 106386. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tan, D.X.; Fuentes-Broto, L. Melatonin: A multitasking molecule. Prog. Brain Res. 2010, 181, 127–151. [Google Scholar] [CrossRef]
- Aréchiga, C.F.; Ealy, A.D.; Hansen, P.J. Evidence That Glutathione is Involved in Thermotolerance of Preimplantation Murine Embryos1. Biol. Reprod. 1995, 52, 1296–1301. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.R.L.; Motta-Teixeira, L.C.; Gallo, C.C.; Carmo Buonfiglio, D.D.; Camargo, L.S.; Quintela, T.; Reiter, R.J.; Amaral, F.G.D.; Cipolla-Neto, J. Maternal pineal melatonin in gestation and lactation physiology, and in fetal development and programming. Gen. Comp. Endocrinol. 2021, 300, 113633. [Google Scholar] [CrossRef] [PubMed]
- Wojtas, K.; Cwynar, P.; Kolacz, R. Effect of thermal stress on physiological and blood parameters in merino sheep. Bull. Vet. Inst. Pulawy 2014, 58, 283–288. [Google Scholar] [CrossRef]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Nicolas-Lopez, P.; Macias-Cruz, U.; Mellado, M.; Correa-Calderon, A.; Meza-Herrera, C.A.; Avendano-Reyes, L. Growth performance and changes in physiological, metabolic and hematological parameters due to outdoor heat stress in hair breed male lambs finished in feedlot. Int. J. Biometeorol. 2021, 65, 1451–1459. [Google Scholar] [CrossRef]
- Alhaidary, A. Physiological responses of Naimey Sheep to heat stress challenge under semi-arid environments. Int. J. Agric. Biol. 2004, 6, 307–309. [Google Scholar]
- Singh, K.M.; Singh, S.; Ganguly, I.; Ganguly, A.; Nachiappan, R.K.; Chopra, A.; Narula, H.K. Evaluation of Indian sheep breeds of arid zone under heat stress condition. Small Rumin. Res. 2016, 141, 113–117. [Google Scholar] [CrossRef]
- Habibu, B.; Dzenda, T.; Ayo, J.O.; Yaqub, L.S.; Kawu, M.U. Haematological changes and plasma fluid dynamics in livestock during thermal stress, and response to mitigative measures. Livest. Sci. 2018, 214, 189–201. [Google Scholar] [CrossRef]
- Davis, A.K.; Maney, D.L.; Maerz, J.C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 2008, 22, 760–772. [Google Scholar] [CrossRef]
- da Silva, R.G.; da Costa, M.J.; Sobrinho, A.G. Influence of hot environments on some blood variables of sheep. Int. J. Biometeorol. 1992, 36, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.N.; Uwayjan, M. Effect of high ambient temperature and low humidity on nutrient utilization and on some physiological responses in Awasi sheep fed different levels of roughage. J. Anim. Sci. 1975, 40, 320–328. [Google Scholar] [CrossRef]
- Polizopoulou, Z.S. Haematological tests in sheep health management. Small Rumin. Res. 2010, 92, 88–91. [Google Scholar] [CrossRef]
- Ottaway, C.A.; Husband, A.J. The influence of neuroendocrine pathways on lymphocyte migration. Immunol. Today 1994, 15, 511–517. [Google Scholar] [CrossRef]
- Maestroni, G.J. The immunotherapeutic potential of melatonin. Expert Opin. Investig. Drugs 2001, 10, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Haldar, C. Physiological crosstalk between melatonin and glucocorticoid receptor modulates T-cell mediated immune responses in a wild tropical rodent, Funambulus pennanti. J. Steroid Biochem. Mol. Biol. 2013, 134, 23–36. [Google Scholar] [CrossRef]
- Agradi, S.; Menchetti, L.; Curone, G.; Faustini, M.; Vigo, D.; Villa, L.; Zanzani, S.A.; Postoli, R.; Kika, T.S.; Riva, F.; et al. Comparison of Female Verzaschese and Camosciata delle Alpi Goats’ Hematological Parameters in The Context of Adaptation to Local Environmental Conditions in Semi-Extensive Systems in Italy. Animals 2022, 12, 1703. [Google Scholar] [CrossRef]
- Righi, C.; Menchetti, L.; Orlandi, R.; Moscati, L.; Mancini, S.; Diverio, S. Welfare Assessment in Shelter Dogs by Using Physiological and Immunological Parameters. Animals 2019, 9, 340. [Google Scholar] [CrossRef] [Green Version]
Group | Time of Day | Days of Experimental Period | ||||||
---|---|---|---|---|---|---|---|---|
D34 | D35 | D36 | D37 | D38 | D39 | D40 | ||
Rectal temperature (°C) | ||||||||
M | 12.00 | 39.11 ± 0.05 a,A | 39.22 ± 0.05 a,A | 39.35 ± 0.04 a,A | 39.29 ± 0.04 a,A | 39.20 ± 0.05 a,A | 39.25 ± 0.05 a,A | 39.19 ± 0.05 a,A |
18.00 | 39.72 ± 0.09 a,B | 39.95 ± 0.13 a | 39.91 ± 0.07 a | 40.06 ± 0.07 a,B | 40.09 ± 0.06 a | 40.01 ± 0.09 a | 40.17 ± 0.08 a | |
C | 12.00 | 39.27 ± 0.05 b,A | 39.24 ± 0.07 b,A | 39.20 ± 0.06 b,A | 39.27 ± 0.04 b,A | 39.35 ± 0.06 b,A | 39.37 ± 0.05 b,A | 39.36 ± 0.05 b,A |
18.00 | 40.0 ± 0.03 b,B | 40.16 ± 0.02 b | 40.13 ± 0.02 b | 40.24 ± 0.02 b,B | 40.25 ± 0.03 b | 39.89 ± 0.03 b | 39.25 ± 0.02 b | |
Breathing rate (breaths min−1, bpm) | ||||||||
M | 12.00 | 54.75 ± 2.8 c,C | 55.4 ± 2.3 c,C | 55.8 ± 2.2 c | 55.7 ± 1.7 c,C | 55.85 ± 1.5 c,C | 60.8 ± 1.6 c,C | 60.5 ± 2.1 c,C |
18.00 | 89.05 ± 2.9 c,D | 82.75 ± 2.9 c,D | 92.1 ± 2.5 c,D | 87.35 ± 1.8 c,D | 89 ± 1.7 c,D | 95.4 ± 1.4 c,D | 95.5 ± 1.9 c,D | |
C | 12.00 | 65.6 ± 0.9 d,C | 65.9 ± 1.2 d,C | 65.7 ± 1.1 d | 66.4 ± 0.8 d,C | 68.7 ± 0.9 d,C | 67.1 ± 0.7 d,C | 68.1 ± 0.9 d,C |
18.00 | 99.6 ± 1.2 d,D | 104.8 ± 1.7 d,D | 103.6 ± 2.1 d,D | 100.6 ± 0.9 d,D | 118.1 ± 4.2 d,D | 112.5 ± 1.9 d,D | 109.3 ± 2.2 d,D |
Group Time | Hematological Variables | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PCV | WBCs | NEU | LYMPH | MONO | EOS | PLT | NEU/LYMPH Ratio | Cortisol | ||
(%) | (cells/μL) | (cells/μL) | (cells/μL) | (cells/μL) | (cells/μL) | (cells ×103/μL) | (μg/L) | |||
M | D33 | 33.50 ± 0.80 a | 7956 ± 1140 | 3355 ± 467 c | 4814 ± 819 | 242 ± 53 | 345 ± 176 | 362 ± 27 | 0.73 ± 0.06 d | 1.23 ± 0.41 |
D40 | 30.83 ± 0.96 a | 5467 ± 631 | 1584 ± 149 c | 3285 ± 341 | 152 ± 66 | 200 ± 94 | 356 ± 28 | 0.51 ± 0.06 d | 1.51 ± 0.36 | |
C | D33 | 32.14 ± 0.84 b | 6529 ± 1665 | 1761 ± 197 | 2459 ± 952 | 102 ± 30 | 145 ± 77 | 382 ± 29 | 0.93 ± 0.28 | 0.71 ± 0.41 |
D40 | 31.66 ± 0.98 b | 5643 ± 1287 | 1213 ± 179 | 2293 ± 687 | 123 ± 20 | 171 ± 25 | 370 ± 29 | 0.64 ± 0.23 | 0.59 ± 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouroutzika, E.V.; Theodosiadou, E.K.; Barbagianni, M.S.; Papadopoulos, S.; Kalogiannis, D.; Chadio, S.; Skaperda, Z.; Kouretas, D.; Katsogiannou, E.G.; Valasi, I. Redox Status and Hematological Variables in Melatonin-Treated Ewes during Early Pregnancy under Heat Stress. Vet. Sci. 2022, 9, 499. https://doi.org/10.3390/vetsci9090499
Bouroutzika EV, Theodosiadou EK, Barbagianni MS, Papadopoulos S, Kalogiannis D, Chadio S, Skaperda Z, Kouretas D, Katsogiannou EG, Valasi I. Redox Status and Hematological Variables in Melatonin-Treated Ewes during Early Pregnancy under Heat Stress. Veterinary Sciences. 2022; 9(9):499. https://doi.org/10.3390/vetsci9090499
Chicago/Turabian StyleBouroutzika, Efterpi V., Ekaterini K. Theodosiadou, Mariana S. Barbagianni, Serafeim Papadopoulos, Dimitrios Kalogiannis, Stella Chadio, Zoi Skaperda, Demetrios Kouretas, Eleni G. Katsogiannou, and Irene Valasi. 2022. "Redox Status and Hematological Variables in Melatonin-Treated Ewes during Early Pregnancy under Heat Stress" Veterinary Sciences 9, no. 9: 499. https://doi.org/10.3390/vetsci9090499