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Abstract: Swine viruses like porcine sapovirus (SaV), porcine encephalomyocarditis virus (EMCV),
porcine rotavirus A (RVA) and porcine astroviruses (AstV) are potentially zoonotic viruses or sus-
pected of potential zoonosis. These viruses have been detected in pigs with or without clinical signs
and often occur as coinfections. Despite the potential public health risks, no assay for detecting them
all at once has been developed. Hence, in this study, a multiplex RT-PCR (mRT-PCR) assay was de-
veloped for the simultaneous detection of SaV, EMCV, RVA and AstV from swine fecal samples. The
PCR parameters were optimized using specific primers for each target virus. The assay’s sensitivity,
specificity, reproducibility, and application to field samples have been evaluated. Using a pool of
plasmids containing the respective viral target fragments as a template, the developed mRT-PCR
successfully detected 2.5 × 103 copies of each target virus. The assay’s specificity was tested using six
other swine viruses as a template and did not show any cross-reactivity. A total of 280 field samples
were tested with the developed mRT-PCR assay. Positive rates for SaV, EMCV, RVA, and AstV were
found to be 24.6% (69/280), 5% (14/280), 4.3% (12/280), and 17.5% (49/280), respectively. Compared
to performing separate assays for each virus, this mRT-PCR assay is a simple, rapid, and cost-effective
method for detecting mixed or single infections of SaV, EMCV, RVA, and AstV.

Keywords: multiplex PCR; Swine potential zoonotic viruses; sapovirus; encephalomyocarditis virus;
rotavirus A and astrovirus

1. Introduction

Swine viruses cause a major economic loss in the swine industry [1–5]. Thus far, more
than sixteen viruses have been detected from porcine fecal specimens [6–9]. From these
swine viruses, due to the asymptomatic nature of infections, unless there is a confounding
factor or a mixed infection of another pathogenic virus, infections from porcine sapovirus
(SaV), encephalomyocarditis virus (EMCV), porcine rotavirus A (RVA) and porcine astro-
virus (AstV) might not be noticed [10–13]. Though the economic impact of SaV, EMCV,
RVA and AstV viruses on the swine industry might not be significant enough to attract the
attention of pig producers, their potential to become zoonotic diseases warrants proper
attention [12]. More importantly, even asymptomatic pigs can shed the virus into the
environment or directly transmit it to people at risk [9–12]. Likewise, SaV, EMCV, RVA,
and AstV were found to be genetically closely related to human viruses and hence have a
zoonotic potential and/or are suspected of zoonosis [5,11,12,14–18].
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To develop vaccines against the prevalent viral strains, early and accurate virus de-
tection is needed and hence, early virus detection is an integral part of disease control
and prevention programs [19]. However, coinfection complicates early and accurate virus
detection. In the presence of coinfection, it is often difficult to know the underlining cause
of disease [20,21]. This is because, in the presence of coinfection, viruses that do not usually
cause apparent clinical signs during a single infection could contribute to the severity of
an existing infection, further complicating disease diagnosis [11,22]. Moreover, compared
to other swine viruses, these potential zoonotic viruses, due to their high coinfection rate,
higher virus shedding, fecal–oral transmission, asymptomatic nature, and potential to trans-
mit to humans, demands special attention for early detection and accurate identification.

Virus isolation, electron microscopy, serological tests, and nucleic acid detection meth-
ods are the most commonly used methods for detecting viruses [21,23,24]. Recently nucleic
acid-based and serological detection methods are being used widely for diagnosing swine
viral infections [23–25]. Nucleic acid-based detection methods are preferred over serologi-
cal methods for determining current infection status [26]. The existing nucleic acid-based
diagnostic assays for detecting potential zoonotic swine viruses depend on a single PCR.
These single PCR-based detection methods consume more time and resources to detect
each virus at a one-time point, whereas using multiplex PCR assays, nucleic acid detection
methods have another added advantage for the simultaneous detection of viruses [24,25].
Multiplex reverse transcriptase PCR (mRT-PCR) based virus diagnostic assays provide
both the affordability and accuracy of virus detection, enabling faster and wider field-based
applications [23,26]. In this study, in an attempt to solve challenges associated with de-
tecting potential zoonotic swine viruses, a multiplex PCR assay that could simultaneously
detect SaV, EMCV, RVA and AstV from porcine fecal samples has been developed.

2. Materials and Methods
2.1. Nucleic Acid Extraction and Reverse Transcription

From May to September 2021, 280 fecal samples from pigs of different age groups
were collected from the Heilongjiang province in China. Prior to storage, 10% (w/v) stool
suspensions were mixed with PBS (phosphate-buffered saline, 7.4 PH), centrifuged at
400× g for 20 min at 4 ◦C, and collected supernatants. Total RNA was extracted from fecal
supernatants using the Tiangen virus RNA extraction kit (Tiangen Biotech, Beijing, China),
according to manufacturer instructions.

Complementary DNA (cDNA) was synthesized in a 20 µL reverse transcription (RT)
reaction mixture containing 2 µL of Golden MLV buffer, 1 µL Golden MLV enzyme, 1 µL
Random hexamer primers and 1 µL dNTP, 0.5 µL Rnase inhibitor and 1 µg of total RNA
and RNase free double distilled water (ddH2O) and then incubated at 37 ◦C for 15 min and
at 85 ◦C for 5 s (TakaRa, Dalian, China).

2.2. Primer Design and Construction of SaV, EMCV, RVA and AstV Plasmids

Nucleotide sequences were downloaded from NCBI and aligned prior to primer
design to identify conserved regions for each selected virus. The primers (Table 1) used to
amplify the fragments of SaV, EMCV, RVA, and AstV were designed by primer3 [27], and
then primer properties such as primer heterodimer, self-dimer and hairpin were checked
by OligoAnalyzer (https://www.idtdna.com/calc/analyzer, accessed on 20 June 2020).
Each amplicon was purified and cloned into the pMD18-T vector (TaKaRa, Dalian, China).
The plasmids were transformed into competent Escherichia coli DH5α cells. The plasmids
were extracted using a mini plasmid extraction kit (Tiangen, Beijing, China) from a bacterial
solution cultured at 37 °C for 14–16 h and quantified by a NanoDrop spectrophotometer
(Thermo Fisher, Waltham, MA, USA). The plasmid constructs were then confirmed by PCR
and sequencing (CometBio, Jilin, China). For mRT-PCR optimization, the plasmids were
used as templates.

https://www.idtdna.com/calc/analyzer
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Table 1. List of primers used to detect SaV, EMCV, RVA and AstV by the mRT-PCR.

Primer Sequence Target Gene Accession No. Target Region
(bp)

Amplicon
Size (bp)

SaV-F AGCCAGAAGTGTTCGTGATGG
ORF1 MK965898.1 5124–5429 306SaV-R GGACARGTGRAGYGTGTARGG

EMCV-F CCGTCAAGTCTTCCAACCAG
3D MH191297.1 6288–6725 438EMCV-R GCGGCTTGAACCTTCTCTATC

RVA-F GCAAACGAAGTCTTCGACATGG
VP6 MH308723.1 6–575 570RVA-R GGCGTTAATCCACATAGTYCCCA

AstV -F TTGTGGAGCTTGACTGGACC
ORF1ab MK613068.1 3341–4042 702AstV-R CTGTGAGTCTTGCAGGCAGA

2.3. Single RT-PCR and mRT-PCR Reaction Optimization

Prior to performing mRT-PCR, the designed primers were used to perform single
RT-PCR (sRT-PCR) for SaV, EMCV, RVA, and AstV. A 40 µL PCR reaction was prepared
using 5 µL of cDNA, 5% DMSO, rTaq enzyme (0.5–1 unit), 0.25 µM of each primer, 1.5 mM
MgCl2, 0.2 mM dNTP, 4X rTaq buffer and autoclaved ddH2O was added to make 40 µL
volume. In the negative control reaction, ddH2O was used as a template. In a Bio-Rad
PCR Thermo Cycler (Bio-Rad, Hercules, CA, USA), the prepared reaction was amplified as
follows: one cycle at 94 ◦C for 5 min; 35 cycles of denaturation at 98 ◦C for 10 s; gradient
annealing (48 ◦C to 58 ◦C) for 30 s; 72 ◦C for 45 s extension; and a final extension step of
10 min at 72 ◦C. Gel electrophoresis with a 1.5% agarose gel in 1X TAE buffer was used to
examine PCR results.

The mRT-PCR reactions were optimized by varying a single parameter while keeping
other parameters constant. Parameter variables including annealing temperature (48 to
58 ◦C), number of PCR cycle (25 to 40), concentrations of primer (0.05 µM to 0.4 µM), MgCl2
(1.0 to 4.0 mM), dNTP (0.3–0.9 mM), and TakaRa rTaq DNA Polymerase (2 to 6 U) were
optimized. The PCR products were visualized by electrophoresis through 1.5% agarose
gel in 1× TAE buffer. Following mRT-PCR condition optimization, the amplicons were
sequenced for confirmation (CometBio, Jilin, China).

2.4. Assay Sensitivity, Specificity, and Reproducibility

The sensitivity of sRT-PCR and mRT-PCR was compared using a 10-fold serially
diluted standard plasmids of known DNA copy number. The DNA copy number of
each standard plasmid was calculated using the formula described in [24]. To serve as a
template for the sRT-PCR and mRT-PCR, 106 copies/µL of each cloned virus fragment were
mixed into a single tube and diluted 10-fold serially at a concentration gradient of 100 to
106 copies/µL.

Specificity of the developed mRT-PCR was tested by using cDNA of porcine epi-
demic diarrhea virus (PEDV), Seneca Valley virus (SVV), transmissible gastroenteritis virus
(TGEV), porcine respiratory and reproductive syndrome virus (PRRSV), porcine delta
coronavirus (PDCoV), porcine sapelovirus (PSV) and porcine enterovirus (PEV) mixed
with cDNA of each of the viruses included in the mRT-PCR as templates. The amplicons
were purified and sequenced to confirm the specificity of the assay.

To evaluate the intra-assay reproducibility of the developed assay, mRT-PCR reactions
were performed in triplicate on each optimized parameter. Furthermore, inter-assay repro-
ducibility was tested by running four different PCR reactions under optimized conditions
with freshly prepared templates.

2.5. Detecting Target Viruses from Field Samples Using mRT-PCR

The developed mRT-PCR assay was used to test a pool of 280 porcine fecal field
samples for SaV, EMCV, RVA, and AstV, and 130 of these samples were also tested using
single PCR Primers for each virus.
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2.6. Phylogenetic Analysis of the Detected Viruses

Some of the porcine fecal field samples that were mRT-PCR positive for SaV, EMCV,
RVA and AstV were reamplified using sRT-PCR. The amplified and purified PCR products
were sequenced. MEGA-X program was used to align the nucleotide sequences. The
phylogenetic trees were constructed with MEGA-X software using the neighbor-joining
method [28], Kimura-2 distances, and a bootstrap sampling technique with 1000 repli-
cates [29].

3. Results
3.1. Optimized Conditions of the mRT-PCR

Before mRT-PCR reaction optimization, sRT-PCR standardization and optimum an-
nealing temperature determination were done using gradient PCR for each virus at a
temperature of 48 to 58 ◦C. Primers of SaV, EMCV, RVA and AstV produced an amplicon
size of 305 bp, 438 bp, 570 bp and 702 bp, respectively. The annealing temperature was
optimized at 50–52 ◦C. After optimizing the annealing temperature, each PCR reaction
condition was optimized one at a time by keeping other conditions constant. After repet-
itive experiments, an optimum concentration of dNTP, MgCl2 and Taq polymerase was
determined at 0.6 mM, 0.35 mM and 6 units, respectively. Primer concentration were
optimized at 0.15, 0.113, 0.15 and 0.1 µM for SaV, EMCV, RVA and AstV, respectively. All
reactions were performed at 40 µL reaction volume and 35 cycles. Each of the amplicons
was visualized by electrophoresing 10 µL aliquots through 1.5% agarose gels in 1× TAE
(40 mM Tris-acetate [pH 8.0], 1 mM EDTA). Using the optimized mRT-PCR conditions, all
four viral fragments were amplified successfully (Figure 1A).
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Figure 1. mRT-PCR optimization and assay specificity. M: 2000 bp marker, 1: SaV, 2: EMCV, 3: RVA
and 4: AstV, P: standard plasmid template mix containing SaV, EMCV, RVA and AstV fragments.
(A) Optimization of mRT-PCR using plasmids containing SaV, EMCV, RVA and AstV fragments.
(B) Assay specificity. N: negative control, 1: SaV, 2: EMCV, 3: RVA, 4: AstV and 5–10: PEDV, SVV,
TGEV, PRRSV, PDCoV and PSV, respectively.

3.2. Assay Sensitivity

The sensitivity of sRT-PCR and mRT-PCR was tested using ten-fold serial dilutions
of the SaV, EMCV, RVA and AstV plasmid constructs. It was found that the developed
mRT-PCR assay could simultaneously detect up to 2.5 × 103 copies of each template, while
single PCR could detect 2.5 × 101, 2.5 × 103, 2.5 × 102, and 2.5 × 102 copies of SaV, EMCV,
RVA and AstV, respectively (Figure 2).
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3.3. Assay Specificity

The specificity of each primer pair was determined using sRT-PCR and mRT-PCR
(Figure 1B). Both sRT-PCR and mRT-PCR were found specific for the target viral agent
because no amplicons were produced with other viral agents, including PEDV, SVV, TGEV,
PRRSV, PDCoV, and PSV (Figure 1B, lanes 5–10). All positive amplicons were sequenced to
check the presence of potential false-positive results. Basic Local Alignment Search Tool
(BLAST; http://www.ncbi.nlm.nih.gov, accessed on 10 December 2020) was used to search
homologous sequences and analyses of the sequences obtained corresponding to 305 bp
for SaV, 438 bp for EMCV, 570 bp for RVA, and 702 bp AstV, respectively, were found to be
identical to each virus. This result showed that the developed mRT-PCR assay is specific.

3.4. Assay Reproducibility

Four mRT-PCR reactions were performed at different times to assess inter-assay
reproducibility using the same reaction conditions. A freshly extracted plasmid was used
as a template for each PCR reaction. Each of the four mRT-PCR reactions showed a
similar result (data not shown), indicating the reproducibility of the assay. Besides inter-
assay reproducibility, intra-assay reproducibility was checked by carrying out triplicate
mRT-PCR reactions (data not shown). The developed mRT-PCR assay’s intra-assay and
inter-assay reproducibility tests showed that it could be used to detect potentially zoonotic
swine viruses.

3.5. Detection of Field Samples

A total of 280 porcine fecal samples were tested for SaV, EMCV, RVA and AstV using
the developed mRT-PCR assay. One hundred of the 280 tested samples were found to
be positive for at least one virus. A positive rate of 24.6%, 5%, 4.3% and 17.5% was
observed for SaV, EMCV, RVA and AstV (Table 2). Though only RVA showed a statistically
significant difference in prevalence based on age (p < 0.05, X2 = 8), as swine age increases,
the remaining three viruses showed a slight decrease in prevalence (Table 2). A statistically
significant difference (p < 0.05, X2 = 5.3) in prevalence was found between diarrheic and
non-diarrheic pigs. In contrast, the prevalence of the other three viruses did not show any
statistically significant difference between diarrheic and non-diarrheic pigs.

http://www.ncbi.nlm.nih.gov
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Table 2. Prevalence of AstV, EMCV, RVA and SaV.

Age Group Health Status
Number of
Samples (n)

% (Number of Positive/n)

SaV EMCV PRVA AstV

Piglet Diarrheic 31 71 (22/31) 19.4 (6/31) 19.4 (6/31) 41.9 (13/31)
Non-Diarrheic 41 7.3 (3/41) 2.4 (1/41) 2.4 (1/41) 17.1 (7/41)

Sub-total 72 34.7 (25/72) 9.7 (7/72) 9.7 (7/72) 27.8 (20/72)

Weaner Diarrheic 12 75 (9/12) 0.0 16.7 (2/12) 50 (6/12)
Non-Diarrheic 30 10 (3/30) 13.3 (4/30) 3.3 (1/30) 16.7 (5/30)

Sub-total 42 28.6 (12/42) 9.5 (4/42) 7.1 (3/42) 26.2 (11/42)

Fattening pig Diarrheic 20 80 (16/20) 15 (3/20) 5 (1/20) 30 (6/20)
Non-Diarrheic 42 2.4 (1/42) 0 0 7.1 (3/42)

Sub-total 62 27.4 (17/62) 4.8 (3/62) 1.6 (1/62) 14.5 (9/62)

Sow Diarrheic 19 78.9 (15/19) 0 5.3 (1/19) 26.3 (5/19)
Non-Diarrheic 85 0 0 0 4.7 (4/85)

Sub-total 104 14.4 (15/104) 0.0 1 (1/104) 8.7 (9/104)

280 24.6 (69/280) 5 (14/280) 4.3 (12/280) 17.5 (49/280)

With varying degrees of double and triple infection, a mixed infection rate of 6.4%
(18/280) was detected. Out of the 100 samples found positive for at least one virus, a
coinfection rate of 5% (SaV, RVA and AstV), 4% (SaV, EMCV and AstV), 1% (EMCV, RVA
and AstV), 8% (SaV and Astv), 3% (SaV and EMCV), 2% (RVA and AstV) and 1% (RVA and
SaV) was observed (Figure 3).
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For checking the reliability of the mRT-PCR assay, 130 samples containing 40 samples
from diarrheic pigs were selected and further tested using sRT-PCR for SaV, EMCV, RVA
and AstV. Except for SaV (Table 3), samples positive for each virus using sRT-PCR test also
showed similar positive results when tested by mRT-PCR. Some of the mRT-PCR positive
samples were also checked by sequencing. The concordance of sequence results were
then checked by subjecting them to NCBI nucleotide blast and no false-positive results
were found.
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Table 3. Detection of four viruses in 130 field samples by sRT-PCR and mRT-PCR.

Assay
Number of Positive Samples

SaV EMCV RVA AstV

sRT-PCR 29 8 2 13
mRT-PCR 27 * 8 2 13

* The results were similar except for two samples that were positive for SaV by sRT-PCR, but negative
by mRT-PCR.

SaV infection is the most common of the four viruses tested, while RVA infection is
the least common. Test results of mRT-PCR showed 98.5% agreement with the test results
of sRT-PCR. This result indicated that, like sRT-PCR, the developed mRT-PCR is sensitive
enough to detect field samples.

3.6. Phylogenetic Analysis

Phylogenetic trees were constructed using the neighbor-joining method. When con-
structing the phylogenetic trees, geographic location, host type, and virus genotype were
all considered.

Within the Caliciviridae family, based on their complete VP1 nucleotide sequences,
sapoviruses could be classified into 15 genogroups, eight of which have been detected in
swine (GIII, GV–GXI) [30,31], but only the GI, GII, GIV, and GV genogroups are known to
infect humans [30,32,33]. To investigate the genetic diversity of several of the sequences
identified in this study, a phylogenetic tree for SaV was constructed based on the partial
sequence of the ORF1 region using 5 identified strains (Sapo 1 to Sap 5) and 32 reference
strains. The SaV strains identified in this study named (Sapo 1, Sapo 2, Sapo 3 and Sapo 5)
clustered within the GIII genogroup and were found to be closely related to other GIII SaV
strains detected in China (MW285642) and Mexico (MH490911). Whereas Sapo 4, which is
also classified as a GIII genogroup member, formed a separate clade (Figure 4A).

EMCV is a Picornaviridae virus that infects many animals, including pigs, mice, pri-
mates, and humans [34]. The EMCV strains isolated from various animals, for example,
pigs and rats, demonstrated a high degree of homology [35]. Thus, to investigate the genetic
variability of the detected EMCV strains, a phylogenetic tree for EMCV was constructed
based on the partial sequence of the 3D region using three identified strains (EMCV 1 to
EMCV 3) and 22 reference strains from GenBank. According to the partial sequence of the
3D region, EMCV 3 detected in this study clustered with other EMCV strains from Japan
(LC508268), whereas EMCV 1 and EMCV 2 clustered separately and more closely related
to strains from China (Figure 4B).

A phylogenetic tree for RVA was constructed based on the partial sequence of the VP6
region using three identified strains (R1 to R3) and 30 reference strains from GenBank. The
RVA variants identified in this study clustered into two distinct clades, with R1 and R2
belonging to one clade and R3 to another clade. However, all RVA variants identified in
this study are more closely related to RVA previously described from China (MT874988,
FJ617209 and KT82077), implying that they may have originated from the common ancestor.
R1 and R2 clustered with MT874988 and FJ617209, previously described from China,
whereas R3 clustered with KT820771, another Chinese RVA strain (Figure 4C).

Based on the partial sequence of the ORF1ab region, a phylogenetic tree for AstV
was constructed using three identified strains (Ast 1 to Ast 7) and 25 reference strains
from GenBank. All AstV variants detected during this study clustered under AstV4.
Furthermore, Ast 1, 2, 3, 5 and Ast 7 clustered closely with AstV from China (MK460231)
and Kenya (MT451918), whereas Ast 4 and Ast 6 clustered independently and close to
strain from the USA (JX556692) (Figure 4D).
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trees. Scales indicate units of the number of base substitutions per site. (A) Phylogenetic tree of
SaV. The tree was built using 224 positions from the ORF1 region of SaV. (B) Phylogenetic tree of
EMCV. The tree was constructed using 211 positions from the 3D region of the EMCV. Mengovirus
was used as an outgroup. (C) Phylogenetic tree of RVA. The tree was built based on 545 positions of
the VP6 region. Rotavirus A from dove (avian) was used as an outgroup. (D) Phylogenetic tree of
AstV. The tree was built based on 379 positions of the ORF1ab region. As an outgroup, Turkey (avian)
Astrovirus is included.
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4. Discussion

Despite the presence of a plethora of different types of diagnostic assays, nucleic
acid-based assays offer an added advantage of high specificity and sensitivity with the
possibility of a lower detection limit [36]. Recently, mRT-PCR is being used as one of
the most important diagnostic methods for rapidly and simultaneously detecting viral
pathogens. Additionally, hence, different mRT-PCR assays for simultaneously detecting
nine [37], six [25,38], five [39], four [23,24,26,40], three [41] and two [42,43] swine enteric
viruses have been developed. Due to the asymptomatic nature of SaV, EMCV, RVA, and
AstV infections, these viruses have received insufficient attention, and no single diagnostic
assay capable of simultaneously detecting these viruses from porcine fecal samples has
been developed.

A mRT-PCR assay capable of simultaneously detecting SaV, EMCV, RVA, and AstV
RNA from porcine fecal samples was developed in this study. Our assay and other previ-
ously developed assays [23,26] for other viruses suggest that sRT-PCR may be more specific
than mRT-PCR, but the improvement in turnaround time and cost-effectiveness would
compensate for this minor reduction in sensitivity. Yet, compared to sRT-PCR, mRT-PCR
is more economical and rapid. The sensitivity of the developed mRT-PCR assay using
plasmids containing the specific viral target fragments was 2.5 × 103 copies for each tem-
plate. Similarly, Zhao et al. [23] reported a similar mRT-PCR assay sensitivity of 2.17 × 103,
2.1 × 103, 1.74 × 104 and 1.26 × 104 for porcine epidemic diarrhea virus, transmissible
gastroenteritis virus, RVA, and porcine circovirus 2, respectively. Thus, the currently devel-
oped mRT-PCR assay has similar sensitivity with Hu et al. [40] and Liu et al. [26], a higher
sensitivity compared to Day et al. [44] and Cagirgan and Yazici [45], and lower sensitivity
compared to Liu et al. [39]. Further, 130 fecal samples were tested for checking the differ-
ence in sensitivity of sRT-PCR and mRT-PCR assays. Test results of mRT-PCR showed an
overall concordance rate of 98.5% (128/130) (Table 3) to the test results of sRT-PCR. Besides
sensitivity, test results of specificity and reproducibility of this assay indicate that similar to
the sRT-PCR, the developed mRT-PCR could be employed to detect SaV, EMCV, RVA, and
AstV from porcine fecal samples. Similarly, previous reports [25,37] and others suggested
that mRT-PCR could be a highly sensitive and specific assay that could be used for the
rapid detection of swine viruses from fecal specimens.

To further confirm the validity of the developed mRT-PCR assay, 280 porcine fecal
samples were tested and the positive rates of SaV, EMCV, RVA and AstV was found to be
24.6% (69/280), 5% (14/280), 4.3% (12/280), and 17.5% (49/280), respectively. This shows
that, compared to the other two viruses, SaV has the highest positive rate and RVA the
lowest positive rate. Similarly, SaV, EMCV, RVA, and AstV have been detected in diarrheic
and non-diarrheic swine feces [5,11–13,15], highlighting the importance of detecting these
viruses in swine farms. In swine, coinfection of enteric viruses is common. In this study,
coinfection rate of 5% (SaV, RVA and AstV), 4% (SaV, EMCV and AstV),1% (EMCV, RVA and
AstV), 8% (SaV and Astv), 3% (SaV and EMCV), 2% (RVA and AstV) and 1% (RVA and SaV)
has been observed. Similar to the current study, coinfections of pigs with different enteric
viruses have been reported from China [25,46], the United States [47] and Belgium [48].

A phylogenetic analysis was also made to explore further the epidemiologic character-
istics of the detected viruses. The phylogenetic analysis revealed that the SaV detected in
this study belongs to the GIII genogroup. Similar to this study, previous research [49,50]
indicated that from the eight SaV genogroups detected in swine [30,31], the GIII genogroup
is the most prevalent in China. Phylogenetic analysis of the partial sequence of the 3D
region of EMCV, similar to previous studies from China [51,52], revealed that the EMCV
variants detected in this study clustered into two groups. Yuan, Song, Zhang, Zhang and
Sun [52] assigned the EMCV-30 strain (DQ288856) from the USA and the Korean strains K3
(EU780148) and K11 (EU780149) to the EMCV group one lineage while strains PV2 (X87335)
and D variant (M37588) to group two lineage. Based on Yuan, Song, Zhang, Zhang and
Sun [52], three of the EMCV strains identified in this study may belong to group one lineage,
regardless of their clustering pattern. Based on the VP7 gene sequence, Group A rotaviruses
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are classified into 36 G genotypes, of which 12 G-genotypes (G1–G6, G8–G12, and G26)
have been identified in porcine [18,53]. All three RVA strains detected in this study were
found closely grouped with strains NJ2012 (MT874988.1) and TA-3-1 (KT820771.1), both
of which are G9 genotypes, implying that the RVA strains detected in this study could be
G9 genotype. According to phylogenetic analysis, the AstV variants detected in this study
belong to AstV4. Similarly, previous reports from the United States [54], Thailand [55] and
Slovakia [8] indicated that AstV4 is the most prevalent type of AstV. In contrast, a higher
prevalence of AstV2 from China [56] and AstV5 from China’s Hunan province [57] have
also been observed, highlighting the importance of further AstV epidemiology studies.
These findings lend credence to the notion that coinfection of these viruses is common
in swine. Through recombination and mutations, the coinfection of viruses accelerates
the evolution of coinfected viruses [58,59], allowing more virulent virus strains to emerge.
As a result, the developed mRT-PCR assay could play a critical role in controlling and
preventing SaV, EMCV, RVA, and AstV through early and accurate detection.

5. Conclusions

The assay sensitivity, specificity, and repeatability results demonstrated that the devel-
oped mRT-PCR could be employed to detect SaV, EMCV, RVA, and AstV simultaneously
and rapidly in swine fecal specimens. Potential zoonotic swine viruses such as SaV, EMCV,
RVA, and AstV are prevalent in Heilongjiang province, China. These viruses frequently
coinfect pigs, and detecting them quickly and cost-effectively may necessitate specialized
diagnostic techniques such as mRT-PCR. The current mRT-PCR may assist in lowering
the cost and time associated with sample processing and testing during large-scale field
sample screening for SaV, EMCV, RVA, and AstV. As a result, this assay may help control
and prevent potential zoonotic swine viruses by detecting them early and accurately.
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