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Simple Summary: Torque teno viruses are small, ubiquitous viruses with highly diverse genomes
and a wide host range. However, their incidence in dogs remains unknown in Republic of Korea.
In this study, we detected Torque teno canis virus and performed whole-genome sequencing using
canine fecal samples. This is the first study to determine the incidence of Torque teno canis virus in
Republic of Korea and report a new recombinant virus.

Abstract: Torque teno canis virus (TTCaV) is an approximately 2.8 kb circular single-stranded DNA
virus known to cause infections in dogs. However, its incidence in Republic of Korea remains
unknown. In this study, 135 dog fecal samples were collected to determine TTCaV infection status
in Republic of Korea. Based on polymerase chain reaction (PCR) analysis, 13 of 135 (9.6%) dogs
tested positive for TTCaV. Three full-length genome sequences (GenBank IDs: MZ503910, MZ503911,
and MZ503912) were obtained from the positive specimens. Phylogenetic tree construction and
sequence identity, similarity plot, and recombination analyses were performed using these three
full-length genomic sequences. Among the three full-length genomes, MZ503912 was determined to
be a recombinant virus based on analysis with the reference TTCaV strains. This novel virus strain
might have been generated by recombination between TTCaV strain KX827768 discovered in China
and MZ503910 discovered in Republic of Korea. This is the first report to determine the incidence,
genetic variation, and recombination of TTCaV in dogs in Republic of Korea. Further studies are
needed to elucidate TTCaV pathogenesis in dogs.

Keywords: dog; Torque teno canis virus; incidence; recombination; Republic of Korea

1. Introduction

Torque teno virus (TTV) was first identified in 1997 in a Japanese patient with post-
transfusion hepatitis of unknown etiology [1]. Human TTVs are nonenveloped, negative-
sense, single-stranded, circular DNA viruses with a genome length of 3.6–3.9 kb [2]. TTVs
belong to the family Anelloviridae [3]. The seroprevalence of human TTV in Brazil during
1997–1998 was 41.3% and the prevalence of TTV infection was reported to increase grad-
ually with age [4]. Human TTVs exhibit an extremely wide sequence diversity, and five
genogroups and several genotypes have been identified so far [5–9]. Human TTVs are
transmitted by parenteral, trans-placental, breast milk, saliva, and fecal–oral routes [10–13].

TTVs have also been detected in non-human primates and other mammals. The
complete nucleotide sequences of species-specific TTV that infect non-human primates,
such as chimpanzees (Pan troglodytes), Japanese macaques (Macaca fuscata), cotton-top
tamarins (Saguinus oedipus), and douroucouli (Aotes trivirgatus), have been reported [14,15].
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Furthermore, full-length nucleotide sequences of TTV-infecting mammalian species, such
as Tupaia (Tbc-TTV14), pigs (Sd-TTV31), dogs (Cf-TTV10), and cats (Fc-TTV4), have been
determined [16,17].

Torque teno canis virus (TTCaV) was first identified in 2002 [16]. TTCaV harbors an
approximately 2.8 kb circular single-stranded DNA as its genome. The TTCaV genome
contains three open-reading frames (ORF1, ORF2, and ORF3) and an untranslated region
(UTR) with a GC content of up to 90% [18]. TTCaV are classified under the genus Theta-
torquevirus of the family Anelloviridae [3]. The family Anelloviridae also includes viruses
that infect animals, such as pigs (Torque teno sus virus), cats (Torque teno felis virus), and
tupaias (Torque teno tupaia virus) [3,12]. Human anelloviruses, especially TTVs, have been
implicated in various diseases, such as hepatic and pulmonary diseases, hematological and
autoimmune disorders, idiopathic inflammatory myopathy, and cancers [12,19]. However,
the pathogenesis of TTV infections is not fully understood because of the lack of a cell
culture system for viral propagation or suitable small animal models [20].

Several cases of TTCaV infection in dogs have been reported worldwide using serum
and fecal samples [16,18,21,22]. However, to the best of our knowledge, there are no
scientific reports on TTCaV incidence in dogs in Republic of Korea. Therefore, in this study,
we investigated the incidence and genetic characteristics of TTCaV in Republic of Korea.

2. Materials and Methods
2.1. Sample Collection

A total of 135 canine fecal samples were collected in Republic of Korea. In 2019, 29
and 32 fecal samples were collected in Anseong and Seoul, respectively. In 2021, 74 fecal
samples were collected in Yangpyeong. Yangpyeong and Anseong samples were collected
from animal shelters, while Seoul samples were collected from the Veterinary Medical
Teaching Hospital, Konkuk University. All the samples were suspended in 10-times volume
(w/v) of PBS and centrifuged at 3000× g for 15 min. The fecal supernatants were stored at
−80 ◦C until further analysis.

2.2. Viral DNA Extraction

Viral DNA was extracted from fecal supernatants using the Patho Gene-spin™ DNA/RNA
Extraction Kit (iNtRON Biotechnology, Seongnam, Republic of Korea) according to the man-
ufacturer’s instructions. The isolated DNA was eluted in 40 µL distilled water and stored at
−20 ◦C for further experiments.

2.3. TTCaV Detection

We designed primer set I (TTCaV-F1 and TTCaV-R1, Table 1) for TTCaV detection
by aligning full-length genome sequences of TTCaV. The representative sequences of
TTCaV were obtained from GenBank (https://www.ncbi.nlm.nih.gov/genbank/, accessed
on 19 January 2021) (AB076002, KX827767, MK050988, MK050987, KX827769, KX827768,
GU951508, KX827770, KX827771, and KX377522). PCR was performed to detect TTCaV
and each PCR mixture contained 5 µL template DNA, 1 µL primers (20 µM each), 5 U
FastStart High Fidelity Enzyme Blend (Roche Diagnostic, Mannheim, Germany), 5 µL
reaction buffer, 1 µL PCR grade nucleotide mix, 1 µL DMSO, and 35 µL distilled water to
make up the volume to 50 µL. The amplification was initiated by preheating the mixture
for 3 min at 95 ◦C, followed by 34 cycles of 30 s at 95 ◦C, 30 s at 45.4 ◦C, and 1 min at 72 ◦C;
and a final 5 min extension at 72 ◦C. The amplicon was resolved on a 2% agarose gel and
purified using the MEGAquick-spin Plus Total Fragment DNA Purification Kit (iNtRON
Biotechnology, Seongnam, Republic of Korea). The purified amplicon was sequenced by
Cosmo Genetech (Seoul, Republic of Korea).

https://www.ncbi.nlm.nih.gov/genbank/
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Table 1. Primer sets used for the detection of partial and full TTCaV genomic sequences.

Primer
Sets Primer Names Sequences (5′→3′) Positions * Amplicon Length (bp)

I
TTCaV-F1 CGCCATCTTGGATTGGAAATC 169–189

993–1015 847TTCaV-R1 TAGAAATGTATTGTCTTTTGGTG

II
ORF1-F AAGCAGCACTGTAGCTGGAG 770–789

2613–2634 1865ORF1-R CTTACGTCACAAAACAAGATGG

III
TTCaV-F2 ATGGTGGCCCATTACCAACCCCTAC 1911–1935

247–273 1160TTCaV-R2 TATTCCGATGTCCGATTTGCATAATCG

* Primer positions are indicated based on the genome of the prototype Japanese TTCaV (AB076002).

2.4. PCR Amplification of Entire TTCaV Genome

TTCaV-positive samples were used to amplify the ORF1 region using primer set II
(ORF1-F and ORF1-R, Table 1). The PCR mixture comprised 5 µL template DNA, 1 µL
primers (20 µM each), 5 U TaKaRa LA Taq (Takara Korea Biomedical, Seoul, Republic of
Korea), 25 µL of 2× GC buffer I, 8 µL dNTP mixture (2.5 mM each), and 9 µL distilled
water to make up the volume to 50 µL. PCR amplification was initiated by preheating the
reaction mixture for 3 min at 95 ◦C, followed by 34 cycles of 30 s at 95 ◦C, 30 s at 49 ◦C, and
2 min at 72 ◦C; and a final 5 min extension at 72 ◦C.

Primer set III (TTCaV-F2 and TTCaV-R2, Table 1) was used to amplify the remaining
TTCaV-containing GC-rich regions. The total volume and components of the PCR were
the same as those used for the ORF1 amplification. PCR amplification was initiated by
preheating the reaction mixture for 3 min at 95 ◦C, followed by 34 cycles of 30 s at 95 ◦C,
30 s at 54.5 ◦C, and 2 min at 72 ◦C; and a final 5 min extension at 72 ◦C.

The amplicons were purified using a MEGAquick-spin Plus Total Fragment DNA
Purification Kit (iNtRON Biotechnology, Seongnam, Republic of Korea) and cloned into
the RBC T&A cloning vector system (RBC Bioscience, Taipei, Taiwan) according to the
manufacturer’s instructions. The clone containing the amplified DNA was selected and
sequenced by Cosmo Genetech (Seoul, Republic of Korea).

2.5. Phylogenetic Tree and Sequence Identity Analysis

The full sequences of TTCaV were aligned using the ClustalW multiple alignment tool
of the Bio-Edit software (Ibis Biosciences, Carlsbad, CA, USA), and used for phylogenetic
tree generation and sequence identity analysis. Phylogenetic trees were generated by the
maximum likelihood method with 1000 bootstrap replicates using the MEGA-X software
(Pennsylvania State University, PA, USA). Sequence identity analysis was performed using
the Bio-Edit software (Ibis Biosciences, Carlsbad, CA, USA). The representative sequences
of TTV and TTCaV were obtained from GenBank (GenBank number is shown in Figure 1).

2.6. Similarity Plot and Recombination Analysis

The full genome alignment of TTCaV was used for similarity plot and recombination
analyses. Similarity plot analysis was performed using SimPlot software (Johns Hopkins
University, Baltimore, MD, USA) and the Kimura 2-parameter model; the Japanese TTCaV
prototype (AB076002) was used as a query. The following seven methods in the recom-
bination detection program 4 (University of Cape Town, Cape Town, South Africa) were
used to screen for potential recombinations and breakpoints: RDP, GENECONV, BootScan,
Maxchi, Chimaera, SiScan, and 3Seq. The highest acceptable p value cut-off was 0.05. The
representative sequences of TTCaV were obtained from GenBank (GenBank number is
shown in Figure 2).
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three TTCaV isolates identified in this study are marked with closed triangles and were grouped
into Thetatorquevirus.
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3. Results
3.1. TTCaV Incidence in Dogs

TTCaV was detected using primer set I, which amplified an 847 bp (169–1015 bp,
Table 1) amplicon in 13 of 135 fecal samples, indicating an incidence of 9.6% (Table 2).
Specifically, the incidence of TTCaV in the three provinces, Yangpyeong, Anseong, and
Seoul in Republic of Korea, was 5%, 24%, and 6%, respectively (Table 2).

Table 2. TTCaV incidence in different regions in Republic of Korea.

Region Number of Fecal
Samples

Number of
TTCaV-Positive
Fecal Samples

Incidence (%)

Yangpyeong 74 4 5
Anseong 29 7 24

Seoul 32 2 6
Total 135 13 9.6

3.2. Complete Genomic Analysis of TTCaV

In the study, we used primer set 1 for the detection of TTCaV in canine fecal samples,
which amplified 847 bp of TTCaV. We used the PCR products for DNA sequencing and
determined the detection rate of TTCaV. We selected 600 bp from the 847 bp by removing
unclear sequences including the primer regions, and the beginnings and ends of the
sequences. Then, we analyzed the phylogenetic tree drawn by 600 bp (Supplementary
Figure S1). We selected the three isolates, Anseong 4, Anseong 13, and Anseong 18, which
were located in different branches in the phylogenetic tree. We finally obtained three full
genomic sequences from the three isolates and their sequences were deposited in GenBank
(MZ503910 (2793 bp), MZ503911 (2795 bp), and MZ503912 (2791 bp)).

Phylogenetic analysis using complete TTV genomic sequences showed that these
three full-length TTCaV genomes belonged to Thetatorqueviruses with representative strains
Cf-TTV10 (AB076002), LDL (GU951508), and Sh-TTV203 (HM855265) (Figure 1).

The sequence identity analysis of the three complete genomes using the Japanese
prototype TTCaV (AB076002) revealed homology ranging between 88.4 to 97.5%. The three
sequences showed 88.2–96.9% nucleotide identities. The three TTCaV strains harbored all
the three ORFs as expected. The ORF1 of the three strains encoded 576, 577, and 575 amino
acids, whereas ORF2 and ORF3 in the three strains encoded 101 and 243 amino acids,
respectively (Table 3).

Table 3. Comparison of ORF1, 2, and 3 of three strains with TTCaV prototype (AB076002).

Accession
Number

Genome
Length (nt) ORF1 aa ORF2 aa ORF3 aa

AB076002 2797 576 101 243
MZ503910 2793 576 101 243
MZ503911 2795 577 101 243
MZ503912 2791 575 101 243

3.3. SimPlot and Recombination Analysis of TTCaV

SimPlot analysis was performed to compare the nucleotide similarity of the three
full TTCaV sequences, MZ503910, MZ503911, and MZ503912, with the prototype strain
AB076002. Among the three sequences, MZ503912, especially the central sequence of ORF1,
showed lower similarity than the other two strains (Figure 2). These data indicate that it
may be a recombinant virus.

Next, recombination analysis was performed with representative strains of TTCaV and
TTCaVs identified in this study. The MZ503912 was determined to be a recombinant variant.
When the recombination events were analyzed using recombination detection programs,
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all seven methods indicated a recombination event with p < 0.05 (Supplementary Table S1).
Recombination likely occurred between the MZ503910 strain isolated from Republic of Ko-
rea and the KX827768 strain isolated from China as a minor and major parent, respectively
(Figure 3); of the 2791 bp MZ503912 genome, the region spanning 47–992 bp was derived
from the minor parent MZ503910 strain, and the regions spanning 1–46 and 993–2791 bp
were derived from the major parent KX827768 strain (Figure 3).
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4. Discussion

In the present study, TTCaV incidence in Korean dogs was 9.6%. Earlier, TTCaV
incidence was reported as 7% and 38% in canine serum samples from China and Japan,
respectively [16,18]. TTCaV can be detected not only in sera, but also in feces; the TTCaV
detection rate was 13% when fecal samples were used from dogs younger than 1-year-old
in China [22]. In this study, we used only fecal samples collected from three different
regions. The incidence rates of TTCaV in the Yangpyeong, Anseong, and Seoul samples
were 5%, 24%, and 6%, respectively. A similar study performed in Turkey showed that
TTCaV incidence, determined using canine fecal samples collected from a shelter, was
32% [21]. Therefore, the higher TTCaV incidence in the Anseong region could be attributed
to the larger population of dogs in the shelter.

The human TTV genome consists of a UTR and a coding region comprising ORF1, 2, 3,
and 4. Most mutations translating into amino acid substitutions occur in the hypervariable
region of ORF1 in the human TTV genome [12]. SimPlot analysis was conducted to com-
pare the sequence identity of ORF1, ORF2, and ORF3 of the three full genomic sequences
of TTCaV strains, MZ503910, MZ503911, and MZ503912, using the Japanese prototype
TTCaV AB076002. The central part of ORF1 of the MZ503912 strain showed a relatively
lower sequence identity than those of MZ503910 and MZ503911. However, a hypervariable
region of ORF1 in the TTCaV genome has not yet been reported. Subsequent analysis of
the full genome sequence of MZ503912 with other full viral genomes revealed that the
MZ503912 variant was generated by recombination between the MZ503910 strain isolated
in this study and the KX827768 strain isolated in China. Human TTVs show wide genetic
diversity and recombination among variants occurs frequently [19]. Homologous recombi-
nation within and among genotypes has been reported for TTVs infecting humans [24,25].
However, recombination in TTCaVs has not yet been reported. Thus, this is the first study
to demonstrate TTCaV recombination. Further studies are needed to elucidate whether
TTV evolves by recombination, resulting in its high incidence and variability.
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5. Conclusions

In this study, we determined TTCaV incidence in Republic of Korea. We identified
three complete genomic sequences of TTCaV and identified a new recombinant strain.
Further studies are needed to determine the mechanism of recombination and its role in
TTCaV evolution. Our results will facilitate further studies focusing on TTCaV pathogenesis
in dogs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vetsci9120693/s1, Figure S1: Phylogenetic tree generated using
the partial sequences of TTCaV amplified by primer set 1 and the reference strains. The 13 TTCaV-
positive samples identified in this study are marked with closed triangles; Table S1: Recombination
region identified in MZ503912.
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