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Abstract: Xenografts can grow in immunosuppressed hosts, such as SCID mice, and tumor material
can be injected into hosts either ectopically or orthotopically. Choosing the correct model to use
is a crucial step in animal research. The aim of this study was to report the differences between
ectopic and orthotopic xenografts in tumor progression, metastasis capacity, histological features,
and steroid hormone profiles in xenografts from the cIMC (canine inflammatory mammary cancer)
cell line IPC-366 and hIBC (human inflammatory breast cancer) cell line SUM149. To achieve this
purpose, 40 female mice 6–8 weeks old were inoculated with IPC-366 and SUM149 cells subcuta-
neously (ectopic models) or into mammary fat pad (orthotopic models). Mice were monitored for
tumor progression and appearance of metastases, and generated tumors were analyzed in terms of
histological examination and steroid hormone production. The results revealed differences in tumor
appearance and percentage of metastasis between ectopic and orthotopic models, which were higher
in the ectopic xenografts from both cell lines. However, both models had similar characteristics of
tumor progression, histological features, and steroid hormone secretion profiles. We show that the
ectopic model can be validated as a good and useful model of tumor development in addition to, not
contrary to, the orthotopic model in breast cancer research.

Keywords: xenograft; ectopic; orthotopic; hIBC; cIMC

1. Introduction

Human and canine inflammatory breast cancer are the most aggressive mammary
neoplasms that affects women [1–3] and female dogs [4,5]. hIBC accounts for around 6%
of human breast cancer diagnoses, presenting poor survival in women, and cIMC is more
prevalent than hIBC (approximately 7.6%) [1,4,6]. These diseases are characterized by the
invasion of dermal lymphatic vessels by neoplastic cells, which blocks lymph drainage
and causes the characteristic edema [1,4,7]. In addition, this type of cancer is highly
angiogenic and angioinvasive in both species [1,8–10]. Canine inflammatory mammary
cancer has been suggested as the best spontaneous animal model for the study of human
disease [1,5]. Several human inflammatory breast cancer cell lines have been established
in order to study the in vitro mechanisms of this special type of breast cancer such as
SUM149 [11–13]. Recently, the IPC-366 cell line, the first canine inflammatory mammary
cancer triple-negative cell line, has been established and characterized [1,14].

Animal models developed for the study of human breast cancer have been useful
tools for refining our understanding of breast cancer progression and metastasis [15–17].
Recently, xenografts for cIMC have been established [18]. In general, rodents, such mice,
are being used for these studies because they are small in size, breed readily, and can
be genetically modified [19]. The advantages of using xenografts are that many of these
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models are reproducible, are readily available, and a sufficient number can be used in
studies to generate valid statistics. The disadvantages are that these models are costlier to
run, the stromal component of the tumors is rodent, the hosts are immunodeficient, and
most of the time the tumors are grown in a non-natural site [20].

Xenografts can grow in immunosuppressed hosts, such as athymic mice (nu/nu),
severe combined immunodeficiency (NOD-SCID, NSG, or HuNSG) mice, or humanized
mice, and tumor material can be injected into the host either ectopically (via subcuta-
neous injection, among others) or orthotopically (inoculation at the site of the primary
tumor) [16,17,19]. In breast cancer research, ectopic xenografts are usually performed via
subcutaneous and intravenous injections, and orthotopic ones by injecting cancer cells into
the mice mammary fat pads [16,17].

Ectopic xenograft models are simple to perform and reproducible and result in a
homogeneous tumor histology and growth rate. Accordingly, this type of xenograft is
widely used in anticancer drug research [17,19]. In orthotopic xenograft models, the grafted
tumor grows in the tissue of origin of the primary tumor. However, complex surgeries are
often needed, leading to a limited number of mice used [17,19,20].

In breast cancer research, orthotopic models are the most widely used model. These
xenografts better recapitulate the location of the disease and therefore better mimic human
cancerous disease [21]. The mammary fat pad is considered the stromal microenvironment
of the mammary gland [22], so the inoculation of cancer cells in this component is more
similar to human mammary disease [21]. The disadvantages of using this model are that
it requires surgery and the number of animals is limited. Another of the models used in
breast cancer research is the ectopic model in which cancer cells are injected generally
subcutaneously in the mammary chain. The two research models are valid, however, there
is little literature on the differences between the two models in breast cancer.

Normal and neoplastic mammary glands are considered endocrine tissues due to the
local biosynthesis of steroid hormones [23]. Several studies have shown a strong association
between elevated levels of circulating estrogens and their metabolites with an increased
risk of developing breast cancer [24]. Furthermore, data from in vitro studies suggest that
androgens may also exert antiproliferative and apoptotic effects [25].

Recent studies have shown that the hormonal tumor environment is crucial for tu-
mor development and progression [1]. In addition, male and female mice are capable of
reproducing tumors, and their levels of intratumoral hormones will influence tumor pro-
gression [1,25]. Therefore, the form of inoculation of tumorigenic material could determine
the hormonal microenvironment of the tumor.

This report describes two xenograft models from the hIBC cell line (SUM149) and
cIMC cell line (IPC-366). Ectopic and orthotopic xenografts were performed to observe the
differences between the two injections in terms of tumor growth, histology, and hormone
secretion. Furthermore, this study intended to demonstrate that IMC could be a good
animal model for the study of human disease by presenting similarities in tumor growth
progression in vivo.

2. Materials and Methods
2.1. Cell Culture

Canine triple-negative inflammatory mammary carcinoma cell line IPC-366 was ob-
tained from the Department of Physiology of the Veterinary Medicine School of the Com-
plutense University of Madrid (established and characterized in our laboratory [14]).
IPC-366 was cultured in Dulbecco’s modified Eagle medium/nutrient mixture F-12 Ham
(DMEM/F12) containing 5% fetal bovine serum, 1% L-glutamine, and 1% antibiotic-
antimycotic. The human triple-negative inflammatory breast cancer cell line SUM149
was obtained from Asterand, Inc. (Detroit, MI, USA), (RRID: CVCL_3422). SUM149
was cultured in Ham’s F12 (Thermo Fisher Scientific, Madrid, Spain) supplemented
with 5% fetal bovine serum, 5 µg/mL insulin, 1 µg/mL hydrocortisone, and antibiotic-
antimycotic (Sigma Aldrich, Madrid, Spain). All cell lines were maintained in a humidified
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atmosphere of 5% carbon dioxide at 37 ◦C. Cell culture was observed daily via phase-
contrast microscopy.

2.2. Animals

Forty 6-to-8-week-old female NOD.CB-17-Prkdc scid-RJ mice were used in this study.
The animals were housed in flexible-film isolators (Janvier Labs, Madid, Spain) in cages
(1–2 animals per cage) in a room with controlled environmental conditions (20–22 ◦C,
50–55% relative humidity, 10–15 air changes per hour, 12 h/12 h light/dark cycle). Food
and water, previously sterilized, were provided ad libitum. The required sample size
needed to simultaneously compare the normal means of the groups was determined using
the sample size determination module of the Statgraphics Centurion XVI statistical package
(Statpoint Technologies Inc., Warrenton, VA, USA). Animals were anesthetized prior to all
procedures with isoflurane at 4% for induction and 1.5% to maintain sedation, supplied
in a fresh gas flow rate of 0.5 L oxygen/minute, and were observed until fully recovered.
Animals were sacrificed using a lethal dose of isoflurane.

Clinical and experimental protocols of this study were approved by the Institutional
Animal Care and Use Committee of Complutense University of Madrid, Spain (number:
Proex 31/15). All procedures were completed in accordance with the Guide for the Care
and Use of Laboratory Animals and conformed to the relevant EU Directive.

2.3. Cell Injections

A suspension of 106 IPC-366 and SUM149 cells was implanted subcutaneously (ectopi-
cally) into the fourth inguinal mammary gland or orthotopically into the fourth mammary
fat pad (both n = 20, 10 IPC-366 and 10 SUM149). For orthotopical injections, animals were
anaesthetized with isoflurane at 4% and an incision was made medial to the nipple. In
order to expose the mammary gland, a cotton swab was used and cell suspension was
injected directly into the mammary fat pad with a syringe and a 26-G needle. The wound
was closed with a stapled suture.

Mice were inspected twice a week for the development of tumors. When tumors were
detected, they were monitored weekly by palpation and measured using calipers. The great-
est longitudinal diameter (length) and greatest transverse diameter (width) were measured.
Tumor volume was estimated using the formula: volume = (length × width2)/2 [26]. When
tumors reached a volume of 1.5 cm3 (endpoint), blood samples were obtained intracardially
and collected in heparin-coated tubes. Prior to this procedure, animals were anaesthetized
with isoflurane at 4% for induction and 1.5% to maintain sedation, supplied at a fresh
gas flow rate of 0.5 L oxygen/minute. After blood collection, animals were euthanized
using a lethal dose of isoflurane. Tumors were harvested at necropsy for subsequent analy-
sis. The appearance of metastasis at the lung and liver were determined macroscopically
at necropsy.

The collected tumors were divided into 2 fragments: one fragment for hitological
examination was fixed in 4% paraformaldehyde and then embedded in paraffin, and the
other fragment was frozen (−20 ◦C) for hormonal studies.

2.4. Histopathology and Immunohistochemistry

Tumors were histopathologically characterized on HE-stained sections following
the routine method for histological description of neoplasms [5]. Immunohistochemi-
cal characterization of estrogen and progesterone receptors (ER, Ref. M7047, Dako; PR,
Ref. 790-2223, Ventana, Oro Valley, AZ, USA) and human epidermal receptor-2 (HER-2,
Ref. A0485, Dako, Santa Clara, CA, USA) was performed. Paraffin sections were placed
in a PT module, heated for 20 min at 95 ◦C, and cooled down to 60 ◦C. Then, slides were
rinsed in warm tap water and placed in an automatic immunostainer device (Lab Vision
Corp., Fremont, CA, USA) for immunohistochemistry using a peroxidase detection system.
After immunostaining, the slides were counterstained with hematoxylin and permanently
mounted with Depex. Corresponding negative control slides were prepared by replacing
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the primary antibody with nonreactive antibody. Slides from human and canine mammary
tumors with previously demonstrated reactivity to the primary antibody and tissue internal
controls were used as positive controls [5].

For estrogen receptor, progesterone receptor, and HER-2 evaluation, 3+ positive
scoring was considered, following the recommended guidelines of the American Society of
Cancer Oncology (ASCO).

2.5. Steroid Determination in Serum, and Tumor Homogenates

For tumor homogenates, a total of 0.5 g of tumor collected at necropsy was homoge-
nized in phosphate-buffered saline (PBS; pH 7.2) and centrifugated at 1200× g for 20 min
at 4 ◦C. Supernatants were collected, aliquoted individually, and frozen at −80 ◦C until
hormones were assayed. Blood samples were centrifugated at 1200× g for 20 min 4 ◦C,
and the serum was separated and stored frozen at −20 ◦C before being assayed.

The hormones evaluated in this study were progesterone (P4), dehydroepiandros-
terone (DHEA), androstenedione (A4), testosterone (T), dihydrotestosterone (DHT), estrone
sulfate (E1SO4), and 17beta-estradiol (E2). The antibodies used were P4 (C914), A4 (C9111),
T (R156), E1SO4 (R522-2), and E2 (C6E91). The antibodies were developed in the De-
partment of Physiology (UCM, Madrid, Spain). DHEA and DHT determinations were
performed using a commercially available EIA kit (Demeditech Diagnostic GmbH, Kiel,
Germany) following the manufacturer’s instructions.

Determined steroid hormones in tumor homogenates were assayed using previously
validated competitive enzyme-linked immunosorbent assay (ELISA), and an amplified
ELISA was used for blood samples [26]. Briefly, 96-well flat-bottom medium-binding
polystyrene microplates (Greiner Bio-One, Madrid, Spain) were coated with the appropriate
purified antibody dilution overnight at 4 ◦C. Afterward, for competitive ELISA, plates
were washed and standards and tumor homogenate samples were diluted in working
solution (CWS) and analyzed in duplicate. Plates were incubated at room temperature
for 2 h. For amplified ELISA, standards and serum samples were added in duplicate and
incubated overnight at 4 ◦C, then CWS was added to each well and incubated for 4 h
at room temperature. For both ELISAs, after conjugate incubation plates were washed,
to evaluate the amount of labelled steroid hormones, Enhanced K-Blue TMB substrate
(Neogen, Lexington, KY, USA) was added to each well and incubated for an additional
15 min at room temperature. Finally, colorimetric reaction was stopped via the addition
of 10% H2SO4 to each well. Absorbance was read at 450 nm using an automatic plate
reader. Hormone concentrations were calculated by means of software developed for this
technique (ELISA AID, Eurogenetics, Brussels, Belgium). A standard dose-response curve
was constructed by plotting the binding percent (B/B0 × 100) against each steroid hormone
standard concentration. All hormone concentrations were expressed in ng/g for tumor
homogenates and ng/mL for serum samples.

2.6. Statistics

The statistics software used for data analysis was SAS 9.4 (UCM, Madrid, Spain).
The results were expressed as means ± SD. For tumor progression analysis (time of
palpable tumor, % of tumor engraftment, time of 1.5 cm3 volume (edpoint days), and
% of animals with metastasis) and hormone determination to compare both cell lines
(IPC-366 and SUM149) in each group, the one way ANOVA and Mann-Whitney rank-sum
tests were performed. In all statistical comparisons, p < 0.05 was accepted as denoting
significant difference.

3. Results
3.1. Differences in Tumor Appearance Time According to the Manner of Cell Injection

IPC-366 and SUM149 cells were injected ectopically and orthotopically in female SCID
mice to observe if there were differences in tumor growth (Table 1, Figure 1). When IPC-366
cells were injected subcutaneously, all mice (100%) reproduced a tumor that was palpable
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approximately 2 weeks after injection (16.64 ± 1.72 days). When cells were injected into MFP,
70% of mice reproduced a tumor approximately 3 weeks after injection (21.40 ± 3.71 days).
However, these differences were not statistically significant.

Table 1. Tumor growth parameters of IPC-366 and SUM149 cell lines in ectopic and orthotopic models.

Cell Line Injection % of Tumor
Engraftment

Time of Palpable
Tumor (Days)

Time of 1.5 cm3 Volume
(Edpoint, Days)

% of Animals
with Metastasis

IPC-366 (n = 20)
Ectopic (n = 10) 100% 16.64 ± 1.72 42.02 ± 2.35 90%

Orthotopic (n = 10) 70% 21.40 ± 3.71 49.81 ± 2.21 * 40% *

SUM149 (n = 20)
Ectopic (n = 10) 80% 26.82 ± 2.19 a 53.40 ± 4.86 a 80%

Orthotopic (n = 10) 70% 30.35 ± 3.47 51.46 ± 3.67 60%

* p < 0.05; significant differences between ectopic and orthotopic models on each cell line. a; significant differences (p < 0.05) between
cell lines.
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Figure 1. Tumor growth progression in ectopic and orthotopic models. The two injection models of both cell lines showed a
fast pattern of tumor growth progression. Bar represents means ± SD * p < 0.05; significant differences between ectopic
and orthotopic models on each cell line. a; significant differences (p < 0.05) between cell lines in each group (ectopic
and orthotopic).

Approximately 4 weeks after injection, with SUM149 cells injected subcutaneously,
80% of mice reproduced a tumor (26.82 ± 2.19 days), and with cells injected into the MFP,
70% of mice reproduced a tumor (30.35 ± 3.47 days), and there was no significant difference
in the time palpable tumors were found between the 2 groups.

Regarding differences between cell lines, ectopic injection of IPC-366 resulted in
significantly earlier tumor appearance (p < 0.05) than SUM149. However, with orthotopic
injections no significant differences were found between the two cell lines.

3.2. Tumor Progression in Ectopic and Orthotopic Models

After the emergence of tumors, their progression was monitored to observe if there
were differences between ectopic and orthotopic models. Tumor progression with IPC-366
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and SUM149 cell lines was similar (Figure 1). Both cell lines exhibited rapid growth in vivo,
reaching a volume of 1500 mm3 approximately 6–8 weeks after injection; it was significantly
earlier in the IPC-366 ectopic model (p < 0.05), which reached final volume 6 weeks after
injection (Table 1).

3.3. Occurrence of Metastasis According to the Manner of Cell Injection

These two models developed spontaneous distant metastases (Table 1). No significant
differences were found between cell lines in the two models of injection. However, dif-
ferences in the incidence of metastasis in IPC-366 were found between ectopic (90%) and
orthotopic (40%) models, the appearance of metastases in the ectopic model being greater.

3.4. Histological Characteristics of Ectopic and Orthotopic Models

The histological examination of tumors from ectopic models revealed highly infiltrat-
ing, poorly demarcated, unencapsulated, densely cellular neoplastic growth extending
into the adjacent dermis (Figure 1, inset) and striated muscle. Similarly, in the orthotopic
models, both IPC-366 and SUM149 xenotransplanted mice had infiltrating, unencapsulated,
and densely cellular masses infiltrating the adjacent adipose tissue and compressing the
adjacent skin. In both orthotopic and ectopic xenografts, neoplastic cells were arranged in
solid masses separated by a scant fibrovascular stroma. The neoplastic cells were medium
size, round to oval, with indistinct cell borders and a moderate eosinophilic cytoplasm.
The nucleus was medium to large, round to oval, with stippled chromatin, and one to two
magenta nucleoli were evident. Anisocytosis and anisokaryosis were marked, the mitotic
index was very high, and atypical mitoses were frequently observed (Figure 2).

In addition, some neoplastic cells presented morphological features of endothelial-like
cells (ELCs): a rim of elongated, encircled cytoplasm that displaced an elongated nucleus
to the periphery was a common finding, suggesting the presence of vasculogenic mimicry
(Figure 2).

The presence of emboli in dermal capillaries and marked dermal edema, character-
ized by colorless spaces that separated dermal collagen fibers, confirmed the histological
characteristics of inflammatory mammary carcinoma.

No morphological differences were found between IPC-366 and SUM149 in both
orthotopic and ectopic xenografts, so IPC-366 can be considered a good model compared
with its human counterpart SUM149 cell line.

Tumors generated by IPC-366 and SUM149 cell lines have common characteristics on
the expression of ER, PR, and HER2 and were found to be negative in both ectopic and
orthotopic xenografts (Table 2).

Table 2. Estrogen receptor (ER), Progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER-2) expression on ectopic and orthotopic xenografts from IPC-366 and SUM149
cell lines.

Receptor IPC-366
Ectopic

IPC-366
Orthotopic

SUM149
Ectopic

SUM149
Orthotopic

ER Negative Negative Negative Negative

PR Negative Negative Negative Negative

HER-2 Negative Negative Negative Negative
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periphery, suggestive of endothelial-like cells (ELCs) (arrow). Atypical mitoses were frequently seen (arrowhead).

3.5. Similar Steroid Hormone Secretion in Ectopic and Orthotopic Models

Figure 3 shows the results of the concentrations of steroid hormones studied (P4,
DHEA, A4, T, DHT, E1SO4, and E2), in both serum and tumor homogenate.

No significant differences in the plasma and intratumoral hormonal levels of the
human and canine inflammatory carcinoma cell lines (SUM149 and IPC-366) were observed,
nor are there differences depending on the type of inoculation (orthotopic or ectopic).
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4. Discussion

Animal models of human breast cancer are valuable in cancer research for understand-
ing the pathophysiology of cancer, including new target identification [16]. In general,
tumor development in murine models is faster and more homogeneous. In the early 1970s,
it was demonstrated that human tumor tissues could be successfully grown in athymic
nu/nu mice, leading to ectopic tumor xenografts becoming a valuable approach to the
study of cancer biology [16,17,19,20]. Nowadays, specific types of tumor models in rodents
include ectopic xenografts of tumor-derived cell lines and orthotopic xenografts in which
tumor cell lines are implanted into the primary tumor source [16,17,19].

The choice of the type of implantation of tumor cells is a critical step in cancer re-
search, and a comparative study of these models is needed. In tumor models, the murine
microenvironment affects the efficiency of engraftment, the rate of tumor growth, and their
ability to metastasize [17,19,20,27]. Many breast cancer cell lines have the ability to grow
subcutaneously, but ectopic xenograft models have limitations with regard tumor growth
location, loss of tumor heterogeneity, and the absence of a specific murine microenviron-
ment, which leads to tumor cells having paracrine interactions with noncancerous cells and
tissues [17,18,28,29]. This is why several investigators have moved away from ectopic and
use orthotopic xenografts in the MFP. It seems that orthotopic implantation has the advan-
tage that the tumor growth is in the tissue of origin of the primary tumor and facilitating
metastatic spread [20,27]. However, this implantation type also has disadvantages, such
as the need for complex surgeries, the rodent microenvironment, variable tumor take-up
rates, and the long time for primary tumor development [17–20].

This study intended to determine the differences in tumor characteristics in terms of
progression, metastatic capacity, histological features, and hormonal secretion in ectopic
and orthotopic models in order to evaluate the capacity of both models for their use in
breast cancer research. To achieve this purpose, we decided to use two triple-negative cell
lines of canine and human inflammatory carcinoma (IPC-366 and SUM149), which have
been shown to have significant tumorigenic potential [30]. cIMC and hIBC are considered
to be the most malignant and aggressive subtypes of breast cancer affecting female dogs
and humans, respectively [4,6,25].

cIMC has been suggested as a model to study the human disease [4,5,25]. Recently,
a triple-negative cIMC cell line (IPC-366) was established as a useful tool for TNBC re-
search [1,14,25]. This study also intended to show that triple-negative cell lines from hIBC
(SUM149) and cIMC (IPC-366) resemble each other, sharing in vivo characteristics. The
results described above support the statement that cIMC is a good model for studying
human disease.

On the other hand, the use of ectopic and orthotopic models in hIBC and cIMC
research is limited. There are two murine models (patient derived xenografts) established
for human inflammatory breast cancer, MARY-X and WIBC-9 [31,32], and recently a murine
model for cIMC was established [18]. Therefore, the use of xenografts from hIBC and cIMC
cell lines is crucial for research in this type of cancer.

In this study, the results reveal that with IPC-366 ectopic xenografts, 100% of mice
reproduced a tumor 2 weeks post inoculation compared to 70% of mice with orthotopic
xenografts, which reproduced a tumor 1 week later. However, SUM149 xenografts did
not show significant differences in frequency of tumor appearance (80% ectopic and 70%
orthotopic) or time of tumor emergence (4 weeks post inoculation in both). These results
are in agreement with the literature [14,25,28]. Thus, ectopic models of cIMC may have
an advantage over orthotopic models in that they have higher success rates. Possibly
the difference in results between the human and canine models is due to the fact that
the IPc-366 cell line presents a tumorogenic and malignancy potential greater than the
human SUM149 cell line [30]. Therefore, the ectopic model can be validated as a good and
useful model of tumor development in addition to, not contrary to, the orthotopic model.
Furthermore, the results showed that IPC-366 and SUM149 grew rapidly in vivo and with
tumor progression similar in both ectopic and orthotopic xenografts. Several studies found
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a correlation between tumor morphology and aggressiveness [4,6]. Agollah and colleagues
(2014) showed that the orthotopic SUM149 model grew as multiple nodes/clusters and
was capable of producing spontaneous metastasis, which is in accordance with our results
in both cell lines [33].

Approximately 40% of hIBC patients have distant metastases to the brain, bones, and
lymph nodes [33–35]. hIBC and cIMC are capable of spreading into the skin and distant
sites through dermal lymphatic vessels [4,33,35]. According to the literature, the metastatic
rates of ectopic xenografts are low compared with orthotopic models, in human studies [17].
In this study, the high rates found in both models differed from what is observed in most
other tumor types based on literature [17]. A possible explanation could reside in the
fact that ectopic subcutaneous injection of breast cancer cells can be performed very near
the mouse mammary gland, while ectopic injections of other tumor types, such as brain
tumors, are traditionally injected subcutaneously into the hind flank, far from the tissue
of origin. In addition, we found a higher percentage of metastasis in the IPC-366 ectopic
model than the orthotopic model. However, in SUM149 no differences were found between
both models. However, dissemination patterns may vary not only between mice and
humans but also among mouse strains [19,20]. Although we found these differences, both
models reflect patterns of human and canine disease, such as metastasis, which help in the
investigation of inflammatory breast carcinoma and validate the use of both models for a
better understanding of breast cancer.

In order to further explore the differences between the ectopic and orthotopic models,
we studied the histological characteristics of the tumors generated in both. No morpho-
logical differences were found between IPC-366 and SUM149 in orthotopic and ectopic
xenografts, so IPC-366 is a good model compared with its human counterpart SUM149
cell line. In both models, neoplastic cells were distributed in solid masses and presented
marked anisocytosis and anisokaryosis, characteristics that are similar to the appearance of
tumors in the two species studied.

hIBC is predominantly ER-negative, PR-negative, and HER2-positive. It is known that
triple-negative breast cancer (TNBC) is highly proliferative and sensitive to chemotherapy
and has a poor prognosis [35–37]. In our study, the expression of ER, PR, and HER-2
receptors was negative in both the ectopic and orthotopic models, again validating the use
of these models in breast cancer research.

It is important that xenograft models preserve inter- and intratumoral heterogene-
ity [38]. It has been shown that the hormonal tumor environment is crucial for tumor
progression and dissemination [1,25]. In order to elucidate whether ectopic and ortho-
topic models share tumor microenvironment characteristics, an evaluation of their steroid
hormone secretion and production profiles was performed.

In previous studies carried out by our group, possible local synthesis of some steroid
hormones was indicated in normal and neoplastic mammary glands in canine mammary
carcinoma, and more recently in hIBC and cIMC [1,26]. The formation of sex steroids
in peripheral tissues in humans is well documented [39]. The action of progestogens,
estrogens, and androgens (produced locally or not) is crucial in neoplastic growth and
progression of breast cancer, due to their interactions with specific receptors [1,39]. From
the results obtained, it can be seen that the plasma hormone levels (P4, DHEA, A4, T, DHT,
E1SO4, and E2) were similar between the ectopic and orthotopic models, and similarly, the
intratumoral hormone levels were similar between the 2 models. Thus, the ectopic and
orthotopic models presented similar steroid hormone profiles, indicating that both models
can be used.

The limitations to this study are that the results are only reproducible for these two
human and canine inflammatory carcinoma cell lines and for their use in SCID mice; in
other immunosuppressed mouse strains the results may vary. In addition, other factors
such as the cell line pass number can influence the engraftment rate.



Vet. Sci. 2021, 8, 194 11 of 12

5. Conclusions

Ectopic and orthotopic models with hIBC and cIMC cell lines share characteristics in
terms of tumor progression, metastatic rates, histological features, and hormonal secretion
profiles, and both are useful for cancer research. Furthermore, the ectopic model can be
validated as a good and useful model of tumor development in addition to and not contrary
to the orthotopic model.
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