Dietary Implications of Detoxified Jatropha curcas Kernel for Clarias gariepinus Fingerlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstuff Procurement and Processing
2.2. Feedstuff Nutritional Analysis and Diet Formation
2.3. Zootechnical Evaluation of Fish Performance
- (a)
- Growth rate (g/d) = ; where W1 = initial weight (g); W2 = final weight (g); t2 − t1 = duration between W2 and W1 (days)
- (b)
- Specific growth rate (%/day) = ;
- (c)
- Feed conversion ratio (FCR) = ;
- (d)
- %Survival = .
2.4. Blood Analysis of the Experimental Fish
2.5. Histological Analysis of Tissues
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Agricultural Department, Production Information. Data and Statistics Unit. Fish Oilseed Stat. 2008. Available online: http://www.fao.org/ag/statist.asp (accessed on 5 March 2019).
- Okomoda, V.T. Hybridization between Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Ph.D. Thesis, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia, 2018; p. 317. [Google Scholar] [CrossRef]
- Tesfahun, A. Feeding biology of the African catfish Clarias gariepinus (Burchell) in some of Ethiopian lakes: A review. Int. J. Fauna. Biol. Stud. 2018, 5, 19–23. [Google Scholar]
- Okomoda, V.T.; Koh, I.C.C.; Hassan, A.; Amornsakun, T.; Shahreza, M.S. Performance and characteristics of the progenies from the crosses of Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Aquaculture 2018, 489, 96–104. [Google Scholar] [CrossRef]
- Olufeagba, S.O.; Okomoda, V.T. Cannibalism and performance evaluation of hybrids between Clarias batrachus and Clarias gariepinus. Croat. J. Fish. 2016, 74, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Tacon, A.G.J.; Hasan, M.R.; Metian, M.R. Demand and Supply of Feed Ingredients for Farmed Fish and Crustaceans: Trends and Prospects; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Pelletier, N.; Klinger, D.H.; Sims, N.A.; Yoshioka, J.R.; Kittinger, J.N. Nutritional attributes, substitutability, scalability, and environmental intensity of an illustrative subset of current and future protein sources for aquaculture feeds: Joint consideration of potential synergies and trade-offs. Environ. Sci. Technol. 2018, 52, 5532–5544. [Google Scholar] [CrossRef]
- Musa, S.O.; Tiamiyu, L.O.; Solomon, S.G.; Ayuba, V.O.; Okomoda, V.T. Nutritional value of hydrothermally processed Jatropha curcas kernel and its effect on growth and hematological parameters of Clarias gariepinus (Burchell, 1822). Aquac. Rep. 2018, 10, 32–38. [Google Scholar] [CrossRef]
- Okomoda, V.T.; Musa, S.O.; Tiamiyu, L.O.; Solomon, S.G.; Oladimeji, A.S.; Hassan, A.; Alabi, K.I.; Abol-Munafi, A.B. Fermentation of Hydrothermal processed Jatrophaa curcas Kernel: Effects on the Performance of Clarias gariepinus (Burchell, 1822) fingerlings. Aquac. Rep. 2020, 18, 100428. [Google Scholar] [CrossRef]
- Adeshina, I.; Abubakar, M.I.O.; Ajala, B.E. Dietary supplementation with Lactobacillus acidophilus enhanced the growth, gut morphometry, antioxidant capacity, and the immune response in juveniles of the common carp, Cyprinus carpio. Fish. Physiol. Biochem. 2020, 46, 1375–1385. [Google Scholar] [CrossRef]
- Bandara, T. Alternative feed ingredients in aquaculture: Opportunities and challenges. J. Entomol. Zool. Stud. 2018, 6, 3087–3094. [Google Scholar]
- Djissou, A.S.; Adjahouinou, D.C.; Koshio, S.; Fiogbe, E.D. Complete replacement of fish meal by other animal protein sources on growth performance of Clarias gariepinus fingerlings. Int. Aquat. Res. 2016, 8, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Monebi, O.C.; Ugwumba, A.A.A. Culture and utilization of the earthworm Alma millsoni in the diet of Clarias gariepinus fingerlings. Zool. Ecol. 2016, 26, 35–46. [Google Scholar] [CrossRef]
- Shamna, N.; Sardar, P.; Sahu, N.; Pal, A.; Jain, K.; Phulia, V. Nutritional evaluation of fermented Jatropha protein concentrate in Labeo rohita fingerlings. Aquacult. Nutr. 2015, 21, 33–42. [Google Scholar] [CrossRef]
- Kumar, V.; Makkar, H.P.S.; Becker, K. Detoxification of Jatropha curcas seed meal and its utilization as a protein source in fish diet. Comp. Biochem. Physiol. 2008, 151, 13–14. [Google Scholar] [CrossRef]
- Yue, Y.; Zhou, Q. Effect of replacing soybean meal with cottonseed meal on growth, feed utilization, and hematological indexes for juvenile hybrid tilapia, Oreochromis niloticus × O. aureus. Aquaculture 2009, 284, 185–189. [Google Scholar] [CrossRef]
- Gan, L.; Li, X.X.; Pan, Q.; Wu, S.L.; Feng, T.; Ye, H. Effects of replacing soybean meal with faba bean meal on growth, feed utilization and antioxidant status of juvenile grass carp. Ctenopharyngodon idella. Aquac. Nutr. 2017, 23, 192–200. [Google Scholar] [CrossRef]
- Furaya, W.M.; Furaya, V.R.B. Nutrtitional Innovations on amino acids supplementation in Nile tilapia diets. Revestiva Bras. Zootec. 2010, 39, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tao, Q.; Wang, Z.; Mai, K.; Xu, W.; Zhang, Y.; Ai, Q. Effects of fish meal replacement by soybean meal with supplementation of functional compound additives on intestinal morphology and microbiome of Japanese seabass (Lateolabrax japonicus). Aquac. Res. 2017, 48, 2186–2197. [Google Scholar] [CrossRef]
- Adeshina, I.; Abdel-Tawwab, M. Dietary taurine incorporation to high plant protein-based diets improved growth, biochemical, immunity, and antioxidants biomarkers of African catfish, Clarias gariepinus (B.). Fish Physiol. Biochem. 2020, 46, 1323–1335. [Google Scholar] [CrossRef] [PubMed]
- Okomoda, V.T.; Tiamiyu, L.O.; Akpan, I.S. Nutritional evaluation of toasted Mucuna utilis seed meal and its utilization in the diet of Clarias gariepinus (Burchell, 1822). J. Appl. Aquac. 2017, 29, 167–182. [Google Scholar] [CrossRef]
- Nwosu, J.N. Effect of Soaking, Blanching and Cooking on the Anti-nutritional Properties of Asparagus Bean (Vigna Sesquipedis) Flour. Nat. Sci. 2010, 8, 163–167. [Google Scholar]
- Makinde, F.M.; Akinoso, R.; Adepoju, A.O. Effect of fermentation containers on the chemical composition of fermented Sesame (Sesamum indicum L.) seeds. Afr. J. Food Agric. Nutr. Dev. 2013, 13, 7122–7137. [Google Scholar] [CrossRef]
- Kajihausa, O.E.; Fasasi, R.A.; Atolagbe, Y.M. Effect of different soaking time and boiling on the proximate composition and functional properties of sprouted sesame seed flour. Niger. Food J. 2014, 32, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.G.; Okomoda, V.T.; Onah, R.E. Nutritional profile of soaked Cajanus cajan (L.) Millsp. and its utilization as partial replacement for soybean meal in the diet of Clarias gariepinus (Burchell, 1822) fingerlings. J. Appl. Ichthyol. 2017, 33, 450–457. [Google Scholar] [CrossRef]
- Martinez-Herrera, J.; Siddhuraju, P.; Francis, G.; Davila-Ortiz, G.; Becker, K. Chemical composition toxic/antimetabolic constituents and effects of different treatments on their levels in four provenances of Jatropha curcas from Mexico. Food Chem. 2006, 96, 80–89. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plants derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Kumar, V.; Makkar, H.P.S.; Becker, K. Detoxified Jatropha curcas meal as a dietary protein source: Growth performance, nutrient utilization and digestive enzymes in common carp (Cyprinus carpio L.) fingerlings. Aquac. Nutr. 2011, 17, 313–326. [Google Scholar] [CrossRef]
- Kumar, V.; Makkar, H.P.S.; Becker, K. Nutritional, physiological and haematological responses in rainbow trout (Oncorhynchus mykiss) juveniles fed detoxified Jatropha curcas kernel meal. Aquac. Nutr. 2011, 17, 451–467. [Google Scholar] [CrossRef]
- Johnson, O.R.; Samuel, S.; Belema, S.S.; Chiamaka, I.S. Proximate and toxicological analyses of detoxified Jatropha curcas seeds. J. Pharm. Biol. Sci. 2015, 10, 23–26. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis AOAC International Methods 934.01, 988.05, 920.39 and 942.05; AOAC International: Arlington, VA, USA, 2001. [Google Scholar]
- Vaintraub, I.A.; Lapteva, N.A. Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. Anal. Biochem. 1988, 175, 227–230. [Google Scholar] [CrossRef]
- Abeza, R.H.; Blake, J.T.; Fisher, E.J. Oxalate determination: Analytical Problems Encountered with Certain Plant Species. J. Assoc. Off. Agric. Chem. 1968, 51, 963–965. [Google Scholar] [CrossRef] [Green Version]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of Official Chemists International, 19th ed.; AOAC: Arlington, VA, USA, 2012. [Google Scholar]
- Smith, C.; VanMegen, W.; Twaalfhoven, L.; Hitchcook, C. The determinations of trypsin inhibitor levels in foodstuffs. J. Sci. Food Agric. 1980, 31, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Arntfield, S.D.; Ismond, M.A.H.; Murray, E.D. The fate of antinutritional factors during the preparation of faba bean protein isolate using micellization techniques. Can. Inst. Food. Technol. J. 1985, 18, 137–143. [Google Scholar] [CrossRef]
- Tiamiyu, L.O.; Solomon, S.G. Growth and nutrient utilization of varying levels of toasted Bambara nut (Voandzeia subtervanae) based diets for Clarias gariepinus fingerlings. Glob. J. Agric. Sci. 2007, 7, 149–152. [Google Scholar]
- Klontz, G.W.; Smith, L.S. Methods of using fish in biological research subject. In Methods of Animal Experimentation III; Coy, W.L., Ed.; Academic Press: Cambridge, MA, USA, 1968; pp. 323–385. [Google Scholar]
- Wedemeyer, G.; Yasutake, W.T. Clinical Methods for the Assessment of the Effects of Environmental Stress on Fish Health; Technical Paper, No. 89; US Fish and Wildlife Service: Washington, DC, USA, 1977; p. 19.
- Campbell, T.W.; Murru, F. An introduction to fish hematology. Compend. Contin. Educ. Vet. Sci. 1990, 12, 525–533. [Google Scholar]
- Dacie, J.V.; Lewis, S.M. Practical Haematology, 9th ed.; Churchill: London, UK, 2001; p. 633. [Google Scholar]
- Drabkin, D.R. Crystallographic and optical properties of human hemoglobin: A proposal for the standardization of hemoglobin. Am. J. Med. Sci. 1945, 209, 268–270. [Google Scholar]
- Barros, M.M.; Lim, C.; Klesius, P.H. Effect of iron supplementation to cotton seed meal diets on growth performance of channel catfish, Ictalurus punctatus. J. Appl. Aquac. 2002, 10, 86–92. [Google Scholar]
- Klinger, R.C.; Blazer, V.S.; Echevarria, C. Effects of dietary lipid on the hematology of channel catfish, Ictalurus punctatus. Aquaculture 1996, 147, 225–233. [Google Scholar] [CrossRef]
- Okomoda, V.T.; Koh, I.C.C.; Hassan, A.; Amornsakun, T.; Shahreza, M.S. Water quality tolerance and gill morphohistology of pure and reciprocal crosses of Pangasianodon hypophthalmus and Clarias gariepinus. J. King Saud. Univ. Sci. 2019, 31, 713–723. [Google Scholar] [CrossRef]
- Rawat, K.; Nirmala, C.; Bisht, M.S. Processing Techniques for Reduction of Cyanogenic Glycosides from Bamboo Shoots. In Proceedings of the 10th World Bamboo Congress, Damyang, Korea, 17–22 September 2015. [Google Scholar]
- Abou-Arab, A.A.; Abu-Salem, F.M. Nutritional quality of Jatropha curcas seeds and effect of some physical and chemical treatments on their anti-nutritional factors. Afr. J. Food Sci. 2010, 4, 93–103. [Google Scholar]
- Ogunji, J.O.; Wirth, M. Effect of dietary protein content on growth, food conversion and body composition of Oreochromis niloticus fingerlings, fed fish meal diet. J. Aquac. Trop. 2000, 15, 381–389. [Google Scholar]
- Kumar, V.; Makkar, H.P.; Romano, N.; Becker, K. Utilization of a by-product from the Jatropha biodiesel industry as a fish meal replacer in common carp Cyprinus carpio L. diets. J. Appl. Aquac. 2019, 31, 48–67. [Google Scholar] [CrossRef]
- Jahan, P.; Watanabe, T.; Kiron, V.; Satoh, S. Improved carp diets based on plant protein sources reduce environmental phosphorus loading. Fish Sci. 2003, 69, 219–225. [Google Scholar] [CrossRef]
- Hasan, M.R.; Macintosh, D.J.; Jauncey, K. Evaluation of some plant ingredients as dietary protein sources for common carp (Cyprinus carpio L.) fry. Aquaculture 1997, 151, 55–70. [Google Scholar] [CrossRef]
- Yılmaz, E.; Genc, E. Effects of alternative dietary lipid sources (soy-acid oil and yellow grease) on growth and hepatic lipidosis of common carp (Cyprinus carpio) fingerling: A preliminary study. Turk. J. Fish. Aquac. Sci. 2006, 6, 37–42. [Google Scholar]
- Akinleye, A.O.; Kumar, V.; Makkar, H.P.S.; Angulo-Escalante, M.A.; Becker, K. Jatropha platyphylla kernel meal as feed ingredient for Nile tilapia (Oreochromis niloticus L.): Growth, nutrient utilization and blood parameters. J. Anim. Physiol. Anim. Nutr. 2012, 96, 119–129. [Google Scholar] [CrossRef]
- Hemre, G.I.; Sanden, M.; Bakke-Mckellep, A.M.; Sagstad, A.; Krogdahl, A. Growth, feed utilization and health of Atlantic salmon Salmo salar L. fed genetically modified compared to nonmodified commercial hybrid soybeans. Aquac. Nutr. 2005, 11, 157–167. [Google Scholar] [CrossRef]
- NRC. Requirement of Fish; National Academy Press: Washington, DC, USA, 1993.
- Dharmani, P.; Srivastava, V.; Kissoon-Singh, V.; Chadee, K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J. Innate Immun. 2009, 1, 123–135. [Google Scholar] [CrossRef] [PubMed]
Parameter | Soaking Time | |||
---|---|---|---|---|
0 h | 24 h | 48 h | 72 h | |
Proximate composition (%) | ||||
Crude Protein | 55.29 ± 0.39 c | 56.10 ± 0.11 b | 56.19 ± 0.30 b | 57.02 ± 0.12 a |
Fat | 9.45 ± 0.50 a | 9.32 ± 0.14 a | 8.72 ± 0.11 b | 8.69 ± 0.26 b |
Ash | 8.91 ± 0.12 a | 8.50 ± 0.10 b | 8.25 ± 0.31 c | 8.17 ± 0.38 d |
Crude Fibre | 8.59 ± 0.22 c | 8.75 ± 0.02 c | 9.22 ± 0.03 b | 9.73 ± 0.05 a |
Moisture | 1.79 ± 0.02 d | 2.19 ± 0.11 c | 2.69 ± 0.01 b | 2.98 ± 0.03 a |
NFE | 15.96 ± 0.55 a | 15.14 ± 0.14 b | 14.92 ± 0.19 b | 13.39 ± 0.13 c |
Antinutrients (g 100 g−1) | ||||
Phytic Acid | 12.29 ± 0.42 a | 9.50 ± 0.16 b | 7.55 ± 0.11 c | 5.82 ± 0.02 d |
Oxalate | 1.15 ± 0.11 a | 0.93 ± 0.04 b | 0.48 ± 0.02 c | 0.41 ± 0.00 d |
Cyanogenic Glycoside | 0.83 ± 0.34 a | 0.60 ± 0.03 b | 0.43 ± 0.01 c | 0.23 ± 0.02 d |
Phytate | 3.49 ± 0.39 a | 0.28 ± 0.03 b | 0.03 ± 0.01 c | 0.04 ± 0.01 c |
Trypsin Inhibitor | 2.99 ± 0.13 a | 2.18 ± 0.08 b | 2.14 ± 0.06 b | 1.91 ± 0.02 c |
Parameter | Soaking Time | |||
---|---|---|---|---|
0 h | 24 h | 48 h | 72 h | |
Diet formulation (g k−1) | ||||
Jatropha curcas | 294.80 | 294.90 | 291.80 | 291.20 |
Soybean | 413.20 | 410.70 | 459.90 | 462.20 |
Yellow maize | 65.80 | 66.90 | 45.60 | 42.50 |
Cassava flour | 15.80 | 16.10 | 11.00 | 10.20 |
Rice bran | 60.30 | 61.40 | 41.80 | 38.90 |
Fish meal | 100.00 | 100.00 | 100.00 | 100.00 |
* Vit/Min premix | 50.00 | 50.00 | 50.00 | 50.00 |
Proximate analysis (%) | ||||
Crude Protein | 35.41 ± 0.12 a | 35.85 ± 0.12 a | 35.58 ± 0.16 a | 35.12 ± 0.15 a |
Fat | 7.16 ± 0.36 b | 6.76 ± 0.32 c | 7.12 ± 0.20 b | 7.37 ± 0.25 a |
Ash | 8.22 ± 0.23 a | 5.89 ± 0.42 b | 5.54 ± 0.21 c | 5.33 ± 0.17 c |
Crude fibre | 6.89 ± 0.32 a | 5.59 ± 0.15 b | 5.74 ± 0.23 b | 4.16 ± 0.11 c |
NFE | 27.43 ± 0.39 | 27.09 ± 0.17 | 27.26 ± 0.54 | 27.34 ± 0.95 |
Energy (kcal g −1) | 314.91 ± 1.34 | 314.83 ± 1.02 | 315.01 ± 2.00 | 315.21 ± 0.4 |
Parameter | Soaking Time | |||
---|---|---|---|---|
0 h | 24 h | 48 h | 72 h | |
Final weight (g) | 9.95 ± 0.05 d | 14.85 ± 0.05 c | 14.60 ± 0.10 b | 15.80 ± 0.10 a |
Weight gain (g) | 3.76 ± 0.15 d | 8.66 ± 0.20 bc | 8.41 ± 0.10 b | 9.61 ± 0.35 a |
Specific Growth Rate (g day−1) | 0.86 ± 0.05 c | 1.57 ± 0.06 b | 1.54 ± 0.02 b | 1.68 ± 0.10 a |
Feed Conversion Ratio | 3.16 ± 0.14 a | 1.40 ± 1.75 b | 1.46 ± 0.45 b | 1.20 ± 0.56 c |
Survival (%) | 62.50 ± 0.34 d | 86.67 ± 0.58 c | 90.00 ± 1.00 b | 93.33 ± 0.58 a |
Parameter | Soaking Time | |||
---|---|---|---|---|
0 h | 24 h | 48 h | 72 h | |
Moisture | 78.63 ± 0.56 a | 78.26 ± 0.14 a | 78.20 ± 0.26 a | 78.56 ± 0.24 a |
Crude Protein | 12.90 ± 0.12 c | 13.22 ± 0.73 b | 13.20 ± 0.38 b | 13.64 ± 0.43 a |
Fat | 3.69 ± 0.11 a | 3.96 ± 0.03 a | 3.26 ± 0.06 b | 3.07 ± 0.12 b |
Ash | 2.12 ± 0.13 b | 2.17 ± 0.26 b | 2.84 ± 0.09 a | 2.98 ± 0.04 a |
Nitrogen Free Extract | 2.65 ± 0.11 a | 1.97 ± 0.01 b | 1.77 ± 0.70 c | 1.75 ± 0.52 c |
Parameter | Soaking Time | |||
---|---|---|---|---|
0 h | 24 h | 48 h | 72 h | |
Haematocrit (%) | 17.33 ± 2.02 d | 23.16 ± 0.76 c | 24.83 ± 0.76 b | 25.5 ± 1.32 a |
Haemoglobin (g/dL) | 5.83 ± 0.67 d | 7.72 ± 0.25 c | 8.27 ± 0.25 b | 8.50 ± 0.44 a |
Red Blood Cell (106 cells/mm3) | 0.95 ± 0.10 c | 1.21 ± 0.04 b | 1.30 ± 0.04 a | 1.34 ± 0.07 a |
Mean Cell Volume (fL) | 189.00 ± 0.41 | 190.41 ± 0.30 | 190.53 ± 0.27 | 190.30 ± 0.47 |
Mean Cell Haemoglobin (pg) | 63.21 ± 0.11 | 63.47 ± 0.08 | 63.50 ± 0.07 | 63.43 ± 0.13 |
Mean Cell Haemoglobin Conc. (g/dL) | 33.35 ± 0.42 | 33.33 ± 0.21 | 33.30 ± 0.36 | 33.33 ± 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okomoda, V.T.; Musa, S.O.; Tiamiyu, L.O.; Solomon, S.G.; Alamanjo, C.C.; Abol-Munafi, A.B. Dietary Implications of Detoxified Jatropha curcas Kernel for Clarias gariepinus Fingerlings. Vet. Sci. 2021, 8, 152. https://doi.org/10.3390/vetsci8080152
Okomoda VT, Musa SO, Tiamiyu LO, Solomon SG, Alamanjo CC, Abol-Munafi AB. Dietary Implications of Detoxified Jatropha curcas Kernel for Clarias gariepinus Fingerlings. Veterinary Sciences. 2021; 8(8):152. https://doi.org/10.3390/vetsci8080152
Chicago/Turabian StyleOkomoda, Victor Tosin, Sarah Ojonogecha Musa, Lateef Oloyede Tiamiyu, Shola Gabriel Solomon, Cosmas Chidiebere Alamanjo, and Ambok Bolong Abol-Munafi. 2021. "Dietary Implications of Detoxified Jatropha curcas Kernel for Clarias gariepinus Fingerlings" Veterinary Sciences 8, no. 8: 152. https://doi.org/10.3390/vetsci8080152