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Abstract: The paper demonstrates a new approach to identify healthy calves (“healthy”) and naturally
occurring infectious bronchopneumonia (“sick”) calves by analysis of the gaseous phase over nasal
secretions using 16 piezoelectric sensors in two portable devices. Samples of nasal secretions were
obtained from 50 red-motley Holstein calves aged 14–42 days. Calves were subjected to rectal
temperature measurements, clinical score according to the Wisconsin respiratory scoring chart,
thoracic auscultation, and radiography (Carestream DR, New York, USA). Of the 50 calves, we
included samples from 40 (20 “healthy” and 20 “sick”) in the training sample. The remaining ten
calves (five “healthy” and five “sick”) were included in the test sample. It was possible to divide
calves into “healthy” and “sick” groups according to the output data of the sensor arrays (maximum
sensor signals and calculated parameters Ai/j) using the principal component linear discriminant
analysis (PCA–LDA) with an accuracy of 100%. The adequacy of the PCA–LDA model was verified
on a test sample. It was found that data of sensors with films of carbon nanotubes, zirconium nitrate,
hydroxyapatite, methyl orange, bromocresol green, and Triton X-100 had the most significance for
dividing samples into groups. The differences in the composition of the gaseous phase over the
samples of nasal secretions for such a classification could be explained by the appearance or change
in the concentrations of ketones, alcohols, organic carboxylic acids, aldehydes, amines, including
cyclic amines or those with a branched hydrocarbon chain.

Keywords: calves; infectious bronchopneumonia; diagnosis; nasal secretions; electronic nose

1. Introduction

Bovine respiratory disease (BRD) remains one of the leading causes of economic
losses in dairy farming [1–3]. Among calves in the first month of life, BRD is recorded in
17.2–23.6% of cases [2,4]. The economic damage from BRD is derived not only from the
direct cost of treating calves, as well as their culling and death [2,3,5], but also from the fact
that, in the future, recovered heifers have a disordered reproductive function and a decrease
in milk production [6–8]. BRD involves a group of heterogeneous pathologies (from
rhinitis to severe pneumonia) [1,9,10], caused by a combination of genetic factors [11,12],
physiological stressors (disturbances in feeding, microclimate parameters, transportation,
regrouping, etc.) [13–15], and infectious agents [16,17], many of which may, however, be
natural inhabitants of the respiratory tract in calves [16,18,19]. The complex nature of BRD
and the absence of a universal “gold standard” decrease the probability to diagnose the
BRD in a timely manner [10,20], as well as the development of optimal treatment and
prevention regimens for BRD [4,21].

Several studies [10,22,23] demonstrated that a serious condition of calves with BRD,
for example, infectious bronchopneumonia, can occur without obvious clinical signs. Since
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the clinical and laboratory diagnoses of infectious bronchopneumonia in calves have
different accuracy, the development of alternative diagnostic methods is justified [24–26],
primarily devices for the detection of BRD in calves directly on a farm.

One of the promising areas in the diagnosis of BRD in calves is metabolomics [24,27,28].
Metabolomics studies the changes in the concentrations of specific metabolites in tissues
and biological fluids. The metabolite profiles help understand the disease’s pathogenesis,
and they can be used as biomarkers for diagnosis [29–33]. The most perspective direction
in BRD diagnosis using metabolomics involves noninvasive methods when researching
the metabolic profiles of exhaled breath gas [34], exhaled breath condensate [35], and nasal
secretions [28,36]. One of such diagnostic methods is the analysis of the composition of
the gaseous phases of biological samples (exhaled breath condensate, nasal secretions)
using an array of piezoelectric sensors with the methodology of an “electronic nose” (e-
nose) [36,37]. Traditionally, the determination of BRD volatile markers in the gas phase
over biological samples using an e-nose is carried out on the basis of sensor signals using
pattern recognition algorithms or multivariate regression. The whole set of substances is
evaluated as an integral indicator of the biological sample condition [38–41]. An alternative
approach to processing the sensor array data in the analysis of biological samples is also
possible, based on calculating the sorption efficiency parameters Ai/j [37,42,43], which
mainly reflect the qualitative composition of the gas mixture and can be further processed
by various mathematical algorithms.

In this study, we propose a technique to identify healthy calves (“healthy”) and naturally
occurring infectious bronchopneumonia (“sick”) calves via analysis of the gaseous phase over
nasal secretions using portable e-noses with piezoelectric sensors. Our working hypothesis
is based on the conception that gas phases over nasal secretions have a specific signature of
volatile organic compounds (VOCs) for calves diagnosed as “healthy” and “sick”.

2. Materials and Methods
2.1. Ethics Statement

The Ethics Committee of the Voronezh State University of Engineering Technologies
approved all procedures for clinical examination of animals and obtaining samples for
analysis used in this work (Minutes No. 2 dated 25 February 2021). The care and use of
animals complied with Russian animal welfare laws, guidelines, and policies; the study
did not affect normal animal physiology.

2.2. Animal Materials and Study Design

The research was performed during winter when the cattle were kept in stalls on a farm
impacted by BRD (Mycoplasma bovis and bovine adenovirus 3). The objects of the study were
50 red-motley Holstein calves aged 14–42 days: 25 individuals with naturally occurring
infectious bronchopneumonia (“sick”) and 25 clinically healthy animals (“healthy”). All
calves we divided into two samples. The training sample included 40 calves (20 “healthy”
and 20 “sick”, Table 1). The remaining 10 calves (five “healthy” and five “sick”) were
included in the test sample (presented in Table 2).

All animals were examined according to the clinical scoring system developed by
veterinarians at the University of Wisconsin at Madison (WI clinical score) [44] (measure-
ment of rectal temperature, assessment of the presence of cough, nasal discharge, ocular
discharge, head, and ear position). Lung lesions were detected using thoracic auscultation
(Littmann® Master Classic II Veterinary Stethoscope, 3M, Saint Paul, MN, USA) and radio-
graphy (Carestream DR, Carestream, New York, USA). The trachea was palpated [44,45],
and a 30 s expiratory apnea was performed to induce cough in calves [22,46].
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Table 1. Training sample of calves.

Sample
Rectal

Temperature,
◦C

Cough
Score

Wisconsin Respiratory
Scoring Chart (WI

Clinical Score)

Group of
Calves

1 38.1 0 0 Healthy
2 38.7 0 1 Healthy
3 38.6 0 1 Healthy
4 38.7 0 1 Healthy
5 38.7 0 1 Healthy
6 38.8 0 1 Healthy
7 38.8 0 1 Healthy
8 38.7 0 1 Healthy
9 38.3 0 2 Healthy
10 38.9 0 2 Healthy
11 39.2 0 2 Healthy
12 38.8 0 2 Healthy
13 39.3 0 2 Healthy
14 39.4 0 2 Healthy
15 39.0 0 2 Healthy
16 39.3 0 2 Healthy
17 39.2 0 2 Healthy
18 38.3 0 2 Healthy
19 39.1 0 2 Healthy
20 39.4 0 2 Healthy
21 39.6 3 6 Sick
22 38.6 2 4 Sick
23 38.3 3 4 Sick
24 38.8 3 4 Sick
25 38.9 3 5 Sick
26 39.4 1 4 Sick
27 39.3 3 5 Sick
28 39.4 3 5 Sick
29 38.4 3 6 Sick
30 38.9 3 7 Sick
31 38.8 3 7 Sick
32 39.3 3 7 Sick
33 39.3 3 7 Sick
34 38.9 3 7 Sick
35 39.0 3 7 Sick
36 39.8 3 7 Sick
37 39.4 3 8 Sick
38 38.4 3 8 Sick
39 40.0 3 8 Sick
40 41.7 3 10 Sick

Thoracic radiography in calves was carried out by fixing them in the supine position
on the right and left sides, with the forelimbs extended cranially [47,48]; the exposure
factors and source-to-image-receptor distance were set to 70 kV, 5.0 mAs, and 100 cm,
respectively. Typical radiographic images of “healthy” calves are shown in Figure 1. In
“healthy” animals, on radiographic images, the pulmonary fields’ airiness remained on the
whole surface of the chest, the alveoli were filled up with air, the bronchi had good airiness,
and the bronchial pattern was clearly visible in all pulmonary fields. Typical radiographic
images of “sick” calves are shown in Figure 2. In “sick” calves, the cranial and (or) middle
pulmonary fields were contracted, while the bronchi remained airless. In some cases, a
slight focal contraction was observed along the bronchi in the caudal pulmonary field.
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Table 2. A test sample of calves.

Sample
Rectal

Temperature,
◦C

Cough Score WI
Clinical Score

Group of
Calves

41 38.8 0 1 Healthy
42 38.9 0 2 Healthy
43 39.4 0 3 Healthy
44 38.6 0 3 Healthy
45 39.0 0 3 Healthy
46 38.8 3 4 Sick
47 38.3 3 4 Sick
48 38.5 2 4 Sick
49 38.6 3 4 Sick
50 38.5 3 5 Sick
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Bronchopneumonia was diagnosed in calves with a clinical score according to the
Wisconsin respiratory scoring chart of 4 or more, spontaneous or induced cough, abnormal
thoracic auscultation (crackles, wheezes, or absence of sound), radiographic signs of lung
lesions [49,50]. As for “healthy” animals, the WI clinical score was 3 or less, whereas radio-
graphic and clinical (spontaneous and induced cough, dyspnea, abnormal auscultation)
signs of lung lesions were absent.

2.3. Collection of Samples

Samples of nasal secretions for analysis were taken from calves immediately after the
completion of their clinical study. Two samples were obtained from each of 50 animals;
a total of 100 samples were collected. A sampling of each nasal secretions was within
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4–5 s consecutively from the left and right nasal passages using sterile cotton swabs, which
are usually used for bacteriological research. The swabs (-) were used with the following
properties: without medium, length of 150 mm, rod material—plastic, tip—cotton, flexible,
sterile, and individually wrapped. Manufacturer LAB-Medica, Russia.

2.4. Volatile Organic Compounds Analyses
2.4.1. Device and Sensor Array Characteristics

Analysis of gaseous phase over nasal secretions samples was carried out on the odor
analyzer “Diagnost-Bio-8” (Ltd. «Sensino», Kursk, Russia, Figure 3). We used two devices
with two sensor arrays. Each sensor array consists of eight piezoelectric quartz resonators
of BAW-type with 10.0 MHz basic oscillation frequency. The electrodes of resonators
were modified by various solid-state nanostructured sorbents and polymeric films. The
modifiers for sensitive coatings of sensors are listed in Table 3.
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Table 3. The sorbents for sensitive coating of sensors.

Number of a Sensor in an Array Sorbent Origin

The first set

1, 8 Carboxylated carbon nanotubes of different
masses (1–5 µg)

Institute for Extra Pure Materials of the
Russian Academy of Sciences, Russia,

Moscow region, Chernogolovka
2, 7 Zirconium nitrate of different masses (1–5 µg) Reachem, Moscow Russia, (puriss.)

3 Dicyclohexane-18-crown-6 Alfa Aesar, Ward Hill, USA, p.a.
4, 5 Hydroxyapatite of different masses (1–5 µg) Own technique of synthesis

6 Polyethylene glycol succinate Reachem, Moscow Russia, (puriss.)

The second set

1 Polyethylene glycol 2000 Alfa Aesar, Ward Hill, USA, p.a.
2 Dicyclohexano-18-crown-6 Alfa Aesar, Ward Hill, USA, p.a.
3 Methyl orange Reachem, Moscow Russia, (puriss.)
4 Triton X-100 Alfa Aesar, Ward Hill, USA, p.a.
5 Bromocresol blue Reachem, Moscow Russia, (puriss.)

6 Multiwalled carbon nanotubes
Institute for Extra Pure Materials of the
Russian Academy of Sciences, Russia,

Moscow region, Chernogolovka
7 Polyethylene glycol sebacinate Reachem, Moscow Russia, (puriss.)
8 Tween-80 Reachem, Moscow Russia, (puriss.)

These sorbents were chosen among 50 phases due to them having hypersensitivity to
various classes of highly volatile organic compounds (alcohols, aldehydes, acids, ketones,
amines, and arenes) [36,37,51–57], including volatile biomarkers of respiratory pathologies.
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The sensor technique, including hydroxyapatite synthesis, and technical characteristics
are specified in [55,58].

Baselines of sensors in arrays were stable (±1 Hz) during the active measurement
time (80 s).

2.4.2. Output Data of Sensor Arrays

The sensor array’s primary analytical information is chrono-frequency-grams—output
curves of piezoelectric quartz sensors within the total time of measurement—depending of
alterations in the vibration frequency (−∆F, Hz) of each sensor with time (Figure 4). The
chrono-frequency-grams were recorded and stored in the special software developed by
our group previously [59]. The device’s software is written in C# (C sharp); it uses the
free regulatory database management system MySQL. The dialog window of the program
after the measurement is presented in Figure 5. According to it, the program finds out the
maximum sensor signals (∆Fmax,i, Hz) during the sorption of the gas phase of biological
samples (the first 80 s of measurement, Figures 4 and 5).
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The obtained maximum sensor signals were used to calculate the parameters of the
sorption efficiency Ai/j [60] for each set of sensors as follows:

Ai/j = ∆Fmax,i/∆Fmax,j,

where i and j are the number of sensors in the array.
The total number of parameters Ai/j for the two arrays was 56.

2.4.3. Measurement Mode

Two samples of nasal secretions were obtained from each of the 50 calves. Nasal
swabs were scrutinized in the “frontal analyte input” mode (spontaneous evaporation
of highly volatile compounds from a sample in pre-sensory space of the detection cell)
at 20 ± 1 ◦C. Within 20–30 min of selection, cotton swabs with nasal secretions were
extracted from sterile tubes and placed on the glass Petri plate. Hereafter, the detection
cell of “Diagnost-Bio-8” was used to tightly cover the plate with the sample (Figure 3B),
and the measurement process was initiated. The time between the moment we removed
the cotton swab from the tube and measurement itself was 10 s and was strictly controlled.
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The measurement mode was combined: sensors in the detection cell were kept above the
sample during the first 80 s; at the 81st second, the device with an open detection cell
was placed on a unique stand for spontaneous desorption of volatile compounds from
the sensor coverings (Figure 3A). The total measurement time of one sample was 200 s;
by this time, the vibration frequencies of the sensors returned to their baselines. After
measurement with the first set of sensors, the sample was immediately measured using
another device with a second set of sensors in the same measurement mode. Thus, all
100 samples were measured twice, once on each sensor array. Previously, using a similar
measurement mode, we studied on all 16 sensors (in two sets) the sorption/desorption
of vapors of distilled water [61] and 21 volatile compounds (ketones, arenes, aldehydes,
amines) in concentrations from 1 ppmv up to 10 ppmv, with the estimation of parameters
Ai/j for these substances (Table 4). These compounds are markers of respiratory pathologies
established by a different research group [62–65].
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Table 4. Parameters Ai/j for pure volatile substances.

Parameter Values for Identification Ai/j ± d * Identified Substances

A1/4(1) 0.95 ± 0.15 Carboxylic acids C2–C4

A1/5(1)
0.85 ± 0.04 Triethylamine, cyclopentylamine
1.50 ± 0.50 Methylbenzaldehyde, benzaldehyde, formic acid

A2/4(1)
1.00 ± 0.10 Ethyl acetate, methylpropanone, acetone
1.80 ± 0.40 Aliphatic, cyclic amines of normal and isomeric structure

A2/5(1)

1.65 ± 0.35 4-methylbenzaldehyde, benzaldehyde, acetone, formic acid

3.5 ± 1.0 Cyclohexanone, m-methylcyclohexanone, cyclopentanone, 2-methylhexanone,
acetaldehyde, C2–C5 alcohols of normal and isomeric structure

A2/6(1)
2.75 ± 0.75 Ketones, alcohols, carboxylic acids C2–C4
1.50 ± 0.20 Methylbenzaldehyde, benzaldehyde, water, 2-thiophenecarbaldehyde

A4/6(1) 5.0 ± 0.2 Ethanol

A4/8(1)
0.25 ± 0.11 Ketones, alcohols, benzaldehyde, methylbenzaldehyde, ethyl acetate, acetaldehyde
0.75 ± 0.15 Water, methylamine

* d—criterion of coincidence.



Vet. Sci. 2021, 8, 74 8 of 16

2.5. Algorithm of Classification

The calculated parameters of the sorption efficiency Ai/j and the maximum signals
of the 16 sensors for all samples were used to construct the initial data matrix of sensor
arrays. The output data of the sensor arrays for each day of the study were autoscaled by
the mean and standard deviation to reduce the influence of the sensor time drift. Linear
discriminant analysis (LDA) with a significance level of 0.05 was selected as a method for
classifying samples into diagnostic groups “healthy” and “sick”. Since all the variables
in the LDA method should be independent, and the parameters Ai/j correlate a priori
with each other and with the sensor signals, the entire initial data matrix before the LDA
was processed by principal component analysis (PCA), and seven principal components
were selected to construct the discriminatory functions with an explained variance of 80%.
The data matrix was processed using the module for Microsoft Excel and Unscrambler X
10.0.1 (CamoSoftware AS, Oslo, Norway) with the possibility of sequential processing by
principal component and linear discriminant analysis (PCA–LDA).

The output data of sensor arrays from the analysis of the gas phases over nasal
secretions samples for 40 calves (n = 20 for “healthy” and “sick”, averaged values of two
samples from each animal) from the training sample were used to constructed the PCA–
LDA model to classify samples into diagnostic groups “healthy” and “sick”. The overall
matrix dimension for constructing model was 40 × 72 (it is presented in the Supplementary
Materials), while that after processing by PCA was 40 × 7. We used output data of sensor
arrays for nasal swabs from 10 calves (averaged values of 2 samples from each animal)
of the test sample to check the adequacy of the obtained mathematical model. The initial
matrix dimension for the test sample was 10 × 72, while that after implementation of PCA
was 10 × 7.

3. Results

In the training sample, the clinical WI score for “healthy” calves was 1.6 ± 0.6 (range
from 0–2 points), while “sick” animals had a score of 6.3 ± 1.7 (range from 4–10 points).
Among “sick” calves, 85% had a WI clinical score of 5 or more, while 15% had a WI
clinical score of 4. All “sick” calves had abnormal thoracic auscultation (crackles, wheezes,
or absence of sound) and radiographic signs of lung lesions. The rectal temperature
in “healthy” calves was 38.9 ± 0.4 (38.1–39.4) ◦C, whereas that in “sick” animals was
39.2 ± 0.7 (38.3–41.7) ◦C. Hyperthermia (over 39.5 ◦C) was observed in 20% of “sick”
calves. Spontaneous and induced cough was absent in the “healthy” calves. As for “sick”
calves, in 95% of cases, a cough was observed, induced by the trachea’s palpation, in 85%
of cases, by 30 s apnea. We noted spontaneous cough in 80% of cases.

To assess the possibility of separating samples of nasal secretions with or without BRD
using a portable electronic nose, “visual prints” of diagnostic groups were constructed on
the basis of averaged sensor signals (Figure 6).

The coefficient of variation of sensor signals was calculated to compare the variance
of signal values for nasal secretion samples from different diagnostic groups (Table 5).

A mathematical model was obtained on the basis of the results of processing the output
data of sensor arrays using PCA–LDA (Figure 7, also in the Supplementary Materials).
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Figure 6. The “visual prints” of averaged signals of sensors for the diagnostic groups of calves.

Table 5. The coefficients of variance of sensors signals for nasal secretion’s samples of calves from diagnostic groups.

Coatings Healthy Sick Coatings Healthy Sick

Carboxylated carbon nanotubes 1 * 15 45 Polyethylene glycol 2000 25 27
Zirconium nitrate 1 16 45 Dicyclohexano-18-crown-6 22 27

Dicyclohexane-18-crown-6 18 59 Methyl orange 32 36
Hydroxyapatite 1 23 47 Triton X-100 24 30
Hydroxyapatite 2 23 61 Bromocresol blue 23 45

Polyethylene glycol succinate 19 31 Multiwalled carbon nanotubes 42 47
Zirconium nitrate 2 17 21 Polyethylene glycol sebacinate 24 30

Carboxylated carbon nanotubes 2 19 58 Tween 80 30 25

* 1 and 2 are designated coatings with different masses.
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Figure 7. PCA–LDA plot to discriminate “healthy” (blue squares) and “sick” (red circles).

For a training set of 40 samples, the calculated classification accuracy of the PCA–LDA
model was 100%. The initial variables’ most significant contribution to the classifica-
tion model was assessed by the loading values. Figure 8 shows the loading plot for the
first two principal components. Table 6 presents the loading values for the remaining
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components.The loading values for seven principal components are presented in the Sup-
plementary Materials.

We checked the robustness of the obtained model using sensor data for 10 calves
from the test sample. As a result (Table 7), five samples were classified as “sick”, and five
samples were classified as “healthy”, which entirely coincides with the results of clinical
studies of these calves.

Thus, in the test sample, the WI clinical score of “healthy” calves was 2.4 ± 0.9 (range
from 1–3 points), and “sick” animals had a score of 4.2 ± 0.4 (range from 4–5 points). Only
20% of “sick” calves had a WI clinical score≥5, whereas 80% had a WI clinical score of 4, and
100% of individuals had induced or spontaneous cough, abnormal thoracic auscultation, and
radiographic signs of lung lesions. The rectal temperature in “healthy” calves was 38.9 ± 0.3
(38.6–39.4) ◦C, while that in “sick” calves was 38.5 ± 0.2 (38.3–38.8) ◦C.
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Table 6. Loading values for sensor output data in PCA–LDA model.

PC ∆Fmax,1(1) ∆Fmax,2(1) ∆Fmax,3(1) ∆Fmax,4(1) ∆Fmax,5(1) ∆Fmax,6(1) ∆Fmax,7(1) ∆Fmax,8(1)

3 0.059 0.061 0.054 0.071 0.111 0.114 0.110 0.040
4 0.186 0.179 0.102 0.090 0.141 0.124 0.140 0.144
5 −0.104 −0.172 −0.096 −0.066 −0.061 −0.127 −0.120 −0.112
6 0.107 0.052 0.122 0.084 0.066 0.144 0.114 0.112
7 0.045 0.043 −0.095 0.032 0.031 0.035 0.056 0.110

PC ∆Fmax,1(2) ∆Fmax,2(2) ∆Fmax,3(2) ∆Fmax,4(2) ∆Fmax,5(2) ∆Fmax,6(2) ∆Fmax,7(2) ∆Fmax,8(2)

3 −0.169 −0.145 −0.186 −0.148 −0.112 −0.215 −0.163 −0.206
4 0.048 0.045 0.049 −0.015 −0.015 0.102 0.025 0.012
5 −0.073 −0.078 −0.057 −0.074 −0.141 −0.151 −0.135 −0.076
6 −0.140 −0.169 −0.119 −0.144 −0.197 −0.151 −0.186 −0.168
7 0.006 −0.004 −0.004 0.008 −0.016 0.008 0.026 0.094

PC A1/2(1) A1/3(1) A1/4(1) A1/5(1) A1/6(1) A1/7(1) A1/8(1) A2/3(1)

3 −0.009 0.057 −0.051 −0.123 −0.077 −0.125 −0.027 0.036
4 0.036 0.115 0.211 0.087 0.124 0.116 0.257 0.060
5 0.139 0.031 −0.137 −0.139 0.106 0.090 0.087 −0.069
6 0.201 −0.062 0.099 0.168 −0.081 −0.010 −0.091 −0.148
7 0.014 0.286 0.044 −0.012 0.061 −0.043 −0.108 0.241
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Table 6. Cont.

PC A2/4(1) A2/5(1) A2/6(1) A2/7(1) A2/8(1) A3/4(1) A3/5(1) A3/6(1)

3 −0.019 −0.075 −0.072 −0.115 0.002 −0.066 −0.141 −0.145
4 0.156 0.080 0.071 0.058 0.119 0.052 −0.068 −0.037
5 −0.186 −0.179 −0.001 −0.032 −0.038 −0.146 −0.146 0.023
6 −0.034 −0.007 −0.195 −0.156 −0.192 0.128 0.165 −0.011
7 0.050 0.036 0.026 0.001 −0.067 −0.288 −0.290 −0.296

PC A3/7(1) A3/8(1) A4/5(1) A4/6(1) A4/7(1) A4/8(1) A5/6(1) A5/7(1)

3 −0.147 −0.106 −0.114 −0.067 −0.063 −0.027 0.039 0.029
4 −0.039 0.002 −0.146 −0.133 −0.129 −0.091 0.047 0.038
5 0.007 0.007 −0.021 0.182 0.152 0.112 0.260 0.193
6 0.061 0.034 0.070 −0.117 −0.068 −0.069 −0.239 −0.159
7 −0.288 −0.278 −0.040 0.042 −0.070 −0.084 0.043 −0.057

PC A5/8(1) A6/7(1) A6/8(1) A7/8(1) A1/2(2) A1/3(2) A1/4(2) A1/5(2)

3 0.118 −0.005 0.076 0.090 −0.195 0.173 −0.041 −0.194
4 0.168 −0.044 0.006 0.096 0.041 0.010 0.285 0.191
5 0.177 −0.028 0.005 0.017 −0.008 −0.054 0.006 0.218
6 −0.185 0.117 0.049 −0.013 0.085 −0.025 −0.039 0.152
7 −0.090 −0.085 −0.124 −0.050 0.025 −0.008 −0.049 0.052

PC A1/6(2) A1/7(2) A1/8(2) A2/3(2) A2/4(2) A2/5(2) A2/6(2) A2/7(2)

3 0.057 −0.072 0.106 0.176 0.097 −0.080 0.126 0.090
4 0.068 0.117 0.125 0.061 0.235 0.211 0.046 0.138
5 0.127 0.193 0.072 0.040 −0.015 0.237 0.150 0.141
6 −0.074 0.154 −0.092 0.117 −0.108 0.141 −0.042 0.098
7 0.006 −0.089 −0.195 0.068 −0.072 0.065 −0.016 −0.003

PC A2/8(2) A3/4(2) A3/5(2) A3/6(2) A3/7(2) A3/8(2) A4/5(2) A4/6(2)

3 0.178 −0.170 −0.243 0.007 −0.158 0.006 −0.156 0.075
4 0.147 0.280 0.139 0.066 0.081 0.110 −0.051 −0.050
5 0.103 0.012 0.192 0.131 0.155 0.083 0.186 0.138
6 0.013 0.015 0.168 −0.101 0.141 −0.110 0.182 −0.037
7 0.009 −0.113 0.055 −0.027 −0.057 −0.156 0.124 0.005

PC A4/7(2) A4/8(2) A5/6(2) A5/7(2) A5/8(2) A6/7(2) A6/8(2) A7/8(2)

3 −0.014 0.135 0.158 0.194 0.171 −0.046 0.067 0.152
4 −0.163 0.009 −0.045 −0.068 0.041 −0.009 0.064 0.143
5 0.114 0.096 0.010 −0.084 −0.047 −0.058 −0.041 −0.091
6 0.115 −0.040 −0.076 0.042 −0.122 0.078 −0.027 −0.035
7 0.001 −0.172 −0.110 −0.152 −0.310 0.045 −0.178 −0.031

(1) refers to the first set of sensors; (2) refers to the second set of sensors.

Table 7. Results of prediction of discriminatory functions and class for the test sample.

Sample Healthy Sick Class

41 −3.78309 −4.73564 Healthy
42 −2.84562 −5.31232 Healthy
43 −5.18519 −7.68487 Healthy
44 −2.90384 −4.85101 Healthy
45 −2.07818 −6.70706 Healthy
46 −5.69716 −4.79414 Sick
47 −9.11309 −5.06497 Sick
48 −13.2564 −4.44323 Sick
49 −13.2564 −4.44323 Sick
50 −6.79918 −2.24365 Sick

4. Discussion

The choice of variables for modeling is an important step, on which the quality of
the resulting model directly depends. In contrast to the standardly used maximum sensor
signals, the calculated parameters of the sorption efficiency Ai/j are also used as variables
in this work. The parameters Ai/j, as shown earlier [60] are a measure of the relative
sensitivity of two piezosensors to sorbate, and they depend, first of all, on the nature of the
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sorption system, thus mainly characterizing the qualitative composition of the gas mixture.
It is shown that the parameters Ai/j can be used as identification parameters subject to
certain conditions and assumptions. Previous studies [42,43,60,66] demonstrated that the
fulfillment of these conditions is ensured when measuring the gas phases of biological
samples using arrays of sensors, including those with the selected types of coatings.

The main assumptions and conditions included strict adherence to the methods of
forming coatings on the electrodes of piezoelectric resonators, ensuring the linearity of the
sensors’ response (constancy of the sensitivity of micro-weighing) in the selected range of
concentrations of the detected substance. Earlier, it was found [60] that the variation of
sensor signals is no more than 6.5%, which is acceptable when used to calculate criteria for
the identification of substances [67]. The content of VOCs in the gas phase above biological
samples, as a rule, does not exceed 1–10 ppm [62,64,65], which ensures the constancy of
the sensitivity of micro-weighing. Consequently, the values of the parameters Ai/j do not
depend on the concentration and are constant; thus, they can be used to identify substances.
When identifying a substance using one parameter Ai/j, it is necessary that the identification
value of the parameter has a minimum or maximum value for a specific substance or a
group of substances (homologs), and the difference between the closest values of this
parameter Ai/j for different substances must be greater than 3 σ. When the coincidence of
several parameters identifies a substance, it is possible to use parameters for several classes
of substances. In that case, a substance or group is identified when at least two parameters
for a given class of substances coincide. A different value of the coincidence criterion d
(the confidence interval of the parameter values; when the parameter values calculated
for the sample coincide with the tabular values within these boundaries, the substance is
identified) is allowed with the homogeneity of the dispersion due to the different sorption
affinity of sorbents for analytes, which determines the magnitude of the dispersion in the
sorbate–sorbent systems. The calculated values of the parameters Ai/j and criterion d are
determined for the given experimental conditions, taking into account the nature of volatile
substances, the composition of the sample, and the mode of supplying the gas phase to
the detection cell (Table 4). A more detailed list of identification parameters was presented
in [66]. The detection limits, calculated with the implementation of the efficiency curves,
for the substances are in the range of 0.8–40 ppm [60,66]. If the content of substances in the
gas phase is above the indicated detection limits, the reliability is more than 99%.

The presence and quantitative content of pathogenic microorganisms, viruses, and
inflammation products in the sample considerably change the composition of the gases
excreted from the biosample [68–71]. Consequently, the inclusion of parameters Ai/j in the
initial data matrix allows taking into account the presence or increase in the concentration
of individual substances in the gas phase more comprehensively when constructing the
classification model.

The principal component analysis preliminarily processed the sensor array output
data to reduce the variables’ dimension and orthogonalization. For further construction
of discriminatory functions, seven components with an explained variance of 80% were
selected since we believe that the remaining 20% characterize noise when using an open
detection cell with an array of sensors.

The plot of the obtained LDA model (Figure 7) shows that nasal secretion samples
from “sick” calves had more variation within the group than samples from “healthy” calves,
which reflects a greater variety of gaseous phase composition over nasal swabs in the case
of BRD. This assumption was confirmed by the “visual prints” of averaged signals for the
diagnostic group (Figure 6).

Figure 6 demonstrates that the averaged signals of the first set of sensors had large
values for the “sick” group, especially for sensors with nanostructured coatings (sensors
No. 1, 4, 5, and 8). The coefficient of variation of sensor signals for samples of calves
from the “healthy” group was less than that in the “sick” group (up to the 42% and 60%,
respectively; Table 5). Moreover, the difference in the variation coefficients of signals
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sensor with nanostructured coatings for diagnostic groups was bigger than for sensors
with polymeric modifiers (37% and 17%, respectively).

The differences in average values of sensor signals with polymeric coatings are not
significant, but slight shifts in signals of these sensors could be significant for classification
model using chemometrics methods.

The significance of the model’s variables decreased in the order of increasing principal
components because the percentage of explained variance for each subsequent principal
component decreased. The loading plot (Figure 8) shows that the initial signals made the
most considerable contribution to the model of the sensors ∆Fmax,i, and the signals from the
first set of sensors were more significant than from the second set. Therefore, taking into
account the loadings for the seven principal components of the PCA–LDA model (shown
in Table 6, Figure 8), the most significant for classification were the signals of sensors with
modifiers of carboxylated carbon nanotubes, zirconium nitrate, hydroxyapatite, methyl
orange, bromocresol green, Triton X-100, and polyethylene glycol and its ethers, which are
highly sensitive to vapors of nitrogen- and oxygen-containing compounds according to
our previous investigation of sorption features of VOCs on these sorbents [37,51–57].

Among the parameters Ai/j, the most significant to the classification model for the
first two principal components were A1/4(1), A1/5(1), A2/4(1), A2/5(1), A2/6(1), A4/6(1), A4/7(1),
A4/8(1), A1/6(2), A2/6(2), A3/6(2), and A4/6(2) (Figure 8). Consequently, the sensors with films
of carboxylated and multiwalled carbon nanotubes, hydroxyapatite, and zirconium nitrate
were most important for the classification model. According to the parameters A1/4(1),
A2/6(1), and A4/6(1) in the gaseous phase of nasal mucus from “sick” calves, carboxylic acids
C2–C4 and ethanol were identified. According to the parameters A1/5(1), A2/6(1), and A4/8(1),
ketones, alcohols, and benzaldehydes were identified in more than 50% of samples from the
“sick” group. The parameters A1/3(2), A1/5(2), A2/3(2), A3/5(2), A5/7(2), and A5/8(2) were also
significant for the model according to values of loadings for the third principal component
(Table 6). This means that signals of sensors with bromocresol blue (sensor 5) and methyl
orange (sensor 3) are also significant for discriminating “healthy” and “sick” groups. In
previous studies [52–55], we found that these coatings exhibit the most remarkable mass
sensitivity to cyclic amines, aromatic amines, and carboxylic acids, respectively. Hence,
when classifying samples into the “healthy” and “sick” groups, the appearance or change
in the concentrations of ketones, alcohols, aldehydes, organic carboxylic acids, and amines,
including cyclic amines or those with a branched hydrocarbon chain, in the gas phases over
nasal swabs could be significant. The classification model’s high accuracy was confirmed by
dividing the test set from 10 calves into “healthy” and “sick”. The sensitivity and specificity
of the proposed classification model were 100% with a confidence level of 0.05. To clarify
the composition of the gas phase over samples of nasal mucus from calves from different
diagnostic groups and to assess the proposed approach’s sensitivity and specificity more
accurately, we will conduct additional studies on a larger sample of animals.

5. Conclusions

Thus, the principal possibility of diagnosing infectious bronchopneumonia in calves
on the basis of the smell of nasal secretions samples using 16 chemical sensors was demon-
strated. The PCA–LDA model obtained from the output data of sensor arrays allowed the
high-accuracy classification of samples into the “sick” and “healthy” groups, and it can be
used for on-farm diagnosis of infectious bronchopneumonia in calves. The differences in
the gaseous phase’s composition over the samples of nasal secretions for such a classifi-
cation could be explained by the appearance or change in the concentrations of ketones,
alcohols, organic carboxylic acids, aldehydes, and amines, including cyclic amines or those
with a branched hydrocarbon chain. It is possible to simplify the technique for measuring
nasal secretions samples by using one device and reducing the total number of sensors to
eight by choosing the most informative ones for the PCA–LDA model. We will check this
hypothesis in future research.
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