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Abstract: First-line treatments of cancer do not always work, and even when they do, they cure
the disease at unequal rates mostly owing to biological and clinical heterogeneity across patients.
Accurate prediction of clinical outcome and survival following the treatment can support and expedite
the process of comparing alternative treatments. We describe the methodology to dynamically
determine remission probabilities for individual patients, as well as their prospects of progression-
free survival (PFS). The proposed methodology utilizes the ex vivo drug sensitivity of cancer cells,
their immunophenotyping results, and patient information, such as age and breed, in training
machine learning (ML) models, as well as the Cox hazards model to predict the probability of clinical
remission (CR) or relapse across time for a given patient. We applied the methodology using the
three types of data obtained from 242 canine lymphoma patients treated by (L)-CHOP chemotherapy.
The results demonstrate substantial enhancement in the predictive accuracy of the ML models by
utilizing features from all the three types of data. They also highlight superior performance and
utility in predicting survival compared to the conventional stratification method. We believe that the
proposed methodology can contribute to improving and personalizing the care of cancer patients.

Keywords: lymphoma; machine learning; chemotherapy; precision medicine

1. Introduction

Cancer heterogeneity has been extensively reported and studied over the past five
decades. The findings have enabled classification and categorization of tumors into sub-
types sharing, for example, the same molecular features such as the overexpression of
antigens. Advances in subtyping have resulted in the improved care and prognosis of
cancer patients as therapies tailored to the subtypes have proven to be more effective than
unanimously administered ones [1–3]. Perhaps one of the most well-known achievements
of tailored (namely, precision) medicine is the drastic improvement in survival of the
human epidermal growth factor receptor (HER) positive patients treated with trastuzumab,
an antibody targeting this receptor [4].

A wide variety of factors, including physical, anatomical, radiographic, genetic, and
histological features, are considered when analyzing cancer heterogeneity. Inspired by

Vet. Sci. 2021, 8, 301. https://doi.org/10.3390/vetsci8120301 https://www.mdpi.com/journal/vetsci

https://www.mdpi.com/journal/vetsci
https://www.mdpi.com
https://orcid.org/0000-0003-4299-1546
https://orcid.org/0000-0002-1610-0474
https://orcid.org/0000-0001-7224-642X
https://doi.org/10.3390/vetsci8120301
https://doi.org/10.3390/vetsci8120301
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/vetsci8120301
https://www.mdpi.com/journal/vetsci
https://www.mdpi.com/article/10.3390/vetsci8120301?type=check_update&version=1


Vet. Sci. 2021, 8, 301 2 of 12

the latest advances in artificial intelligence (AI) that are effective in dealing with complex
systems, researchers began to apply AI, especially machine learning (ML) techniques, to
subtyping cancer. Pioneering attempts began by using a single category of data. McCarthy
et al., for example, used the visualization and classification technique to differentiate lung
cancers with respect to the selected set of genes [5]. Recent advances in computing power
have enabled the processing of more complex data such as radiographic images. Zhou et al.
developed computational image descriptors to assist in extracting features from magnetic
resonance imaging (MRI) results that are used to characterize brain tumors [6]. The latest
work in the field began to employ combinations of different data such as MRI and genomics
for subtyping tumors as well as predicting survival, with the end goal of assisting and
improving treatment choices [7–9].

Towards this aim, we previously reported the development of the ML approach for
predicting in vivo response to a single chemotherapeutic drug [10]. Random forest (RF)
models were trained using ex vivo drug sensitivity analysis and flow cytometry results
to estimate the probability of positive response to a given drug. Our work was in part
motivated by one of the pioneering works by Shipp and colleagues where they employed a
supervised ML to classify diffuse large B-cell lymphoma patients into subgroups featuring
distinct overall survivor rates based on the gene expression profiles [11]. A more person-
alized technology predicting drug responses of individual cancer patients was recently
developed by Mucaki et al. [12]; the technology also relied on gene signatures as features for
the ML models, which predicted remission by a platin agent with as high as 72% accuracy.
Non-genomic data ranging from magnetic resonance imaging to histology are also used
successfully in developing the ML-based predictive models [7,13–16]. While most models
outperformed human experts to a varying degree, they were focused only on long-term
survival and/or clinical outcome at a long run, i.e., 3 to 5 years after chemotherapy. To our
best knowledge, no models have been reported that predict the patient’s responses across
multiple time points. Such prospects can be especially helpful when deciding whether or
not to continue with the current treatment for those showing no (immediate) responses.

In this study, we propose a novel methodology for predicting dynamic clinical out-
comes and survival of cancer patients treated with a first-line chemotherapy. The proposed
methodology is applied using the data obtained from canine lymphoma patients who
received (L-)CHOP chemotherapy. Three different types of data were utilized to train ML
models that generate a probability of clinical remission (CR) by the various time points;
several types of ML methods are employed to demonstrate how the predictive accuracy
varies among these methods. The same data are also used to develop a Cox hazards model
for predicting the progression-free survival (PFS) of each patient. We then illustrate how
the trained model enhances stratification of the patients when analyzing PFS.

2. Materials and Methods
2.1. Case Selection

A total of 242 were chosen from the pool of canine lymphoma patients who had
received the service by ImpriMed, Inc. (Palo Alto, CA, USA). All the patient samples
were collected under the informed consent forms approved by the internal review boards
(IRB) and ethical committee of the participating veterinary hospitals. Chemotherapy was
administered based on the standard operating protocols managed by board-certified vet-
erinary oncologists. The case selection began by screening the patients who received at
least 3 of the 4 or 5 drugs that constitute (L-)CHOP chemotherapy within the first four
weeks of diagnosis. We then selected the subset that met the following three conditions:
(1) the availability of 70% or more of the drug sensitivity (DS) and flow cytometry (FC)
data; (2) a prognosis of at least the first 12 weeks since the administration of chemotherapy;
(3) the availability of age, sex, breed, and at least 25% of the rest of the patient informa-
tion (PI) data. The detailed information on the demographic of the selected subgroup is
provided in Table 1.
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Table 1. Characteristics of the patients included in this retrospective study.

Parameter CR Prediction Study
Population (N = 242)

PFS Prediction Study
Population (N = 210)

Age
Median ± SD 9 ± 3.2 8 ± 3.2

Range 1 to 17 years 2 to 16 years

Sex
Male 56% 57%

Female 41% 42%
Unknown 3% 1%

Relapse vs. Naïve
Naïve 90% 93%

Relapse 6% 5%
Unknown 4% 2%

Immunophenotype
B 71% 75%
T 15% 16%

Others 14% 9%

Clinical Stage
2 1% 2%
3 40% 43%
4 21% 19%
5 6% 3%

Not Available 31% 33%

Further information such as the distribution with respect to albumin is provided in
Figure S3.

2.2. The Development of the Predictive ML Models

Categorical data such as breed, sex, and subtype were converted into numerical
values by the label encoding technique [17]. All numerical data were rescaled using the
robust scaler method [18]. The missing data were replaced with the median unless stated
otherwise; this was achieved after converting categorical data into numerical data and
rescaling them. As explained in the main text, we tried replacing the missing data with
imputed values. Imputation was performed in two ways—k nearest neighbors with k = 5
and the MICE (multivariate imputation by chained equation) technique [19,20].

The compiled data were used to develop three ML models—random forest, support
vector machine, and linear regression. For each, the data were randomly split into train set
and test set (3:1) in a stratified manner to preserve the ratio of the outcomes in both sets [18].
When the FC and/or PI data were used in addition to the DS data as features, a k subset
was chosen with respect to mutual information [21]. Hyperparameters for each model
were tuned by creating a grid (Table S4) and searching for the combination that resulted in
the optimal performance. The outputs of ML models (classifiers) were the probabilities
of achieving CR by the 4th, 8th, or 12th week since the administration of chemotherapy.
The importance of features was assessed only for the best predictive models (RF) using the
mean decrease in node impurity [22].

2.3. Survival Analysis

The progression-free survival over time for each patient was predicted by utilizing
the Cox proportional hazards model. Starting with the same set of features used in the ML
models, we removed several features that restricted the convergence. The prognosis and
duration of the PFS for each patient included in this retrospective study were retrieved
from the medical records provided by the veterinary hospitals. The categorical data were
transformed into numerical values using one hot encoder and then scaled via removing



Vet. Sci. 2021, 8, 301 4 of 12

the mean and scaling to unit variance. The patient stratification for the survival analysis
was performed with respect to the predicted duration of the period having the probability
of relapse lower than 50%. The patient was classified as high or low when the predicted
duration was longer or shorter than the subtype’s average, respectively.

2.4. Model Performance Assessment

The performance of the three ML models predicting clinical outcome across the time
points was first compared with respect to the average of the area under the receiver
operating characteristic curve (ROC-AUC) and accuracy from the 4-fold cross-validation.
We next evaluated the positive predictive value (PPV), negative predictive value (NPV),
sensitivity, and specificity of the chosen models to better understand the predictive ability.
Prism 8 (GraphPad, San Diego, CA, USA) and R Studio (v1.74) were used to perform
statistical analyses and create graphs. The p values shown in the graphs are calculated
using the unpaired t or log-rank test.

3. Results
3.1. Data Structure, Acquisition, and Model Training

Three types of data—drug sensitivity (DS), flow cytometry (FC), and patient informa-
tion (PI)—were obtained for each lymphoma patient included in this study (Figure 1).
The baseline characteristics of all 242 patients are summarized in Table S1. Experi-
mentally measured IC50 and maximum cytotoxicity of five drugs that constitute the
(L-)CHOP chemotherapy—L-asparaginase, vincristine, cyclophosphamide, doxorubicin,
and prednisone—were included in the DS data, as well as those of eight other chemothera-
peutic drugs that can be used to treat canine lymphoma (Table S1). Nine flow cytometry
parameters involving cancer cell size, shape, and antigen expression distributions were
selected for use in training the machine learning models. Patient information consist-
ing of 33 features (Table S2 shows the full list) such as age, sex, breed, and bloodwork
were extracted manually from the reports submitted by veterinary oncologists. In this
manner, we obtained a total of 70 features for each of the 242 patients included in this
retrospective study.

Figure 1. The three types of data used in the ML models and schematic overview of the proposed methodology for
predicting dynamic clinical outcomes of canine lymphoma patients treated with (L-)CHOP chemotherapy.
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Canine lymphoma patients treated with the (L-)CHOP chemotherapy typically un-
dergo a 15 weeks-long treatment [23]. The clinical outcomes (classified as complete remis-
sion, partial response, stable disease, or progressive disease) of the patients during the first
12 weeks were first collected and analyzed. The aggregate data (Figure 2) showed that more
than 98% of the patients who eventually achieved clinical remission achieved remission by
the 8th week. Additionally, a significant portion (10%) of the patients stopped receiving
(L-)CHOP chemotherapy because they had failed to achieve remission by the 4th week.
Given these observations, we trained the machine learning models to predict the likelihood
of achieving and remaining in clinical remission due to (L-)CHOP chemotherapy by the
4th, 8th, and 12th week; classifiers were used to predict whether or not a given patient will
be in remission or not. For each time point, three different types of ML models—random
forest (RF), support vector machine (SVM), and linear regression (LR)—were trained and
tested to compare and identify the model exhibiting the optimal performance. These three
models were chosen as they are routinely used in classification problems across fields.

Figure 2. Dynamic changes in the clinical outcomes of the patient cohort during the first 12 weeks of
the (L-)CHOP chemotherapy. CR, PR, SD, and PD denote clinical remission, partial response, stable
disease, and progressive disease reported by the vets. “NA” represents the cases where the patients
were no longer treated with the (L-)CHOP chemotherapy, while “DD” (dead) includes the cases
where the patients were euthanized.

3.2. Model Performance Based on DS and FC Data

We first trained the models using only the DS values to understand how the other types
of data (FC and PI) contribute to improving model performance. From a total of 28 features
representing IC50 and maximum cytotoxicity of the 14 chemotherapeutic drugs, we first
trained an RF model using the DS of the five chemotherapeutic drugs constituting the
(L-)CHOP chemotherapy. The ROC-AUC of the test set were 0.635, 0.624, and 0.626 when
predicting the likelihood of CR for the 4th, 8th, and 12th week, respectively (Figure 3A).
When allowed to choose the top ten features with respect to mutual information based
on the nearest neighbors method [24], the performance improved slightly only for the
model predicting the likelihood of CR by the 4th week. Similar levels of performance were
observed when SVM and LR were used instead of the RF.
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Figure 3. Predicting clinical outcome of the (L-)CHOP chemotherapy using the three types of data. (A) Comparison in
the performance of the RF models in terms of ROC-AUC with different data sets across all time points. (B) Proportions of
the missing values in each type of data. The error bars represent the minimum and maximum values observed within the
features comprising the given data type. (C) Distribution of the probabilities of the positive clinical outcome generated by
the RF models. The blue and red colored dots represent the values predicted for the patients who achieved or failed to
achieve CR by the given time point, respectively. Asterisks represent significance levels (**** p < 0.0001; * p < 0.05).

3.3. Model Performance Based on DS, FC, and PI Data

We hypothesized that PI data such as age, sex, blood cell levels, and biochemical
concentrations could improve the predictive performance of the ML models by providing
additional information not reflected in DS or FC data. As mentioned before, we examined
medical records and extracted 33 features (Table S2). Unlike the other types of data (DS
and FC) that are measured on site experimentally using the live tumor cells derived from
the patients (Methods), the PI data relied solely on the records provided by the veterinary
hospitals. Extensive resources were thus needed for retrieving data, mainly owing to the
heterogeneity in report formats and diction across the hospitals and oncologists. More
importantly, we were not able to obtain records for a substantial portion (up to 64%) of the
patients included in this study (Figure 3B).

The predictive accuracy of the ML models improved remarkably when the PI data
were used in addition to DS and FC data (Figure 3A). The ROC-AUC of the test set became
as high as 0.893, with an average increase of 0.195 across the three time points. The
predictive performance was the highest when the top 14 features were chosen with respect
to mutual information. For the missing values in the PI data, we tried mean and median
of each feature, as well as the synthetic data imputed by the k nearest neighbors [19] or
multivariate imputation [21]. The highest model performance was obtained when the
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missing values were replaced with the median during pre-processing. RF models exhibited
the highest performance across all time points, followed by LR and SVM; the performance
of the latter two were significantly lower than that of the RF, especially when predicting
the clinical response for the 8th and 12th week (Table S3).

Analyzing B- vs. T-cell subtypes in (canine) lymphoma reveals the origin of cancer
and provides insights on prognosis [16,25]. Given the clinical importance, we analyzed dis-
tribution of the probabilities of achieving and maintaining CR for each subtype generated
by the best models. The results confirmed effective differentiation between the positive
and negative clinical outcomes for both cell types across all time points (Figure 3C). In
other words, the means of the probabilities were significantly lower (p < 0.0001 except for
the 12th week) for the patients whose clinical outcomes were indeed negative (PR, SD, or
PD) than the means of the probabilities for the patients who did achieve clinical remission
by the selected time points. The predictive performance of the best ML model for each time
point is summarized in Table 2.

Table 2. Performance of the best ML models predicting clinical outcome of the canine lymphoma
patients treated with the (L-)CHOP chemotherapy.

Metrics 4th Week 8th Week 12th Week

Accuracy 0.804 0.891 0.827
PPV 0.824 0.894 0.879
NPV 0.791 0.875 0.500

Sensitivity 0.816 0.971 0.879
Specificity 0.800 0.636 0.500

3.4. Progression-Free Survival Prediction

As is the case with human lymphoma patients, immunophenotypes and/or biomark-
ers have traditionally been used to project prospects of survival following the (L-)CHOP
chemotherapy. The cell type—B- vs. T-cell—is a well-known conventional stratification
method: The median duration of PFS is well documented: 244 days for the B-cell versus
108 days for the T-cell subtype [23,26,27]. We observed almost the same difference in prog-
nosis between the two cell types among our cohort—235 vs. 96 days (Figure 4A). Given the
predictive power of the ML models based on our database, we trained a Cox proportional
hazard model to predict prognosis. The C-statistic became as high as 0.850 when all three
types of data were used to train the model. The difference in prognosis was also more
pronounced when comparing the PFS of the patients with respect to the median of PFS
predicted by the trained Cox model (Figure 4B). The median was 290 versus 140 days for
the high and low groups, respectively.

We were able to successfully combine the cell type and the prediction result generated
by the Cox model to provide more precise predictions of survival. Among the B-cell
lymphoma patients, the PFS was markedly higher for those predicted more favorably by
the Cox model (Figure 4C). The median PFS was 267 versus 179 days, with 235 observed
for all the B-cell patients included in this study. Similar results were obtained for the T-cell
patients (Figure 4D) with a higher p-value, likely due to a low number of subjects (5-fold
lower than that of the B-cell type). The median of the PFS was 119 versus 84 days, with
96 being the observed median for all the T-cell patients included. These results suggest
that the proposed methodology can be used to provide a more precise survival model for
individual patients.
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Figure 4. Application of the ML model in predicting prognosis. (A) Progression-free survival of B- vs. T-cell canine
lymphoma patients. (B) The same PFS analysis based on the Cox model generated the number of days by which the
probability of relapse reaches 50%; the discrepancies in n are due to some of the patients not being classified as either
cell-type. The same PFS analysis using stratification based on the Cox model generated median days for the (C) B-cell and
(D) T-cell subtypes among our cohort.

4. Discussion

We developed the ML models for predicting clinical outcomes of canine lymphoma
patients treated by (L-)CHOP chemotherapy, which is the standard treatment of choice
based on previous clinical trials [23]. A total of 65–84% of the patients achieved remission in
the trials [25,27]; 79% of the cohort included in this retrospective study achieved remission,
excluding those whose treatment changed or stopped in the middle (Figure 2). Unlike in
clinical trials with a fixed design, some of the patients received a modified version of the
(L-)CHOP chemotherapy where one of the drugs was replaced with other drugs in the
same therapeutic category. The most frequent case was an administration of mitoxantrone
instead of doxorubicin, usually due to consideration of cardiotoxicity [28]. Owing to these
moderate relaxations on the inclusion criteria, the cohort size (n = 242) in this study is the
largest reported to date, especially for use in developing ML models for predicting clinical
outcomes of combinatorial chemotherapy.

In the previous study, we successfully developed the ML model for predicting in vivo
response of single chemotherapeutic drugs using DS and FC data [10]. We first tried
to emulate the previous work by training ML models with the drug sensitivity of only
five drugs that constitute the (L-)CHOP chemotherapy and flow cytometry readouts.
The performance of these initial trials was not satisfactory (Figure 3A); the accuracies
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stayed below 0.70. We sought to improve the model performance and hypothesized that
the efficacy of a combinatorial chemotherapy regimen like (L-)CHOP also depends on
physiological conditions of patients’ whole bodies, not just of their cancer cells. We thus
expanded the input data to the models by adding information about patients’ physical
status described in the records provided by the veterinary oncologists. Since the patients in
this retrospective study were from more than 50 veterinary hospitals across the U.S., we
only extracted information commonly found across the heterogenous report types. Among
the 33 features manually extracted, age, breed, and sex were provided in almost all of the
reports. In contrast, we were able to obtain bloodwork and count results for only 35–64%
of the patients. The performance of the model still improved drastically, with the highest
accuracy nearing 0.90 when trained with these PI features in addition to the DS and FC data
(Figure 3A). While this observation does not fully support our hypothesis, it proves that PI
can help to make better predictions of cancer patients’ in vivo responses to chemotherapy.
Henriques et al., for example, also reported the usefulness of peripheral blood ratios in
predicting the prognosis of lymphoma patients [29].

The importance of features differed when predicting the probability of CR by the 4th,
8th, and 12th week of the (L-)CHOP chemotherapy. On average, the DS results of the
drugs constituting the (L-)CHOP chemotherapy were more important when predicting
the clinical outcome by the 4th week (Figure S2). The importance decreased for the 8th
week, and they were not included in the top ten when predicting the outcome for the 12th
week. This was somewhat expected since the DS data were measured using the live tumor
cells obtained via FNA at the onset of the chemotherapy (0th week). The composition,
state, and microenvironment surrounding the cancerous cells after the 7th or 11th week,
for example, will likely be different from those of the sampling date [30–32]. In contrast,
the importance of the PI data increased substantially when predicting the clinical outcome
of the 12th week versus the earlier weeks. Age was the most important feature, followed
by the hematocrit and red blood cell level, which are all part of the PI data. They were all
reported to correlate with the prognosis of canine lymphoma patients [29,33].

Missing data are often detrimental to predictive accuracy of ML models [34–36]. In
our ML models, they also resulted in lower performance. The accuracies of predicting
clinical outcome for the 4th, 8th, and 12th week became at most several percent lower than
the overall performance for each when at least three or more features were missing. Given
their prevalence across features in our retrospective study, we tried several methods for
handling missing data before use in ML models. Replacing them with the median resulted
in the highest predictive performance; it was significantly better than replacing with the
mean, likely owing to the skewed distribution of data for some features (Figure S3). Using
the synthetic data imputed by the well-known algorithms was also not as successful as
replacing with the median. We suspect that this is due to features such as blood cell counts
and total protein levels having weak to insignificant correlations to the other types of data.

Overall, we believe that the proposed methodology and technology can contribute
significantly to improving care for canine lymphoma patients. The likelihood of CR by
the various time points provided by the proposed methodology can help make informed
decisions. The individualized PFS prospects will also help the stakeholders to be better
prepared for monitoring prognosis and planning follow-up visits after completion of
the chemotherapy.

5. Patents

There is an ongoing patent application describing the use of functional data, genomic
data, and patient information by a machine learning technique for predicting in vivo
responses to chemotherapy.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vetsci8120301/s1, Figure S1: Changes in the predictive performance of the RF model when
the number of selected features k are increased from 7 to all; Figure S2: Importance of the features
to the ML models predicting clinical outcome by the 4th, 8th, and 12th week since the initiation
of the chemotherapy; Figure S3: Distribution of the raw data for the features having high (>50%)
percentages of missing values; Table S1: List of the eight additional chemotherapeutic drugs for
canine lymphoma considered in this study; Table S2: List of the 33 features comprising the PI data;
Table S3: Performance of the other ML models when predicting clinical outcome across the time
points; and Table S4: Grid of hyperparameters used to optimize the performance of the RF models.
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