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Abstract: Infectious bovine rhinotracheitis (IBR), caused by bovine alphaherpesvirus 1 (BoHV-1), is
an important disease affecting cattle worldwide resulting in great economic losses. Marker vaccines
are effective in controlling infectious diseases including IBR, because they allow the discrimination
between the natural infection and the vaccination. Therefore, a triple gene deleted strain BoHV-1
gG-/tk-/gE- was developed and evaluated in vivo and in vitro as a marker vaccine. In cell culture,
this triple mutant virus showed significantly slower growth kinetics and smaller plaques when
compared to wild-type (wt) BoHV-1 and double mutant BoHV-1 gG-/tk- (p < 0.01). On proteomic
level, it revealed downregulation of some virulence related proteins including thymidine kinase,
glycoproteins G, E, I, and K when compared to the wt. In vitro, the triple mutant virus showed
a significantly lower and shorter viral shedding period (p < 0.001) in calves compared to double
mutant. Moreover, the immunized calves with triple mutant virus showed protection rates of 64.2%
and 68.6% against wt BoHV-1 and wt BoHV-5 challenge, respectively, without reactivation of latency
after dexamethasone injection. In conclusion, BoHV-1 gG-/tk-/gE- is a safer marker vaccine against
IBR although its immunogenicity in calves was decreased when compared to double mutant virus.

Keywords: bovine herpesvirus 1,5; proteomics; glycoprotein; marker vaccines; virulence; immunity

1. Introduction

Bovine alphaherpesvirus-1 (BoHV-1), the causative agent of infectious bovine rhino-
tracheitis disease (IBR) is a Varicellovirus genus member that belongs to subfamily Alphaher-
pesvirinae under the family Herpesvirida [1]. Alphaherpesviruses are double-stranded DNA
viruses and their genome is at least 120 kb long, encoding for 70 or more genes [2].

Three antigenically similar subtypes of BoHV-1 have been revealed depending on
the genomic analysis and viral peptide patterns namely, BoHV-1.1, BoHV-1.2a, and BoHV-
1.2b [3]. Furthermore, the disease outcome based on the BoHV-1 subtypes in which BoHV-
1.1 is the most predominant and mainly culminated in IBR with respiratory signs whilst
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BoHV-1.2 which can be divided into BoHV-1.2a and BoHV-1.2b has a broad range of clinical
manifestations including IBR, infectious pustular vulvovaginitis, and balanoposthitis [4,5].
On the other hand, BoHV-5 is neuropathogenic and responsible for fatal meningoencephali-
tis [6]. The long-life latency development in the sensory ganglia and the existence of carrier
animals are pivotal and serious features of BoHV-1 infections that render the control of the
disease not feasible due to induction of reactivation from latency that was mimicked by
various stressors particularly the synthetic corticosteroid dexamethasone [2,7].

Vaccination is the most successful way to control and eradicate IBR with some dis-
advantages related to the types of vaccines, either the inactivated and or attenuated IBR
conventional vaccines. To overcome these disadvantages, genes that are virulence-related
but non-essential for viral viability are the targets to be deleted for novel vaccine prepa-
ration [8,9]. Commonly used genes in development of gene-deleted vaccines to IBRV are
from glycoprotein mutants such as Envelope glycoprotein E (gE), Envelope glycoprotein
G (gG), and Envelope glycoprotein N (gN), and some genes coding for important enzymes
such as Thymidine kinase (tk) [10,11]. Further, multiple deletion in one construct is con-
sidered to decrease the virulence and risk of the back-mutation such as gE-/tk- [12,13],
gE-/gG-/Tegument protein US2- [14], and gN-30-32CT-null/gE-CT-/Envelope protein
US9- [15]. On the other hand, proteins are the core mediators of viral functions and any
abnormal alteration on their abundance or expression levels may reflect the modification
in viral pathological processes and immunity inside the hosts [16]. Usually attenuation of
viral virulence is associated with decrease of viral immunogenicity.

Previously, our group has successfully constructed and characterized a double deleted
strain BoHV-1 gG-/tk-, which was attenuated in calves and yet maintained the ability to
stimulate a protective immune response [17]. Based on it, the construction and charac-
terization of triple mutant BoHV-1 gG -/tk-/gE- was carried out and differential protein
expression investigated by proteomic analysis using label-free quantitative proteomics
(LFQP). Then, in vivo evaluation of the virulence and protective efficacy of this triple
mutant strain against homologous BoHV-1 and heterologous BoHV-5 challenge in calves
was performed to determine its potential application as a novel IBR marker vaccine.

2. Materials and Methods
2.1. Ethics Statement

The protocols regarding animal experiments were approved by the Committee on
the Ethics of Animal Experiments at Huazhong Agricultural University and conducted
in strict accordance with the Guide for the Care and Use of Laboratory Animals, Wuhan,
Hubei, China.

2.2. Cell Culture and Virus Strains

Madin-Darby Bovine Kidney (MDBK) cell line was used for virus propagation. The
cells were cultured with the complete medium Dulbecco’s Modified Eagle’s Medium
(DMEM) containing 10% fetal calf serum (FCS), 100 µg/mL streptomycin, and 100 IU/mL
penicillin in a humidified incubator at 37 ◦C and 5% CO2 as described previously [18].

Three BoHV-1 strains were used: (i) wt BoHV-1 of bovine origin isolated from a
diseased calf with a respiratory sign by our laboratory. (ii) The wt BoHV-5 strain was kindly
provided by Fabrício Campos at Federal University of Rio Grande doSul (UFRGS), Porto
Alegre, Brazil. Finally, (iii) double mutant strain BoHV-1 gG-/tk-, a vaccine strain with
deleted gG and tk, was constructed and characterized by this lab as reported previously [19].
The three strains at a titer of 107 PFU/mL (plaque forming unit/mL) were stored as viral
stocks and used for MDBK cell infection with DMEM containing 2% FCS.

2.3. Construction of Triple Mutant Virus BoHV-1 Strain gG-/tk-/gE-
2.3.1. Construction of Transfer Vector pBoHV-1 gE-

The primer pairs P1/P2 with Hind III/Kpn I sites and P3/P4 with BamH I/EcoR I sites
were designed to amplify gE-upstream homologous arm and downstream homologous
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arm, respectively (Table S1). Similarly, the primer pair P5/P6 with KpnI/BamHI sites were
used to amplify the enhanced green fluorescent protein (egfp) gene expression cassette.
The resultant gE upper arm, egfp gene, and gE lower arm were cloned sequentially into
pcDNA3.1 (+) myc-HisB to obtain recombinant plasmid pBoHV-1 gE- (Figure S1A).

2.3.2. Generation and Characterization of the Triple Mutant Virus

The linear plasmid pBoHV-1 gE- and full-length BoHV-1 gG-/tk- viral genomic DNA
(the plasmid was cut firstly by restriction enzyme Hind III and BamH I) was purified and
then co-transfected into MDBK cells for homologous recombination by using the calcium
phosphate method as described previously [17]. The putative recombinant viral plaques
were picked and subsequently purified for five rounds. The mutants were analyzed subse-
quently to determine the deletion of gE gene by various strategies of PCR using the primers
(Table S1) specific to different fragments of the gE gene region and the PCR products were
sequenced for confirmation (Sangon Biotech, Shanghai, China) (Figure S1B,C).

Four pairs of primers including P7/P8 (Lanes 1–4), P11/P12 (Lanes 5–8), P3/P14
(Lanes 9–12), and P7/P10 (Lanes 13–16) were used for identification of wt BoHV-1 and
difference gene-deleted mutants (Figure 1A). Moreover, three pairs of primers including
P7/P8 (Lanes 1–3), P9/P10 (Lanes 4–6), P7/P10 (Lanes 7–9) were used for further identifica-
tion of BoHV-1 gG-/tk-/gE- mutant. Each pair of primers set has three repeats (Figure 1B).
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Figure 1. Identification of BoHV-1 gG-/tk-/gE- triple mutant by PCR. (A) A fragment of 2183 bp of the intact gE gene
fragment in wt BoHV-1 (Lane 1) and BoHV-1 gG-/tk- (Lane 2), and a fragment of 2395 bp including the whole egfp gene
and parts of the flanking upstream and downstream sequences (Lane 3) are shown. In addition, the gG gene fragment in wt
BoHV-1 (Lane 5), BoHV-1 gG-/tk- (Lane 6), and BoHV-1 gG-/tk-/gE- (Lane 7), and the tk gene fragment in wt BoHV-1
(Lane 9), BoHV-1 gG-/tk- (Lane 10), and BoHV-1 gG-/tk-/gE- (Lane 11) are shown. A fragment of 481 bp including parts
of upstream homologous arm gene and egfp gene was detected in BoHV-1 gG-/tk-/gE- (Lane 15), but not in wt BoHV-1
(Lane 13), BoHV-1 gG-/tk- (Lane 14). Lanes 4, 8, 12, 16 represent negative control. (B) A fragment of 1685 bp including the
whole upstream homologous arm gene, parts of the flanking upstream sequences of the upstream homologous arm gene,
and egfp gene were amplified from BoHV-1 gG-/tk-/gE- mutant (Lane 4–6). M represents DNA ladder DL2000.

2.4. Viral Growth Kinetics and Plaque Size Determination

For growth characteristics comparison, the plaque morphologies and one-step growth
curves of the three viruses were determined and compared as described elsewhere [19].

2.5. Label Free Quantitative Proteomics (LFQP)
2.5.1. Virions Purification

Viral purification was carried out using the sucrose density gradient ultracentrifuga-
tion method (Figure S2A). The resultant viral pellets were resuspended in 200 µL 1× TE
buffer (10× TE buffer (1000 mL): 20 mL 500 mM/L EDTA (pH 8.0) and 100 mL 1 M/L Tris
HCl buffer (pH 8.0) were added to water and final volume was 1000 mL. 1× TE buffer was
prepared by diluting 10× TE buffer. Finally, 5 mL pure virus in TNE of each strain were
obtained. Meanwhile the OD260/OD280 ratio was measured to be 0.5, 0.4, and 0.5 for wt,
double mutant, and triple mutant, respectively, and the total protein concentration was
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calculated to be 3526.6, 2728.0, and 3370.8 µg/mL. The viral products were divided into
several aliquots and kept at −80 ◦C for further use.

2.5.2. LC-MS/MS Analysis

LC-MS/MS analysis was performed on 500 µL viral products (Project# Z9358LQ,
PTM-Biolabs Co., Ltd., Hangzhou, Zhejiang, China). Briefly, the viral samples experienced
protein extraction and quantification, and trypsin digestion [20]. Then the resultant tryp-
tic peptides were dissolved and fractionated using UPLC system and subjected to NSI
source followed by tandem mass spectrometry (MS/MS) in Q Exactive TM Plus (Thermo
Scientific TM Orbitrap Fusion Lumos TM, Hangzhou, Zhejiang, China). The fixed first
mass was set as 100 m/z (Figure S2B). The MS data validation is shown in Figure S3 and
was carried out using peptide mass tolerance distribution (Figure S3A), identified peptide
length distribution (Figure S3B), and protein mass and coverage distribution (Figure S3C).

2.5.3. Database Search and Bioinformatic Analysis

The resulting MS/MS data were processed using the Maxquant search engine (v.1.5.2.8
http://www.maxquant.org, access on 20 September 2020). The spectral data were searched
against the target BoHV-1 Bos Taurus referenced protein database downloaded from
UniProt (Universal Protein Resource) (www.uniprot.org, access 25 October 2021). Bioinfor-
matic analysis was performed using Gene Ontology (GO) annotation proteome and was
classified based on three categories: biological process, cellular component, and molecular
function. In addition, a 1.5-fold-change was used as the threshold of differential expression
change, and the statistical t-test with p < 0.05 was used as the threshold of significance.
Further, the quantitative ratio over 1.5 was considered upregulation while the quantitative
ratio less than 1.5 as downregulation.

2.6. Cattle Experiments

Virulence and protective efficacy of the triple deletion mutant were evaluated in
two-month-old weaned male Holstein calves that were seronegative for BoHV-1 (n = 24)
(purchased from Hubei Center of Disease Control). The animal experimental design is
summarized in Table 1. Each group of calves was housed in a separate room to prevent
intergroup transmission. The animals were anesthetized by spray with 10% Lidocaine on
the nasal cavity of the calves before the infection, vaccination, and challenge which was as
used by Valera et al. [21]. Nasal swabs were collected daily in 2 mL of tissue culture medium
supplemented with 2% penicillin and streptomycin for 14 days following virus exposure
and dexamethasone injection. Blood was collected weekly up to the end of the experiments.
The samples were processed and stored at −80 °C. The animals were euthanized at the end
of the experiments and the lung tissues were sampled for pathological examination.

Table 1. Experimental design.

Animal Virus No Vaccinated
Route and Dose Dex Injection a Challenge Virus Challenge Date

and Dose
Euthanasia and

Necropsy

Calf

BoHV-1 gG-/tk-/gE- 6 IN, 4 × 107 PFU 21–25 dpi wt BoHV-1 (3) b

wt BoHV-5 (3) b 35 dpi, 4 × 107 PFU 28 dpc

BoHV-1 gG-/tk- 6 IN, 4 × 107 PFU 21–25 dpi wt BoHV-1 (3) b

wt BoHV-5 (3) b 35 dpi, 4 × 107 PFU 28 dpc

wt BoHV-1 3 IN, 4 × 107 PFU 21–25 dpi 35 dpi, 4 × 107 PFU 28 dpc

Unvaccinated control 6 DMEM 21–25 dpi wt BoHV-1 (3) b

wt BoHV-5 (3) b 35 dpi, 4×107 PFU 28 dpc

Negative control 3 28 dpc
a: Dexamethasone (dex) at 0.1 mg/kg body weight (bwt) was injected intramuscularly into the calves for 5 consecutive days to reactivate
the putatively latent virus. b: Six vaccinated calves were allotted randomly to two sub-groups, and three calves in each sub-group were
challenged with wt BoHV-1 and wt BoHV-5, respectively. The dpi refers to days post-infection while the dpc refers to days post-challenge.

http://www.maxquant.org
www.uniprot.org
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2.6.1. Clinical Evaluation

The animals’ body temperature, behavior, presence of coughs, abnormal respiration,
ocular and nasal discharges, hyperemia or lesions of the nasal mucosa, and conjunctivitis
were monitored and recorded daily, and clinical scores were assigned for each parameter
as described earlier [22]. Neurological signs were recorded in the wt BoHV-5 challenge
experiment. The daily clinical score of each calf was the sum of the scores of all clinical
parameters. The mean daily clinical score was calculated for each group and compared
among groups.

2.6.2. Virus Isolation and Titration

Nasal swabs were used for virus isolation and titrations as described previously [23].

2.6.3. Serological Investigation

Serum samples were collected at different time points after vaccination or challenge
and submitted to a standard virus-neutralizing (VN) assay as described earlier [23]. Sera
were also submitted to BoHV-1 gB-specific antibody test (IDEXX Laboratories, Westbrook,
ME, USA), BoHV-1 gE-specific antibody test (IDEXX Laboratories, Westbrook, ME, USA),
sIgA (Bethyl Laboratories, Montgomery, TX, USA), and serum cytokine tests including
IFN-γ (Mabtech, Nacka Strand, Sweden), IL-2 (Ray Biotech, Norcross, GA, USA), and IL-4
(Mabtech, Nacka Strand, Sweden) detection by using commercial ELISA kits.

2.6.4. Histo-Pathological Examination of Lungs

The calves were euthanized 28 dpc and a 35-point scoring system was used for the
lesion evaluation in each lung lobe as described previously [24].

The lesion evaluation in each lung lobe was as follows: 0, indicated no visible lesions;
1, no gross lesions, but lesions were apparent upon dissection; 2, <5 gross lesions with
diameters of <10 mm; 3, >6 gross lesions with diameters of <10 mm, or a single distinct
gross lesion with a diameter of >10 mm; 4, 2 or more distinct gross lesions with diameters
of >10 mm; 5, gross coalescing lesions. The scores of the individual lobes were summed to
generate the total lung score.

2.7. Statistical Analysis

The protection rate was calculated according to the formula described by
Zhang et al. [25]. The data for the various groups were compared using t-tests and a
one-way ANOVA. Results of comparisons with p < 0.05 (*) or p < 0.01 (**) or p < 0.001 (***)
were considered to indicate a significant or high significant statistical difference.

3. Results
3.1. Construction and Characterization of the Recombinant BoHV-1 gG-/tk-/gE- Triple-
Deleted Mutant

The BoHV-1 gG-/tk-/gE- virus was confirmed by PCR (Figure 1). A fragment of
2395 bp (primers P7/8) including the whole egfp gene and parts of the flanking upstream
and downstream sequences (Figure 1A, Lane 3), and a fragment of 481 bp (primers P7/10)
including parts of upstream homologous gE arm and egfp gene (Figure 1A, Lane 15) were
amplified from the triple mutant, respectively. The deleted gG and tk gene fragments
in BoHV-1 gG-/tk-/gE- were also detected (Figure 1A, Lanes 7 and 11, respectively).
Additionally, a fragment of 1685 bp, including the whole upstream homologous gE arm
gene, parts of the flanking upstream sequences of the upstream homologous gE arm, and
egfp gene were amplified from the triple mutant (Figure 1B, Lanes 4–6). The PCR products
of the mutant were custom-sequenced and the viral gE gene was found to be replaced with
egfp gene.
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3.2. Comparative Viral Growth Kinetics and Plaque Size Estimation

Compared to wt BoHV-1 and BoHV-1 gG-/tk-, BoHV-1 gG-/tk-/gE- showed a weaker
cell cytopathic effect (CPE) in MDBK cells shown by smaller plaques with uncleared edges
within 48 h post-infection (hpi) (Figure 2A). The mean diameter of BoHV-1 gG-/tk-/gE-
plaques was 308 ± 20 µm, 48 hpi, which was significantly less than wt BoHV-1 and the
BoHV-1 gG-/tk- mutant (p < 0.001) (Figure 2B). The growth curves of these three viruses
were similar during the first 6 h, however, the amount of BoHV-1 gG-/tk-/gE- virus
produced was less than the wt BoHV-1 virus and BoHV-1 gG-/tk- mutant at the remaining
time points (p < 0.001) until 48 hpi (Figure 2C).
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morphology of BoHV-1 gG-/tk-/gE-, BoHV-1 gG-/tk-, and wt BoHV-1 in MDBK cell monolayers. (B) The diameter of
30 plaques for each virus. (C) One-step growth curve of BoHV-1 gG-/tk-/gE- and wt BoHV-1 viruses in MDBK cells. The
mark (***) with p < 0.001 refers to highly significant.

3.3. Comparative Proteomics of the Three BoHV-1 Strains
3.3.1. Differentially Expressed Proteins in Different Comparable Strains

A total of 69 protein groups were identified, among which 65 proteins were accurately
quantified covering almost all the viral proteins with a quantification ratio consistent in at
least two of the three LC-MS/MS analyses (Table S2). Further, the differentially expressed
proteins were assessed.

Compared to wt BoHV-1, BoHV-1 gG-tk-gE- triple mutant exhibited downregula-
tion of 16 proteins (namely, gG, TK, gE, gI, gK, DNA replication helicase, BICP4, DNA
primase, US1.67, UL7, UL14, UL20, UL41, UL43, UL46, UL51) and upregulation of 12 pro-
teins (gB, gD, UL6, UL24, Triplex capsid protein 1, Triplex capsid protein 2, US3 virion
serine/threonine protein kinase, Major capsid protein, Nuclear egress protein 1, Capsid
scaffolding protein, Alkaline nuclease, Small capsomere-interacting protein). On the other
side, when compared with the double mutant, BoHV-1 gG-tk-gE- triple mutant exhibited
11 downregulated proteins (gE, DNA replication helicase, DNA primase, gI, gK, UL20,
UL46, circ protein, virion host shutoff factor, nuclear egress protein 2 and cytoplasmic
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envelopment protein 1) and 24 proteins were upregulated (gB, gC, gD, gL, gM, gN, α-TIF,
UL3, UL3.5, UL4, UL15, UL43, Vp8, UL50, US1.67, Triplex capsid protein 1, Triplex capsid
protein 2, Portal protein, Uracil-DNA glycosylase, BICP0, Major capsid protein, Capsid
scaffolding protein, Tripartite terminase subunit 3, Alkaline nuclease, Small capsomere-
interacting protein).

Furthermore, the BoHV-1 gG-tk- douple mutant revealed downregulation of 21 pro-
teins (gG, TK, gD, gL, gC, gN, gM, BICP4, Alpha TIF protein, UL3, UL3.5, UL4, UL14,
UL15, UL41, UL43, UL46, VP8, UL50, UL51 and US 1.67 protein) and upregulation of one
protein only (Major DNA binding protein) when compared to the wt BoHV-1.

Surprisingly, in correlation to the wt BoHV-1, both the double and triple mutants
have (a) nine common downregulated proteins (gG, TK, BICP4, UL14, UL41, UL43, UL46,
UL51, and US1.67); (b) 12 uniquely upregulated proteins in the double mutant (gC, gD,
gL, gM, gN, α-TIF, UL3, UL3.5, UL4, UL15, Vp8, and UL50); (c) seven uniquely downregu-
lated in the triple mutant (gE, DNA replication helicase, DNA primase, gI, gK, UL7, and
UL20) (Table S3).

3.3.2. GO Secondary Annotation Classification

GO classification using the GO Terms Level 2 database was used to examine the traits
of the differentially expressed proteins regarding their biological processes (BPs), cellular
components (CCs), and molecular functions (MFs) (Figure 3). Comparing the wt BoHV-1
to double mutant BoHV-1 gG-/tk- revealed that most of the proteins were involved in
the cellular process (32%); followed by equal involvement in metabolic process, multi
organism process and biological regulation (18%); then, similar involvement in localization
and cellular components organization or biogenesis (5%) and single organism process (4%).
By cellular components, the classification showed that most of the proteins were located in
the membrane (55%), other organisms (36%) and virions (9%). Meanwhile, classification by
molecular functions demonstrated that most of the proteins were involved in binding (73%)
and catalytic activity (27%).

Comparison of wt BoHV-1 to the triple mutant BoHV-1 gG-/tk-/gE- in biological
process demonstrated that the differentially expressed proteins were involved in the cel-
lular process (34%), metabolic process (23%), multi organism process (19%); then, equal
involvement in biological regulation and cellular components organization or biogenesis
(8%); similar involvement in locomotion and single organism process (4%). By cellular
components, the classification showed that most of the proteins belonged to the membrane
(41%), other organisms (30%), and virions (29%). By molecular functions, the proteins
were involved in binding activity (47%), catalytic activity (41%), and structure molecule
activity (12%).

Finally, comparison of BoHV-1 gG-/tk- to the triple mutant BoHV-1 gG-/tk-/gE- in
biological process demonstrated that the differentially expressed proteins were involved
in the cellular process (40%), multi organism process (30%), metabolic process (20%), and
biological regulation (10%). By cellular components, the classification showed that most of
the proteins were located in the membrane (71%) and other organisms (29%). While binding
and catalytic activities of differentially expressed proteins shared the half percentage of
molecular functions (50%).
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3.4. In Vivo Experiment Findings
3.4.1. Virulence and Reactivation of BoHV-1 gG-/tk-/gE- in Calves

Following inoculation of calves, BoHV-1 gG-/tk-/gE- did not induce fever (Figure S4A)
or clinical signs (Table S4). In contrast, the calves inoculated with wt BoHV-1 displayed
clinical signs, including coughing, ocular and nasal discharges, conjunctivitis, depression,
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and abnormal breathing (Table S4), and their clinical scores were significantly higher than
that of the other groups (p < 0.001) (Figure S4B).

In addition, both mutant-inoculated groups showed significantly less viral shedding
(p < 0.001) in nasal swabs and shed for a shorter period than the group inoculated with
wt BoHV-1 (Table S4 and Figure S4C). The BoHV-1 gG-/tk- inoculated calves shed virus
for 6.3 ± 1.4 days with a peak viral titer of 102.83 PFU/mL at 4 dpi, whereas the BoHV-1
gG-/tk-/gE- inoculated calves shed virus only for 3.5 ± 0.8 days, with a peak viral titer of
102.04 PFU/mL at 4 dpi, and showed significantly less viral shedding (p < 0.001) than the
former group (Figure S4C).

Neither the BoHV-1 gG-/tk-/gE- nor the BoHV-1 gG-/tk- mutant could be reactivated
by dexamethasone injection in calves. However, the wt BoHV-1 was detected in nasal
swabs 1–3 days after the dexamethasone injection (Figure S4C)

3.4.2. Protection of BoHV-1 gG-/tk-/gE- against wt BoHV-1 Challenge in Calves

To evaluate the protective efficacy of BoHV-1 gG-/tk-/gE- against wt BoHV-1 chal-
lenge, three calves from each group were challenged with wt BoHV-1. Two calves in
BoHV-1 gG-/tk-/gE- inoculated group and one calf in BoHV-1 gG-/tk- inoculated group
experienced fever (>39.7 °C). All calves in the unvaccinated control group had elevated
temperatures above 40 °C for 3 days (Figure 4A). The number of days of fever, ocular and
nasal lesions, and cough are presented in Table S5. The clinical scores recorded after the
challenge are shown in Figure 4B. One of three calves in both mutant vaccinated groups
displayed clinical signs with a score of more than 3 after the challenge. All calves in the
unvaccinated control group displayed fever, nasal and ocular discharge, cough, and con-
junctivitis. As a result, their clinical scores were significantly increased after the challenge
(Figure 4B). The negative control group did not display any abnormal clinical signs.

The calves in BoHV-1 gG-/tk-/gE- inoculated group shed virus for 9.3 ± 1.1 days,
with a peak viral titer of 104.18 PFU/mL at day 5 dpc. Compared to the BoHV-1 gG-/tk-
/gE- inoculated group, calves in the BoHV-1 gG-/tk- inoculated group shed the virus for a
shorter period (6.0 ± 1.0 days) with a peak viral titer of 103.18 PFU/mL at 5 dpc with less,
although not significant, viral shedding (p > 0.05). The unvaccinated calves shed virus for
11.3 ± 1.5 days with a peak viral titer of 105.32 PFU/mL at 5 dpc (Table S5), which was
significantly higher (p < 0.01) than those of both groups of mutant vaccination (Figure 4C).

The mean score for lung pathology per calf for the BoHV-1 gG-/tk-/gE-, BoHV-1 gG-
/tk-, unvaccinated but challenged, and blank control groups was 6.00 ± 3.00,
2.67 ± 2.08, 13.33 ± 3.06, and 2.00 ± 1.00, respectively (Figure 4D). The mean score of the
unvaccinated group was significantly higher than those of the other groups (p < 0.01).

The protection rates were calculated based on the totals of the various scoring systems
(Table S6). The overall protection rate for the BoHV-1 gG-/tk-/gE- and BoHV-1 gG-/tk-
group was 91.7% and 64.2%, respectively.
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3.4.3. Cross-Protection of BoHV-1 gG-/tk-/gE- against wt BoHV-5 Challenge in Calves

To check whether vaccination with BoHV-1 gG-/tk-/gE- or BoHV-1 gG-/tk- could
induce cross-protection to BoHV-5 infections, three calves from each group were chal-
lenged with wt BoHV-5 strain. After challenge, one calf in both groups (BoHV-1 gG-
/tk-/gE- and BoHV-1 gG-/tk-) experienced fever (>39.7 °C) for 1 day. In contrast, two
calves in the unvaccinated group had a temperature above 40 °C for 3 and 4 days,
respectively (Figure 5A). Respiratory signs detected in both mutant-inoculated groups
were less severe and remained for a shorter period than those observed in unvaccinated
animals (Table S5). The clinical scores recorded after the challenge are shown in Figure 5B.
Neurological signs including head-pressing were observed in one calf of the BoHV-1 gG-
/tk-/gE- inoculated group for 3 consecutive days (8–10 dpc) and in one calf of the BoHV-1
gG-/tk- inoculated group for 1 day (7 dpc), while head-pressing was observed in two
calves of the unvaccinated groups for 3 consecutive days.

Unvaccinated calves shed virus for 12.0 ± 1.7 days with a peak shedding at 6 dpc
(104.06 PFU/mL). However, the viral shedding in BoHV-1 gG-/tk-/gE- and BoHV-1 gG-/tk-
inoculated groups was observed for 9.3 ± 1.5 and 8.0 ± 1.0 days, respectively. The peak viral
titer of BoHV-1 gG-/tk-/gE- and BoHV-1 gG-/tk- was 103.25 (6 dpc) and 102.88 PFU/mL
(4 dpc), respectively (Table S5). In addition, viral titers shed from the BoHV-1 gG-/tk-
/gE- and BoHV-1 gG-/tk- inoculated groups were significantly lower than that of the
unvaccinated group at 6 dpc (BoHV-1 gG-/tk-/gE- vs. unvaccinated: p < 0.05, BoHV-1
gG-/tk- vs. unvaccinated: p < 0.01) (Figure 5C).

The mean score for lung pathology for the BoHV-1 gG-/tk-/gE-, BoHV-1 gG-/tk-,
unvaccinated but challenged, and blank control groups was 6.00 ± 4.58, 9.00 ± 6.00,
15.33 ± 7.57, and 2.00 ± 1.00, respectively (Figure 5D). The mean score for the unvaccinated
group was higher than that of the blank control group (p < 0.05) but without significant
differences while compared with that of the other groups.
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The protection rates were calculated based on the total scores of the various scoring
systems (Table S6). The overall protection rate for the BoHV-1 gG-/tk-/gE- and BoHV-1
gG-/tk- group was 68.6% and 47.22%, respectively.
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3.5. Serological Investigations
3.5.1. Humoral Immune Response in Calves

The serum samples obtained at intervals after vaccination and challenge were tested
for VN antibody (Figure S5). Two of the six calves in the BoHV-1 gG-/tk-/gE- inoc-
ulated group were positive for VN antibody at 28 dpi, and four calves were positive
at 35 dpi. In contrast, two of six calves in the BoHV-1 gG-/tk- inoculated group were
positive at 14 dpi and five calves were positive at 21 dpi. In addition, there were signifi-
cantly lower (p < 0.01) VN antibody titers in the BoHV-1 gG-/tk-/gE- inoculated calves
(0.8 ± 1.3) than in the BoHV-1 gG-/tk- inoculated group (6.0 ± 4.5) at 28 dpi (Figure S5A).
Interestingly, following the wt BoHV-1 challenge, a strong and rapid increase of VN an-
tibody titers was observed in both inoculated groups. Similarly, the titers in the BoHV-1
gG-/tk-/gE- inoculated group increased, although the titers were significantly lower
(p < 0.01) at 56 dpi when compared to the BoHV-1 gG-/tk- inoculated group (Figure S5B).
Moreover, following wt BoHV-5 challenge, the calves in both the mutant-inoculated groups
developed VN antibodies to BoHV-1 (Figure S5C) and BoHV-5 (Figure S5D), and the
BoHV-1 gG-/tk-/gE- inoculated group also had similar increases when compared to the
BoHV-1 gG-/tk- inoculated group. Further, both mutant-inoculated groups developed
VN antibodies with no significant differences in VN antibody titers to wt BoHV-1 virus
(Figure S5C) and wt BoHV-5 virus (Figure S5D) after wt BoHV-5 challenge. In contrast,
the unvaccinated control calves developed a lower and delayed antibody response after
challenge, which were typical of primary responses.

Sera from all calves of the BoHV-1 gG-/tk- and wt BoHV-1 inoculated groups had
positive (≥55%) anti-BoHV-1 gB antibodies at 14 dpi, while 21 dpi for BoHV-1 gG-/tk-/gE-
inoculated group (Figure S6A). Groups that were BoHV-1 gG-/tk- vaccinated or wt BoHV-1
infected were found to be positive for gE-specific antibodies at 21 dpi. However, no anti-gE
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antibody was detected in all calves of the BoHV-1 gG-/tk-/gE- inoculated group before the
challenge (Figure S6B).

IgA increased in the sera of BoHV-1 gG-/tk-/gE- inoculated calves after vaccination,
although this was not significantly different from that of the BoHV-1 gG-/tk- and wt
BoHV-1 inoculated groups (Figure S6C).

3.5.2. Cytokine Production in Calves

IFN-γ was detected but none of the BoHV-1 mutant vaccinated groups generated a
significant increase in the level (Figure S7). IL-2 was not detectable from any calf. IL-4
was detected in all calves of the BoHV-1 gG-/tk- inoculated group at 1 dpi, whereas in the
BoHV-1 gG-/tk-/gE- inoculated group only two calves were detectable after vaccination
(Table S7), and the level was significantly lower (p < 0.05) than that of the BoHV-1 gG-
/tk- inoculated group at 14 dpi. However, none of the wt BoHV-1 infection groups were
detectable in IL-4 after infection.

4. Discussion

Vaccination is an effective control measure against IBR. Several European countries
have initiated control programs aimed at BoHV-1 eradication based on the use of marker
vaccines [26]. These marker vaccines have one or more antigenic proteins less than the
parental wt virus, and it is possible to detect an antibody response to the specific deleted
protein which could allow differentiation of infected from vaccinated animals [27].

To diminish the pathogenicity and avoid virus recombination, triple mutant BoHV-1
gG-/tk-/gE- was developed on the base of the double mutant vaccinal strain BoHV-1
gG-/tk as a superior vaccine candidate [28]. On the other side, LFQP helps control viral
infectious disease affecting cattle via identification of virion-associated proteins and it can
translate the basic science investigations into practical measures [29,30].

The BoHV-1 gG-/tk-/gE- mutant exhibited growth kinetics inferior to that of wt
BoHV-1, and double mutant gG-/tk- with smaller plaques of uncleared edges and reduced
sizes observed during the in vitro study. Moreover, it showed a significantly lower virus
shedding and shorter period of shedding in vivo. Therefore, BoHV-1 gG-/tk-/gE- exhib-
ited more attenuation and less virulence in vivo and in vitro which might be attributed
to missing the key role of gE in cell-to-cell spread of the virus in cultured cells and viru-
lence [31–34].

From a proteomic point of view, the GO classification was mainly involved in the
cellular process and the metabolic process by BPs belongs to membrane part by CPs and
exhibited binding and catalytic activities by MFs. This attributed to the virion assembly
of gG and gE as a membrane envelope protein and their role in cell-to-cell spread, cell
attachment, and chemokine binding function as well as the crucial effect of tk as a virulence-
related gene [18,19].

The BoHV-1 gG-/tk-/gE- mutant appeared to be immunogenic and less virulent
comparing to other virions due to the deletion of virulence-related genes (tk and gE) and
immunosuppressive gG [19,35]. These results indicate the triple gene deleted virions lost
the greatest part of its virulence comparing to the other two virions with retaining its
immunogenicity [17,36–38].

After BoHV-1 challenge, the BoHV-1 gG-/tk-/gE- could still protect against virulent
wt BoHV-1 challenge even though it was more attenuated. However, the protection against
virulent BoHV-1 challenge of BoHV-1 gG-/tk-/gE- was lower than that of BoHV-1 gG-/tk-
since the calves inoculated with BoHV-1 gG-/tk-/gE- show higher clinical scores, a shorter
period of virus shedding. The reason for lower protection might be that the immunogenicity
of BoHV-1 strains is directly related to their replication efficiency in vivo [39]. Hence,
gene deletions for attenuation may affect replication and, consequently, compromise the
immunogenicity [40]. Thus, it is expected that the low virulence strain of triple mutant
induces a lower immune response (VN antibody and gB-specific antibody), a delay in the
production of VN antibody, and had lower protection rates than the double mutant.
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Although no cases of neurological disease caused by BoHV-5 have been reported in
China, they have been reported in Europe, the USA, and Australia [41]. However, the
increasing importance of China’s cattle industry in the global beef market will probably
lead to an increasing number of international trades of cattle and products, which may
lead to the entry of BoHV-5 accidentally through animal imports. Therefore, there is a dire
need for the development of safer and more effective vaccines against BoHV-5 infection.
Previous work in calves suggested that subcutaneous inoculation of either BoHV-1 or
BoHV-5 vaccines conferred partial protection to the BoHV-5 challenge [40,42,43]. Given
the fact, we checked whether vaccination with BoHV-1 gG-/tk-/gE- and BoHV-1 gG-/tk-
would induce cross-protection to BoHV-5 infections. In both groups of mutant-inoculated
calves, only partial protection was attained. Nasal BoHV-5 shedding post-challenge was not
significantly reduced by vaccination except at 6 dpc. Vaccination also did not fully prevent
the development of neurological signs in calves after challenge. However, unvaccinated
calves developed more pronounced neurological signs. As a result, both mutants provided
insufficient protection to the BoHV-5 challenge, similar to that reported by others [43].

Based on the previous reports regarding the IBR marker vaccine [15] and as elucidated
above, the triple mutant BoHV-1 gG-/tk-/gE- may serve as a candidate marker vaccine for
controlling BoHV-1 infection in the cattle industry.

5. Conclusions

BoHV-1 gG-/tk-/gE- could be a safer candidate marker vaccine against IBR and
booster vaccination might be an effective approach to increase the immune response
against the challenge, but this requires further investigation. Moreover, the comparative
proteomic analysis revealed dysregulation of some unique proteins in this triple mutant
BoHV-1 gG-/tk-/gE- and double mutant BoHV-1 gG-/tk- correlated to the wt BoHV-1 that
can be used as diagnostic biomarkers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vetsci8110253/s1, Figure S1. Construction strategy of pBoHV-1 gE- and recombinant BoHV-1
gG-/tk-/gE- viruses based on BoHV-1 gG-/tk- mutant. (A) Construction of transfer vector, including
target deletion region, upstream, downstream fragments and inserted EGFP expression cassette.
(B) BoHV-1 gG-/tk- genome. (C) BoHV-1 gG-/tk-/gE- genome. The gE gene was deleted by insertion
of EGFP expression cassette. Figure S2. General workflow for the purification of the four different
virions of BoHV-1 and mass spectrometry steps of LC.MS/MS. (A) Extracellular virions were purified
using centrifugation/ultracentrifugation method on sucrose density gradient cushion. As the step of
purity of crucial importance, EM observation is carried out to confirm the purity of the virions and
absence of cell debris. Contaminating proteins were removed by the proteolysis of purified virions.
(B) Analysis of virion-associated protein composition by mass spectrometry. Typical steps for analyz-
ing virion-associated proteins by LC-MS/MS of extracted proteins of purified virions and separated
proteins of purified virions using 1 D gel electrophoresis. Finally, database search and bioinformatic
analysis were performed. Figure S3. Quality Control (QC) Validation of MS Data; (A) peptide
mass tolerance distribution (B) identified peptide length distribution (C) protein mass and coverage
distribution. Figure S4. Clinical signs and reactivation of BoHV-1 mutant in calves. Temperature
change (A), Mean daily clinical score (B), and nasal virus shedding (C) in calves following vaccination
with BoHV-1 gG-/tk-/gE-, BoHV-1 gG-/tk- and wt BoHV-1 and after dexamethasone injection. Clini-
cal signs combining body temperature, behavior, presence of coughs, abnormal respiration, ocular
and nasal discharges, hyperemia, or lesions of the nasal mucosa, and conjunctivitis were scored
as described earlier [1]. Nasal virus shedding was detected as described below: nasal swabs were
submitted for virus isolation and quantitation. The nasal swab medium was filtered through 0.22 µm
filters before being inoculated into MDBK cell cultures in 24-well tissue culture plates. The plates
were monitored daily for characteristic BoHV cytopathic effects (CPE) for up to 4 days. The infectivity
of the samples positive to the virus was subsequently quantified by plaque assay on MDBK cells in
24-well cell culture plates as described previously [2]. Figure S5. Virus-neutralizing (VN) antibodies
titers in calves. Virus-neutralizing (VN) antibodies against BoHV-1 following vaccination (A) and
challenge with wt BoHV-1 (B) or wt BoHV-5 (C). VN antibodies against BoHV-5 after challenge with
wt BoHV-5 (D). VN antibodies were examined in a varying serum-constant virus neutralization (SN)
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assay in 96-well plates, with two-fold dilutions of serum against 100 TCID50 of either BoHV-1 strain
HB06 or BoHV-5 strain EVI 88/95. The VN titers were expressed as the reciprocal of the highest
serum dilution that prevented the development of cytopathic effect (CPE) after 72 h of incubation at
37 °C. Figure S6. Antibody ELISA assays. Anti-BoHV-1 gB antibody (A), gE antibody (B), and serum
sIgA (C) were determined in serum from vaccinated animals at different dpi. Serum samples with
blocking % of 55% and greater are considered positive for BoHV-1 gB antibodies. Serum samples with
an S/N ratio of 0.60 and lower are considered positive for BoHV-1 gE antibodies. Figure S7. IFN-γ
detection after vaccination. Table S1. The primers used in this study. Table S2. The total identified
virion proteins of the three strains after LC-MS/MS peptides identification and database search using
UNIPROT. Table S3. Comparative upregulated and downregulated proteins detected in wt BoHV-1,
double mutant BoHV-1 gG-/tk-, and the triple mutant BoHV-1 gG-/tk-/gE-. Table S4. Mean number
of days of fever, ocular and nasal lesions, cough, and nasal virus shedding after intranasal inoculation.
Table S5. Mean number of days of fever, ocular and nasal lesions, cough, and nasal virus shedding
after challenge. Table S6. Assessment of protection rates based on different scoring systems. Table S7.
IL-4 detection after vaccination.
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