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Abstract: Bovine papillomavirus (BPV) types 1 and 2 are recognized as the main cause of equine
sarcoids. However, some studies report that up to a quarter of these tumors do not contain detectible
BPV1 or BPV2 DNA. The absence of detectible BPV1 or BPV2 in these sarcoids suggests the possible
involvement of other papillomavirus types. Currently, five deltapapillomaviruses are recognized to
cause mesenchymal neoplasia after cross-species infection. In addition to BPV1 and BPV2, BPV13
has been associated with equine sarcoids in Brazil, BPV14 has been associated with feline sarcoids,
and Ovis aries papillomavirus 2 caused a sarcoid-like lesion in a pig. To investigate the cause
of equine sarcoids, PCR primers were developed to specifically amplify each of the five different
deltapapillomaviruses that have been associated with mesenchymal neoplasia. The specificity of these
primers was confirmed using samples of formalin-fixed tissue known to contain each PV type. These
primers allow rapid and sensitive detection of deltapapillomavirus DNA in equine sarcoids. As studies
have revealed marked regional variability in the cause of equine sarcoids, these primers will be useful
to determine the predominant PV type causing sarcoids in a region. Additionally, there is a single
report describing mixed infections by BPV1 and BPV2 in equine sarcoids. The specific primer sets are
expected to enable more sensitive detection of mixed infections in equine sarcoids. Determining the
cause of equine sarcoids is important as vaccines are developed to prevent these common malignant
neoplasms.

Keywords: papillomavirus; equine sarcoids; feline sarcoids; PCR primers; deltapapillomavirus;
bovine papillomavirus

1. Introduction

Papillomaviruses (PVs) are double-stranded circular DNA viruses that infect most
vertebrate species [1]. PVs are able to promote cell growth and replication, and PV infection
can result in the development of a hyperplastic papilloma (wart) [2]. Additionally, PVs can
promote the development of irreversible changes within the cell DNA and the development
of neoplasia [2]. PVs are classified using the highly conserved L1 gene. If two PVs have
65–90% similarity, then they are considered to be different types, while PVs that have
around 60% similarity are usually classified within the same genus [3]. In addition to the
genetic similarity, PV types within the same genus often infect closely related host species
and cause similar lesions [3].

Equine sarcoids are common mesenchymal neoplasms that are caused by cross-species
infection by PV types that are classified within the deltapapillomavirus genus. Current
evidence suggests that the majority of equine sarcoids are caused by bovine papillomavirus
(BPV)1 or BPV2 [4], although there appear to be significant geographic differences in
the proportion of equine sarcoids caused by each BPV type [5,6]. However, multiple
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studies have reported that around 25% of equine sarcoids did not contain amplifiable
BPV1 or BPV2 DNA [7,8]. The failure to detect BPV1 or BPV2 DNA could be due to DNA
fragmentation in the sample or histological misclassification of the lesions. However, it
could also suggest that deltapapillomavirus types other than BPV1 or BPV2 could be present
in a minority of tumors. The possibility of other PV types as a cause of equine sarcoids was
recently demonstrated by the detection of BPV13 in an equine sarcoid from Brazil [9]. In
addition to BPV1, BPV2, and BPV13, which have previously been associated with equine
sarcoids, there are two additional deltapapillomaviruses that have been reported to cause
mesenchymal neoplasia after cross-species infection. These are BPV14, which is the cause
of feline sarcoids [10,11], and Ovis aries papillomavirus (OaPV)2, which was reported to
cause a sarcoid-like lesion in a pig [12]. While neither BPV14 nor OaPV2 have previously
been reported to infect horses, it is possible that one or both of these deltapapillomavirus
types could cause some of the PV-negative equine sarcoids reported in earlier studies.
Furthermore, there is a single report describing mixed infections by both BPV1 and BPV2
in equine sarcoids [6]. Further studies are required to determine if mixed infections with
multiple deltapapillomavirus types are present in equine sarcoids more frequently than
currently recognized.

Current research suggests that vaccines may be able to prevent equine sarcoids [13,14].
However, evidence from studies on human PV vaccines suggests that immunity against
one PV type may not provide adequate cross-protection against infection by other PV
types [15]. For this reason, human PV vaccines contain multiple different virus-like particles
(VLPs), with each of the VLPs providing protection against one PV type [16]. While
the ability of a BPV1 VLP vaccine to provide cross-protection against infection by other
deltapapillomaviruses is currently unclear, a vaccine containing BPV1 VLPs provided good
protection against BPV1 infection, but a vaccine containing both BPV1 and Equus caballus
papillomavirus type 2 VLPs did not completely prevent infection by BPV2 [13]. As a vaccine
designed to prevent infection by one PV type may not provide sufficient cross-protection
against other PV types, determining which of the five deltapapillomavirus types cause
the majority of equine sarcoids in a geographical region is essential to develop a logical
vaccination plan. The aim of this study was to develop specific primer sets to amplify
each of the five deltapapillomavirus types that have been associated with mesenchymal
neoplasia and to confirm that each primer set only amplifies DNA from the targeted PV type.
Developing specific PCR primers to exclusively amplify each deltapapillomavirus type will
allow sensitive detection of the causative PV type without the need for direct sequencing.
These primers will also allow mixed infections to be more easily detected within samples. To
the authors’ knowledge, no specific primers have been previously developed to differentiate
between the five deltapapillomavirus types that have been associated with mesenchymal
neoplasia.

2. Materials and Methods
2.1. Samples and DNA Extraction

Paraffin tissue blocks containing formalin-fixed samples of an equine sarcoid that
contained BPV1 DNA, a bovine anal fibropapilloma containing BPV2 DNA [17], a feline
sarcoid that contained BPV14 DNA, and a sarcoid-like lesion from the mouth of a pig known
to contain OaPV2 DNA [12] were used in the study. All were diagnostic samples submitted
from animals in New Zealand. No positive control for the BPV13 primer set was available.
Initially, the hope was to use a BPV13-positive papilloma from Brazil; however, because
of COVID-19 disruptions to international freight, this was not possible. In an attempt
to find a sample that contained BPV13 DNA, formalin-fixed paraffin-blocked samples
of 14 cutaneous papillomas from cows in New Zealand were identified by searching the
Massey University Pathology Database.

A 10 µm shaving of each paraffin block was used for DNA extraction. Total DNA
was extracted from each shaving using a NucleoSpin DNA FFPE XS kit (Macherey-Nagel
GmbH, Duren, Germany) according to the manufacturer’s instructions.
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2.2. Primer Development

All primers were designed to amplify parts of the PV L1 gene using the Primer-
BLAST tool (https://www.ncbi.nlm.nih.gov/tools/primer-blast, accessed 1 May 2021).
The sequences used for primer design were MG977494.1 for the primers designed to amplify
BPV1, KC878306.1 for BPV2, JQ798171.1 for BPV13, KP276343.1 for BPV14, and U83595.1
for OaPV2. The parameters used during primer development were the production of
10 primer sets to target each of the PV types, with primer sets amplifying a length of
DNA between 100 and 250 bp. Once the primers were designed, the primer sequences
were compared to the other four deltapapillomavirus sequences using Geneious Prime
2020.2.5 (https://www.geneious.com, accessed 1 May 2021). For each PV type, the primer
set with the least sequence similarity to the other deltapapillomavirus types was selected.
Additionally, the BPV1 and BPV2 primer sets were chosen to maximize the differences in
length of the amplified DNA so that these could be used in a multiplex assay.

2.3. Amplification and Sequencing

The PCR reactions for all primer sets contained 1 x Hot FirePol Blend Master Mix with
10 mM MgCl2 (Solis BioDyne, Tartu, Estonia) and 0.25 µM of each primer. Each reaction
volume was 20 µL, which included 2 µL template DNA. Amplification conditions were
95 ◦C for 15 min followed by 45 cycles of 95 ◦C for 1 min, 60 ◦C for 30 s, and 72 ◦C for
1.5 min. The final extension was at 72 ◦C for 5 min. Electrophoresis in a 1% agarose gel
was used to detect the amplified DNA. Each primer set was used in five amplification
reactions that included template DNA extracted from lesions known to contain BPV1,
BPV2, BPV14, or OaPV2 and a no-template negative control. Amplicons were sequenced
as previously described [18], and sequences were compared to those contained within
GenBank (see http://www.ncbi.nlm.nih.gov/GenBank, accessed 1 May 2021) using the
basic local alignment search tool (http://www.ncbi.nlm.nih.gov/blast, accessed 1 May
2021) to confirm that the primer sets amplified DNA from the expected PV type. To confirm
that the primer set designed to specifically amplify BPV13 did not amplify DNA from the
other PV types, amplification reactions containing the BPV13 primers and one of BPV1,
BPV2, BPV14, or OaPV2 were performed. The primer set specific for BPV13 was also used
to try to amplify PV DNA from the 14 bovine papillomas.

3. Results

Using the Primer-BLAST tool allowed the development of 5 primer sets to specifically
amplify DNA from each of the five deltapapillomavirus types that have been associated with
sarcoids and sarcoid-like lesions (Table 1).

To ensure that the primers only amplified the targeted PV type and did not have a
high affinity to the other deltapapillomavirus types, the primer sequences were compared to
the published sequences of the other PV types (Table 2).

The primer sets designed to amplify BPV1, BPV2, BPV14, and OaPV2 all amplified PV
DNA from the expected samples (Figure 1). Sequencing confirmed that the amplified DNA
was from the expected PV type. None of the primer sets amplified DNA from any of the
other four deltapapillomavirus types or from the no-template negative controls. No PV DNA
was amplified by the BPV13-specific primer set from the samples known to contain BPV1,
BPV2, BPV14, or OaPV2 DNA. This confirmed the specificity of this primer set. However,
no positive control for these primers was available, and BPV13 DNA was not amplified
from any of the bovine papillomas included in the study.

https://www.ncbi.nlm.nih.gov/tools/primer-blast
https://www.geneious.com
http://www.ncbi.nlm.nih.gov/GenBank
http://www.ncbi.nlm.nih.gov/blast
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Table 1. The primer sequences used to amplify the five sarcoid-associated deltapapillomavirus types in this study. BPV is
bovine papillomavirus, OaPV is Ovis aries papillomavirus.

Target Papillomavirus Primer Length of Amplicon (bp)

BPV1

jmBPV1F.
5′-AGCTGTGATTTCCACAGAGC-3′

jmBPV1R.
5′-TGGAACCCCACTAACAGAGT-3′

111

BPV2

jmBPV2F.
5′-CTGTGCCTCCTAGTGGTTGG-3′

jmBPV2R.
5′-TACCAAGTCACTGTGGGGGA-3′

198

BPV13

jmBPV13F. 5′-
ACAGTTGAACATCCTGCCCC-3′

jmBPV13R. 5′-
ATCCCAAAACCGTAGCCCTG-3′

112

BPV14

jmBPV14F.
5′-GGAACAAACCTCACAATCAC-3′

jmBPV14R.
5′-CCAGTTCTCTAATACTGAGG-3′

195

OaPV2

jmOaPV2F.
5′-CTCGTAACCATTGCCTCATGC-3′

jmOaPV2R.
5′-TGCCAGCAACAATCAGGCTA-3′

219

Table 2. Summary of the similarities between each of the primer sequences and the L1 ORF sequences
of each of the five deltapapillomavirus types that have been associated with mesenchymal neoplasia.
The numerator indicates the number of identical base pairs between the primer sequence and each
papillomavirus DNA, while the denominator indicates the number of bases within the primer
sequence. BPV is bovine papillomavirus, OaPV2 is Ovis aries papillomavirus.

Primer BPV1 BPV2 BPV13 BPV14 OaPV2

jmBPV1F 20/20 15/20 17/20 12/20 14/20
jmBPV1R 20/20 15/20 14/20 13/20 13/20
jmBPV2F 14/20 20/20 16/20 16/20 16/20
jmBPV2R 14/20 20/20 18/20 13/20 15/20
jmBPV13F 17/20 16/20 20/20 15/20 16/20
jmBPV13R 14/20 14/20 20/20 14/20 15/20
jmBPV14F 13/20 14/20 13/20 20/20 17/20
jmBPV14R 14/20 15/20 15/20 20/20 14/20
jmOaPV2F 15/21 13/21 14/21 13/21 21/21
jmOaPV2R 15/20 15/20 15/20 14/20 20/20
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Figure 1. Photograph of a 1% agarose gel. Lane one is bovine papillomavirus (BPV) type 1 DNA
amplified by the jmBPV1 primer set (111 bp). Lane two is BPV2 DNA amplified by the jmBPV2
primer set (198 bp). Lane 3 is BPV14 DNA amplified by the jmBPV14 primer set (195 bp). Lane 4
is Ovis aries papillomavirus type 2 DNA amplified by the jmOaPV2 primer set (219 bp). The DNA
ladder contains bands at 100 bp increments, with the bright band an amplicon of 500 bp.
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4. Discussion

Current evidence suggests that most equine sarcoids are caused by BPV1 or BPV2.
However, there appears to be significant geographical variability in the proportions of
sarcoids caused by each BPV type, with almost all equine sarcoids from Europe caused
by BPV1 but the majority of North American equine sarcoids caused by BPV2 [5,6,8,19].
Currently, there is no evidence that BPV13 causes equine sarcoids in any country other
than Brazil [9]. However, the detection of this PV type in bovine tissues from Brazil, Italy,
and China suggests that BPV13 may have a more global distribution than previously
recognized [20–22]. There is currently no evidence that BPV14 or OaPV2 causes equine
sarcoids. However, a proportion of sarcoids do not contain detectible BPV1 or BPV2 [7,8]
suggesting the possibility that a previously unrecognized PV could have caused these
neoplasms. As BPV13, BPV14, and OaPV2 have been shown to cause mesenchymal
neoplasia after cross-species infection [9,10,12], these PV types are potentially global causes
of equine sarcoids. The use of the currently reported primer sets will allow the detection of
all five deltapapillomavirus types that are currently known to cause mesenchymal neoplasia.
This will allow rapid and simple determination of whether BPV1, BPV2, or BPV13 is the
prominent cause of equine sarcoids in a region. Additionally, the primers allow sensitive
detection of BPV14 and OaPV2, allowing it to be confirmed whether or not these PV types
are able to infect horses and cause equine sarcoid development. Furthermore, there is a
single report of both BPV1 and BPV2 DNA within a series of equine sarcoids [6]. The use
of specific primers to detect each PV type allows sensitive detection of multiple different
PV types within a sarcoid. Determining the causative PV types is important, as vaccines
are developed to prevent these common equine neoplasms [14].

Currently, the deltapapillomavirus type present within an equine sarcoid is determined
using one of two methods. The first method uses PCR primers that were designed to am-
plify both BPV1 and BPV2 DNA. Following amplification, the BPV type is then determined
using restriction enzyme assays [5–7] or direct sequencing [8,23]. The disadvantage of
using this method is that it is uncertain whether or not any PV types other than BPV1 or
BPV2 would be detected. Furthermore, if the primers do amplify other PV types, these
non-BPV1/ BPV2 types would only be detected using the restriction enzyme method if the
enzymes cleave the PV DNA at different sites from either BPV1 or BPV2. This suggests that
it is possible that BPV13, BPV14, or OaPV2 could be present within equine sarcoids but
have remained undetected in previous studies. An additional disadvantage of using this
technique is that it is possible that co-infections by BPV1 and BPV2 could be undetected
if one BPV type is present in higher quantities within the sarcoid. This is because the
BPV with the higher concentration of DNA would then be amplified to a much higher
concentration, potentially masking the presence of other PV types that could be present.
Whether mixed infections by PVs in equine sarcoids are truly rare or simply uncommonly
recognized is currently uncertain.

The second method used to determine the type of PV present within an equine sarcoid
uses consensus PCR primers to amplify DNA from a wide range of PV types followed
by sequencing of the amplified DNA to determine the causative type [19,24]. As the
commonly used consensus primers, such as FAP59/64 or MY09/11, are known to amplify
all 5 deltapapillomavirus types, this method has the advantage of being able to detect a wide
range of PVs that could be present within equine sarcoids [9,10,12,19]. However, both the
FAP59/64 and MY09/11 primer sets amplify long (around 450 bp) DNA sequences [25,26].
Amplification of such a long sequence is generally possible when unfixed tissue is available.
However, as formalin fixation causes breaks in the DNA [27], it can be hard to amplify
such a long sequence from formalin-fixed tissue. As sarcoids are typically diagnosed
using histology of formalin-fixed tissues, this may result in a number of sarcoids that do
not contain sufficient intact DNA to be amplified by these primers. Additionally, for the
causative type to be determined, it is necessary to purify and sequence each amplification
product. As such sequencing is time-consuming and expensive, this makes the use of
consensus primers less suitable for evaluating large numbers of lesions. Using consensus
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primers has the additional disadvantage of only being able to identify one PV type from
each lesion. Furthermore, a PV type that has more affinity for the consensus primers is
more likely to be amplified than a PV type with less affinity. This suggests that it is possible
that small quantities of an incidental PV infection could be detected, while the causal PV
infection could be missed if the primers have a lower affinity for this type.

The use of multiple primer sets to specifically amplify each of the potentially causative
deltapapillomavirus types has a number of advantages. Firstly, as the specificity of each of
the primer sets was demonstrated in this study, the amplification of DNA by a primer
set confirms the deltapapillomavirus type. This saves time and expense by removing the
need for subsequent direct sequencing or restriction enzyme analysis. Another advantage
of using the specific primers is that mixed infections will be detected more easily, even
if there are differences in the concentrations of DNA from each PV type present in the
sample. The ability to detect mixed infections will be greatest if each primer set is used
separately rather than in a multiplex assay. Additional studies of equine sarcoids using
methods that are known to allow amplification of multiple PV types will give confidence
regarding how common mixed infections are within these neoplasms. Compared to the
commonly used consensus primers, only a short length of PV DNA is amplified by the
specific primers. This is important, as this increases the chances that DNA will be able
to be amplified, even when formalin-induced fragmentation is present. As the primers
are specifically designed to amplify one PV type, the primer sequence matches exactly the
targeted deltapapillomavirus DNA sequence. Compared to consensus primers, this allows
higher annealing temperatures and higher sensitivity.

There are some disadvantages to using specific primers. Firstly, these primers will
only allow identification of the five targeted deltapapillomavirus types, and any other PV
types present within a lesion will not be detected. In addition, when using each primer set
separately, five PCR reactions per sample are required. While this is not too problematic for
small numbers of cases, significant numbers of reactions need to be performed to evaluate
large series of sarcoids. Most sarcoids are thought to be caused by BPV1 or BPV2 [5,6,8,23].
To reduce the number of reactions required, the primers specific for BPV1 and BPV2 could
be run in a multiplex assay. Additional sequencing is not required, as the amplicons are of
different sizes.

If initial studies of equine sarcoids confirm most are caused by BPV1 or BPV2 and
few, or none, are caused by BPV13, BPV14, or OaPV2, it would seem to be unnecessary to
include all five primers sets in the routine evaluation of equine sarcoids. It is possible that
the primer sets specific for BPV13, BPV14, and OaPV2 will be most valuable for evaluating
equine sarcoids that do not contain either BPV1 or BPV2 DNA.

As no sample containing BPV13 could be used for the study, it cannot be confirmed
that the BPV13-specific primer set amplifies BPV13 DNA. Additional testing of this primer
set will be performed when a positive control is available, and an addendum will be added
if these primers fail to amplify BPV13 DNA as expected. However, as the primers to amplify
BPV13 were developed using identical methods to the primers that amplified BPV1, BPV2,
BPV14, and OaPV2 DNA, it seems most likely that the BPV13-specific primer set would
amplify BPV13 DNA as expected. Potentially more importantly, the study confirmed
that the BPV13-specific primer set did not amplify BPV1, BPV2, BPV14, or OaPV2 DNA
sequences. None of the bovine papillomas contained amplifiable BPV13 DNA, suggesting
that infection by this PV type is rare in New Zealand cattle.

5. Conclusions

The methods described in this manuscript will be extremely useful for studies of
the causes of equine sarcoids throughout the world. They allow rapid and simple deter-
mination of the predominant PV type to cause equine sarcoids in a geographical region.
As previous studies have shown significant geographical variation in the causes of these
common tumors, this information will allow rational vaccination plans to prevent these
common malignant tumors of horses.



Vet. Sci. 2021, 8, 208 7 of 8

Author Contributions: Conceptualization, J.S.M. and K.G.; methodology, C.D. and F.C.D.S.; writing—
original draft preparation, J.S.M.; writing—review and editing, K.G., C.D. and F.C.D.S. All authors
have read and agreed to the published version of the manuscript.

Funding: New Zealand Equine Trust, grant number ET5.2020.

Institutional Review Board Statement: Not applicable, as no samples that were taken for diagnostic
purposes were used in the study.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rector, A.; Van Ranst, M. Animal papillomaviruses. Virology 2013, 445, 213–223. [CrossRef]
2. Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human

papillomaviruses. Vaccine 2012, 30, F55–F70. [CrossRef] [PubMed]
3. Bernard, H.U.; Burk, R.D.; Chen, Z.; van Doorslaer, K.; zur Hausen, H.; de Villiers, E.M. Classification of papillomaviruses (PVs)

based on 189 PV types and proposal of taxonomic amendments. Virology 2010, 401, 70–79. [CrossRef] [PubMed]
4. Nasir, L.; Brandt, S. Papillomavirus associated diseases of the horse. Vet. Microbiol. 2013, 167, 159–167. [CrossRef] [PubMed]
5. Bogaert, L.; Van Poucke, M.; De Baere, C.; Dewulf, J.; Peelman, L.; Ducatelle, R.; Gasthuys, F.; Martens, A. Bovine papillomavirus

load and mRNA expression, cell proliferation and p53 expression in four clinical types of equine sarcoid. J. Gen. Virol. 2007, 88,
2155–2161. [CrossRef] [PubMed]

6. Carr, E.A.; Theon, A.P.; Madewell, B.R.; Griffey, S.M.; Hitchcock, M.E. Bovine papillomavirus DNA in neoplastic and nonneoplastic
tissues obtained from horses with and without sarcoids in the western United States. Am. J. Vet. Res. 2001, 62, 741–744. [CrossRef]
[PubMed]

7. Bloch, N.; Breen, M.; Spradbrow, P.B. Genomic sequences of bovine papillomaviruses in formalin-fixed sarcoids from Australian
horses revealed by polymerase chain reaction. Vet. Microbiol. 1994, 41, 163–172. [CrossRef]

8. Wobeser, B.K.; Davies, J.L.; Hill, J.E.; Jackson, M.L.; Kidney, B.A.; Mayer, M.N.; Townsend, H.G.G.; Allen, A.L. Epidemiology of
equine sarcoids in horses in western Canada. Can. Vet. J. 2010, 51, 1103–1108. [PubMed]

9. Lunardi, M.; de Alcantara, B.K.; Otonel, R.A.; Rodrigues, W.B.; Alfieri, A.F.; Alfieri, A.A. Bovine papillomavirus type 13 DNA in
equine sarcoids. J. Clin. Microbiol. 2013, 51, 2167–2171. [CrossRef]

10. Munday, J.S.; Knight, C.G.; Howe, L. The same papillomavirus is present in feline sarcoids from North America and New Zealand
but not in any non-sarcoid feline samples. J. Vet. Diagn. Investig. 2010, 22, 97–100. [CrossRef]

11. Munday, J.S.; Thomson, N.; Dunowska, M.; Knight, C.G.; Laurie, R.E.; Hills, S. Genomic characterisation of the feline sarcoid-
associated papillomavirus and proposed classification as Bos taurus papillomavirus type 14. Vet. Microbiol. 2015, 177, 289–295.
[CrossRef]

12. Munday, J.S.; Fairley, R.; Lowery, I. Detection of Ovis aries papillomavirus type 2 DNA sequences in a sarcoid-like mass in the
mouth of a pig. Vet. Microbiol. 2020, 248, 108801. [CrossRef] [PubMed]

13. Hainisch, E.K.; Abel-Reichwald, H.; Shafti-Keramat, S.; Pratscher, B.; Corteggio, A.; Borzacchiello, G.; Wetzig, M.; Jindra, C.; Tichy,
A.; Kirnbauer, R.; et al. Potential of a BPV1 L1 VLP vaccine to prevent BPV1- or BPV2-induced pseudo-sarcoid formation and
safety and immunogenicity of EcPV2 L1 VLPs in horse. J. Gen. Virol. 2017, 98, 230–241. [CrossRef] [PubMed]

14. Hainisch, E.K.; Brandt, S.; Shafti-Keramat, S.; Van den Hoven, R.; Kirnbauer, R. Safety and immunogenicity of BPV-1 L1 virus-like
particles in a dose-escalation vaccination trial in horses. Equine Vet. J. 2012, 44, 107–111. [CrossRef] [PubMed]

15. Malagón, T.; Drolet, M.; Boily, M.-C.; Franco, E.L.; Jit, M.; Brisson, J.; Brisson, M. Cross-protective efficacy of two human
papillomavirus vaccines: A systematic review and meta-analysis. Lancet Infect. Dis. 2012, 12, 781–789. [CrossRef]

16. Pitisuttithum, P.; Velicer, C.; Luxembourg, A. 9-Valent HPV vaccine for cancers, pre-cancers and genital warts related to HPV.
Expert Rev. Vaccines 2015, 14, 1405–1419. [CrossRef]

17. Munday, J.S.; Cullum, A.A.; Thomson, N.A.; Bestbier, M.; McCormack, T.; Julian, A.F. Anal fibropapillomas containing bovine
papillomavirus type 2 DNA in two groups of heifers. N. Z. Vet. J. 2018, 66, 267–271. [CrossRef]

18. Munday, J.S.; Kiupel, M.; French, A.F.; Howe, L.; Squires, R.A. Detection of papillomaviral sequences in feline Bowenoid in situ
carcinoma using consensus primers. Vet. Dermatol. 2007, 18, 241–245. [CrossRef]

19. Szczerba-Turek, A.; Siemionek, J.; Ras, A.; Bancerz-Kisiel, A.; Platt-Samoraj, A.; Lipczynska-Ilczuk, K.; Szweda, W. Genetic
evaluation of bovine papillomavirus types detected in equine sarcoids in Poland. Pol. J. Vet. Sci. 2019, 22, 25–29.

20. Meng, Q.; Ning, C.; Wang, L.; Ren, Y.; Li, J.; Xiao, C.; Li, Y.; Li, Z.; He, Z.; Cai, X.; et al. Molecular detection and genetic diversity
of bovine papillomavirus in dairy cows in Xinjiang, China. J. Vet. Sci. 2021, 22, e50. [CrossRef]

http://doi.org/10.1016/j.virol.2013.05.007
http://doi.org/10.1016/j.vaccine.2012.06.083
http://www.ncbi.nlm.nih.gov/pubmed/23199966
http://doi.org/10.1016/j.virol.2010.02.002
http://www.ncbi.nlm.nih.gov/pubmed/20206957
http://doi.org/10.1016/j.vetmic.2013.08.003
http://www.ncbi.nlm.nih.gov/pubmed/24016387
http://doi.org/10.1099/vir.0.82876-0
http://www.ncbi.nlm.nih.gov/pubmed/17622617
http://doi.org/10.2460/ajvr.2001.62.741
http://www.ncbi.nlm.nih.gov/pubmed/11341396
http://doi.org/10.1016/0378-1135(94)90145-7
http://www.ncbi.nlm.nih.gov/pubmed/21197201
http://doi.org/10.1128/JCM.00371-13
http://doi.org/10.1177/104063871002200119
http://doi.org/10.1016/j.vetmic.2015.03.019
http://doi.org/10.1016/j.vetmic.2020.108801
http://www.ncbi.nlm.nih.gov/pubmed/32827929
http://doi.org/10.1099/jgv.0.000673
http://www.ncbi.nlm.nih.gov/pubmed/28284277
http://doi.org/10.1111/j.2042-3306.2011.00390.x
http://www.ncbi.nlm.nih.gov/pubmed/21895749
http://doi.org/10.1016/S1473-3099(12)70187-1
http://doi.org/10.1586/14760584.2015.1089174
http://doi.org/10.1080/00480169.2018.1479317
http://doi.org/10.1111/j.1365-3164.2007.00600.x
http://doi.org/10.4142/jvs.2021.22.e50


Vet. Sci. 2021, 8, 208 8 of 8

21. Figueirêdo, R.P.; Santos, G.F.; Oliveira, L.B.; Santos, L.A.B.O.; Barreto, D.M.; Cândido, A.L.; Campos, A.C.; Azevedo, E.O.; Batista,
M.V.A. High Genotypic Diversity, Putative New Types and Intra-Genotype Variants of Bovine Papillomavirus in Northeast Brazil.
Pathogens 2020, 9, 748. [CrossRef] [PubMed]

22. Roperto, S.; Russo, V.; Leonardi, L.; Martano, M.; Corrado, F.; Riccardi, M.G.; Roperto, F. Bovine Papillomavirus Type 13
Expression in the Urothelial Bladder Tumours of Cattle. Transbound. Emerg. Dis. 2016, 63, 628–634. [CrossRef]

23. Chambers, G.; Ellsmore, V.A.; O’Brien, P.M.; Reid, S.W.; Love, S.; Campo, M.S.; Nasir, L. Association of bovine papillomavirus
with the equine sarcoid. J. Gen. Virol. 2003, 84, 1055–1062. [CrossRef] [PubMed]

24. Yamashita-Kawanishi, N.; Chambers, J.K.; Uchida, K.; Tobari, Y.; Yoshimura, H.; Yamamoto, M.; Yumoto, N.; Aoki, H.; Sugiura,
K.; Higuchi, T.; et al. Genomic characterisation of bovine papillomavirus types 1 and 2 identified in equine sarcoids in Japan.
Equine Vet. J. 2020. [CrossRef]

25. Manos, M.M.; Ting Shin, Y.; Wright, D.K.; Lewis, A.L.; Broker, T.R.; Wolinsky, S.M.; Manos, M.; Ting, Y.C. The use of polymerase
chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 1989, 7, 209–214.

26. Antonsson, A.; Forslund, O.; Ekberg, H.; Sterner, G.; Hansson, B.G. The ubiquity and impressive genomic diversity of human
skin papillomaviruses suggest a commensalic nature of these viruses. J. Virol. 2000, 74, 11636–11641. [CrossRef]

27. Bialek, R.; Cirera, A.C.; Herrmann, T.; Aepinus, C.; Shearn-Bochsler, V.I.; Legendre, A.M. Nested PCR assays for detection of
Blastomyces dermatitidis DNA in paraffin-embedded canine tissue. J. Clin. Microbiol. 2003, 41, 205–208. [CrossRef]

http://doi.org/10.3390/pathogens9090748
http://www.ncbi.nlm.nih.gov/pubmed/32942526
http://doi.org/10.1111/tbed.12322
http://doi.org/10.1099/vir.0.18947-0
http://www.ncbi.nlm.nih.gov/pubmed/12692268
http://doi.org/10.1111/evj.13398
http://doi.org/10.1128/JVI.74.24.11636-11641.2000
http://doi.org/10.1128/JCM.41.1.205-208.2003

	Introduction 
	Materials and Methods 
	Samples and DNA Extraction 
	Primer Development 
	Amplification and Sequencing 

	Results 
	Discussion 
	Conclusions 
	References

