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Abstract: The recent decline of European honey bees (Apis mellifera) has prompted a surge in 
research into their chemical environment, including chemicals produced by bees, as well as 
chemicals produced by plants and derived from human activity that bees also interact with. This 
study sought to develop a novel approach to passively sampling honey bee hives using silicone 
wristbands. Wristbands placed in hives for 24 h captured various compounds, including long-chain 
hydrocarbons, fatty acids, fatty alcohols, sugars, and sterols with wide ranging octanol–water 
partition coefficients (Kow) that varied by up to 19 orders of magnitude. Most of the compounds 
identified from the wristbands are known to be produced by bees or plants. This study indicates 
that silicone wristbands provide a simple, affordable, and passive method for sampling the chemical 
environment of honey bees. 
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1. Introduction 

The dwindling global population of the honey bee pollinator Apis mellifera, the main pollinator 
species used in agriculture, has driven researchers to investigate honey bees and their responses to 
different environmental and pathological conditions [1,2]. These insects play a vital role in 
agricultural systems and almost a third of the global food crop depends exclusively on the European 
Apis mellifera species [3]. Since the 1940s, the number of managed honey bee colonies in the United 
States has declined, with the most dramatic losses occurring in the past decade [4]. Numerous factors 
have been implicated in the decline in bee health including exposure to pesticides and viruses [5], the 
spread of Varroa destructor mites [6], and parasites such as Nosema ceranae [7]; however, none can be 
identified as a single underlying causal factor. 

Due to the vast number of variables and interactions that impact honey bee health, identifying 
the cause, impact, and risk associated with individual factors is challenging. Targeted exposure 
studies assessing chemicals and contaminants including pesticides and pathogens have been 
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examined [6]. Recently, an exposomic approach has explored a more comprehensive approach where 
external chemicals as well as those produced by honey bees are combined into a single analysis [8]. 
Some compounds produced by bees, known as semiochemicals, are released by individual honey 
bees as cues or signals in order to relay information to hive mates, allowing honey bees to coordinate 
their responses to environmental stimuli as a hive [9]. Semiochemicals can also ward off or attract 
other honey bees [9], can relay the needs of larvae to nurse bees [10,11], and are involved in social 
recognition [12,13]. Certain chemicals have the potential to relay specific information about the 
disease state of an individual. For example, ethyl oleate is a chemical produced by honey bees that is 
significantly increased by infection of the gut fungus N. ceranae [13], and cuticular hydrocarbon 
profiles of honey bees have been observed to change when exposed to bacterial or N. ceranae 
infections [14,15]. It has also been shown that poor nutrition can lead larvae to release E-β-ocimene 
into the hive [11]. Monitoring chemicals produced by honey bees is of significant interest as it can 
provide insight into specific infection status, pesticide exposure, as well as nutrition deficiencies, thus 
providing insight into the overall health of a bee colony. 

Semiochemicals and other volatile and semivolatile chemicals (VOCs and SVOCs) found in 
honey bee hives have previously been sampled by collecting the air in the hive directly via a syringe 
and then examining the chemical contents of the air sample via gas chromatography–mass 
spectrometry (GC–MS) [16]; however, this method does not allow the storage of samples prior to 
analysis [16]. Alternative methods have utilized adsorbent packing materials (such as Super Q, 
Hayesep Q, Porapak Q, Tenax TA) combined with vacuum/air tube systems [10,16,17]. These 
methods have limitations as the vacuum/air tube systems are complicated to construct and their 
presence may cause vibrations that induce a stress response in the bees and bias the chemical profiles 
measured [16]. Solid-phase microextraction (SPME) fibers have been used as passive samplers, 
avoiding the problems involved in complicated air flow setups; however, they are somewhat limited 
as they are designed to target specific chemicals, and are expensive and fragile to use [16–21]. 

This study aims to apply silicone wristbands, a previously established method [22–26], as a new 
approach to passively sample a wide range of chemicals present in honey bee hives. Silicone 
wristbands are cheap, commercially available, and have been used as passive environmental 
samplers to provide time-averaged concentrations of human exposures to polycyclic aromatic 
hydrocarbons (PAHs), consumer products, personal care products, pesticides, phthalates, other 
industrial compounds [22–24], and organophosphate flame retardants [25,26]. Compounds adsorbed 
by silicone wristbands have been found to remain on the bands for extended periods of time, unlike 
compounds on SPME fibers [24–27]. Perhaps the most significant advantage of silicone wristbands is 
that they are able to sample VOCs and SVOCs with octanol-air partition coefficients (Koa) ranging in 
10 orders of magnitude [22–24]. The Koa as well as the octanol–water partition coefficients (Koaw) of a 
chemical compound are values that represent the hydrophobicity of a compound. Specifically, these 
values describe the ratio of a compound in octanol divided by the concentration of the same 
compound in air or water for Koa and Kow, respectively. With respect to passive samplers, these values 
are used to show the range in hydrophobicity of compounds that a sampler can detect, which, as 
mentioned, is large for silicone wristbands. Their ability to adsorb such a broad range of compounds 
makes them ideal for sampling chemicals produced by bees and could potentially collect a broader 
range of compounds than the aforementioned SPME fibers and polymer samplers. 

In this study, commercially available silicone wristbands were pre-cleaned and placed in honey 
bee hives to sample VOCs and SVOCs. This study presents information about the types of chemicals 
that can be adsorbed and analyzed to provide a reliable chemical profile of honey bee hives from a 
variety of urban and suburban locations. 

2. Materials and Methods 

2.1. Materials 

All solvents were GC Resolv or Optima grade, obtained from Fisher Scientific (Newark, NJ, 
USA). Glassware was combusted at 450 °C for 8 h before use.  
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2.2. Band Preparation  

Silicone bands (acquired from 24HourWristbands.com) with a circumference of 20 cm, ≈40 cm2 
surface area, and ≈4 g of sorbent were prepared according to a modified procedure [22]. Briefly, bands 
were cleaned in previously combusted (450 °C, 8 h) glass jars with a 1:1 volume mixture of ethyl 
acetate (EtOAc) to hexanes and shaken at 80 rpm for at least 2.5 h before the removal of the solvent. 
This procedure was repeated three more times, at which point the bands were removed from the jar 
and placed on combusted aluminum foil in a high-vacuum pressure oven at 60 °C for 48 h. The bands 
were stored individually in 40 mL combusted amber glass vials at room temperature prior to use.  

2.3. Band Deployment  

During July, August, September, and October of 2016, bands were deployed in 10 apiaries in 
rural, suburban, and urban areas of southeastern Pennsylvania (details provided in Table S1 of the 
Electronic Supplementary Material). At each apiary, three hives were sampled across three time 
points. In order to capture different parts of the environment inhabited by the honey bees, we placed 
one silicone band under the top of each hive (in-cover) and placed one inside the entrance of each 
hive. An additional band was placed on top of each hive (outside cover) to serve as an external control 
(details shown in Figure 1). The bands were retrieved 24 h later and transferred to individual 40 mL 
amber vials, placed on dry ice, transported back to the lab, and stored at −20°C.  

 
Figure 1. Diagram of a hive (left) and photo of a hive in the field (right), highlighting the placement 
of bands. In-cover band for the hive in the field is not shown as it is inside the cover part of the hive. 
Wristbands shown are 20 cm in circumference and 1 cm width; hives are approximately 1 × 0.5 × 0.4 
m. 

2.4. Band Extraction  

Silicone bands were cleaned and extracted according to a modified procedure [22]. Briefly, each 
band was rinsed with Milli-Q water to remove any solids, such as dirt, propolis, or stingers, followed 
by isopropyl alcohol to remove water. The bands were then placed in individual 500 mL jars with 100 
mL EtOAc and shaken at 60 rpm for 2 h. The extract was removed and the extraction process was 
repeated twice more before the extracts were combined, reduced in volume via rotary evaporation to 
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approximately 1 mL, and stored at −20 °C prior to further analysis. The extracts were then solvent-
exchanged into hexane, spiked with perdeuterated n-hexadecane as an internal standard (average 
recoveries were 74%), and charged onto a small glass pipette column (0.5 cm × 6 cm) packed with 
fully activated silica gel (100–200 mesh). The first fraction (F1) was eluted from the column with 4mL 
of hexane, followed by the second fraction (F2) eluted with 4 mL of an equal mixture of 
dichloromethane and methanol containing 1% formic acid. Laboratory blanks run alongside samples 
contained no detectable compounds. 

2.5. Gas Chromatographic Analysis of Band Extracts 

The F1 extracts were analyzed on a 1D Agilent 7890 series gas chromatograph coupled to a flame 
ionization detector (FID, Santa Clara, CA, USA). Compounds were separated on a J&W DB-XLB 
capillary column (30 m, 0.25 mm I.D., 0.25 μm film) with helium carrier gas at a constant flow of 1 
mL min−1. The GC oven had an initial temperature of 40 °C (1 min hold) and was ramped at 10 °C 
min−1 until 160 °C (1 min hold), then ramped again at 4 °C min−1 until 320 °C (36 min hold). Quantities 
of n-alkanes were calculated using response factors determined from pure standards. Presence of n-
alkenes in the F1 extracts were confirmed by analyzing select extracts on an Agilent 7890 series gas 
chromatograph with an Agilent 5975 mass selective detector (MSD) and were noted, though not 
quantified. All fractions from each in-cover, outside, and entrance band for 10 hives were analyzed 
via GC–MS with a compound detection limit of 0.1 ng/μL determined from a standard curve using 
pure standards. 

In order to identify unknown compounds, we analyzed F2 extracts via a 1D Agilent 7890 series 
gas chromatograph coupled to an Agilent 5975 mass selective detector (MSD). Prior to analysis, F2 
extracts were derivatized with bis(trimethylsilyl)trifluoroacetamide (BSTFA) in pyridine. 
Compounds were separated on a J&W DB-XLB capillary column (60 m, 0.25 mm internal diameter 
(I.D.), 0.25 μm film) with helium carrier gas at a constant flow of 1 mL min−1. The GC oven had an 
initial temperature of 40 °C (1 min hold) and was ramped at 10 °C min−1 until 160 °C (1 min hold), 
then ramped again at 4 °C min−1 until 320 °C (36 min hold). The MS was operated in electron-impact 
(EI) mode with an ionization energy of 70 eV. Spectra were acquired between m/z 40–650 at a scan 
rate of 1 cycle s−1. Fatty acids and fatty alcohols were identified from mass spectral and retention time 
characteristics compared to pure standards. All other compounds were tentatively identified from 
mass spectra and gas chromatographic retention characteristics. 

3. Results 

3.1. Chemical Profiles of Hive Air Were Dominated by Hydrocarbon Compounds 

Bands placed in-cover and at the entrance of hives exhibited similar chemical profiles dominated 
by n-alkanes and n-alkenes with odd chain lengths between C21–C33 (Figures 2 and 3). The chemical 
profiles of n-alkanes and n-alkenes for the entrance bands had more variability between hives (Figure 
3), likely due to the fact that entrance bands come into more frequent physical contact with the honey 
bees than the bands placed in-cover. Bands placed on the outside of hives did not contain compounds 
at detectable levels (Figure 2), and thus acted as field controls in this study. Differences in the 
chemical profiles from bands placed in hives at different locations were observed (Figure 3), but were 
not significant between the location types (rural, suburban, and urban) examined. For the remainder 
of this study, we chose to focus on the in-cover bands, which have similar chemical profiles to the 
entrance bands but represent the chemical profile of the hive air with less frequent physical contact, 
and are practically easier to recover.  
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Figure 2. Representative gas chromatograms of compounds extracted from (a) an outside band, (b) 
an entrance band, and (c) an in-cover band. Alkanes indicated with dots (•) and alkenes indicated 
with asterisks (*). All bands were deployed in the same hive at Awbury Arboretum on 07/15/2016. 
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Figure 3. Box and whisker plots illustrating the relative abundance of hydrocarbons for all samples 
collected from (a) the entrance and (b) in-cover of hives. Boxes contain the interquartile range—50% 
of data—with center line indicating the median value of data. Whiskers indicate minimum and 
maximum values within 1.5 times above the 75th percentile or below the 25th percentile, with dots 
representing outliers. 

3.2. Bands Adsorbed Bee-Associated Chemicals  

The predominant compounds detected from the bands (n- alkanes and n-alkenes with odd chain 
lengths between C21–C33) are honey bee semiochemicals (Table 1), some of which are known nestmate 
recognition semiochemicals [28–30]. Four of these compounds—C23- and C25-n-alkane, and C23- and 
C25-n-alkene—are also known to be vital for the waggle dance, which relays information about the 
whereabouts of food [9,31]. Oleic acid, linoleic acid, and α-linolenic acid were also detected in at least 
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half of the samples. These compounds are known to be major constituents of pollen [32] and beeswax 
[33], and have been detected in worker bees [34,35]. Certain saturated fatty acids and fatty alcohols, 
previously detected in worker bees [34], drone cocoons [36], or as a constituent of queen retinue 
pheromone [31], were identified broadly across samples. The alarm pheromone, [Z]-11-eicosenol, 
which is known to be released by bees, was also observed [31,34]. Glycerol was found in 78% of 
samples, and is known to participate in the ester biosynthetic pathway in bees [31]. Chrysin is a 
compound found in honey and was only observed in 13% of samples [37]. 

Table 1. The percentage of silicone bands placed in honey bee hives that contain honey bee 
semiochemicals and honey bee-associated compounds organized by compound type. 

Compound 
Type 

Chain Lengths 
Log Kow 
Range  

% of Bands a  Association with Honey Bees 

Alkanes 
C21–C33 odd chain 

lengths only 
10.7–
16.6 b 

44–95 
nestmate recognition semiochemical [15,28–30,38] 

queen tergal gland secretion [38] 
waggle dance (C23 and C25 only) [9,31] 

Alkenes 
C23–C33 b odd chain 

lengths only 
11.4–
16.4 b 

7–93 
nestmate recognition semiochemical [29–31,33] 

queen tergal gland secretion [38] 
waggle dance (C23 and C25 only) [9,31] 

Fatty acids C12:0–C30:0 
3.42–
13.8 

53–97 
detected in worker bees (C12:0–C22:0; C26:0–

C30:0 even chain lengths) [34,35] 
detected in Varroa destructor (C23:0–C24:0) [35] 

Unsaturated 
fatty acids 

C18:1 
(oleic acid) 

7.64 96 
major constituent—beeswax [35] 
detected in worker bees [34,35] 

C18:2 
(linoleic acid) 

7.05 81 major constituent—beeswax [31]  
  detected in worker bees [34,35] 

C18:3 
(α-linolenic acid) 

6.46 48 major constituent—beeswax [31] 
  detected in worker bees [34,35] 

Fatty 
alcohols 

C16–C32 
6.83–

14.10 b 
36–96 

queen retinue pheromone (QRP) (C16) [31] 
drone cocoon (C17) [36]  

detected in worker bees (C18 – C32) [34] 

C19 c  40 
detected in Bombus ruderarius and Bombus 

sylvarum (Hymenoptera, Apidae) [39] 

C19 c,d  76 
detected in Bombus ruderarius and B. sylvarum 

(Hymenoptera, Apidae) [39] 
C20 c 

[Z]-11-eicosenol  76 alarm pheromone [31,34] 

Other 
Chrysin 3.52 13 honey, propolis, and beeswax [37] 
Glycerol -1.76 78 ester biosynthesis in honey bees [31] 

a Specific percentages are for individual compounds. A range of values corresponds to the range of 
compounds described. b Log Kow values estimated using the Crippen method EPISuite KOWWIN 
v1.67 estimate (USEPA) (HSDB [40]). c Alkenes identified by molecular weight and fragmentation 
patterns. Exact location of the double bonds is unknown. d Alkenes with two double bonds. 

3.3. Bands Adsorb Plant-Derived Compounds 

Plant-derived compounds were also extracted from bands, as well as the fatty acid C9:0, a 
common non-selective herbicide (Table 2) [41]. Fatty acids with carbon ranges between C10:0–C22:0 
are known to be derived from plants and have been identified in pollen, along with oleic, linoleic, 
and α-linolenic acid, as previously described [32]. Further, the fatty alcohol 1-tritriacontanol, which 
has been shown to have a plant origin, was detected [42,43]. Plant-originating allelochemicals were 
also detected, including benzoic acid and cinnamic acid derivatives [44,45]. In fewer samples, sterols 
and sugars were observed, likely to originate from pollen and nectar, respectively [46,47]. All 
compounds identified from bands placed in hives are described in Table S2 of the Supplementary 
Materials.  
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Table 2. The percentage of silicone bands placed in honey bee hives that contain plant-associated 
compounds organized by compound type. 

Compound 
Group 

Compounds 
Log Kow 
Range26 

% of 
Bands a 

Associations with Plants 

Fatty acids 
C10:0–C20:0; C22:0 4.0–9.9 64–97 pollen [32] 

C9:0 3.42 84 nonselective herbicide [41] 

Unsaturated 
fatty acids 

C18:1 
(oleic acid) 

7.64 96  

C18:2 
(linoleic acid) 

7.05 81 all major constituents of pollen [32] 

C18:3 
(α-linolenic acid) 

6.46 48  

Fatty 
alcohols C33  13 plant origin [42,43] 

Bnzoic and 
cinnamic 

acid 
derivatives 

benzoic acid 1.87 79 
cinnamic acid, p-methoxy 2.68 63 

cinnamyl cinnamate 3.96 12 
plant originated allelochemicals 

[44,45] 
4-hydroxybenzoic acid 1.58 12 

hydrocinnamic acid 1.84 10 
benzyl cinnamate 3.44 9 

ferulic acid 1.51 7 
cinnamic acid, 3,4-dihydroxy- 1.15 3 

benzyl salicylate 4.31 b 3 

Sterols 
beta-sitosterol (29Δ (5)) 9.65 b 43 pollen [46]  
stigmasterol (29Δ (5,22)) 9.43 13 pollen [46] 

lanosta-8,24-dien-3-ol, acetate, (2, β)- 11.8 b 9 pollen [46] 

Sugars 

d-mannose -3.38 b 9 nectar [47] 
d-glucose -2.82 6 nectar [47] 

d-glucopyranose -2.82 3 nectar [47] 
d-xylose -2.74 b 3 nectar [47] 

a Specific percentages are for individual compounds. A range of values corresponds to the range of 
compounds described. b Log Kow values estimated using the Crippen method EPISuite KOWWIN 
v1.67 estimate (USEPA) (HSDB [40]). 

4. Discussion 

4.1. Implications for Studies of Honey Bee Health 

In this approach of using silicone wristbands to passively sample chemicals present in honey 
bee hives, we found that all but one of the chemicals detected were associated with bees and plants 
as opposed to human activity or viruses. If these types of compounds were present, our inability to 
detect them likely arises from them being present at lower abundances, giving a smaller signal that 
is either masked by the much larger signal of the other abundant compounds present, or that it is 
outside of our detection limits. Our approach, however, is still of use, as several of the compounds 
detected on the bands have been implicated in studies concerning honey bee health and nutrition. 

Compounds related to honey bee health include those produced by bees such as octadecanoic 
acid and (9Z)-octadecenoic acid. These two compounds have been observed to be produced more in 
hives that have large numbers of bees infected with N. ceranae, possibly as precursors to short fatty 
acid chains known to have antibiotic properties [8]. Hexadecanoic acid is a known regulator of fatty 
acid synthesis in bees and has been observed in lower quantities when a hive is infected [8]. 
Tricosanoic acid and tetracosanoic acid were both detected on bands, and while not produced by 
honey bees, are known Varroa destructor mite semiochemicals [35]. The alkane tricosane has also been 
shown to be produced more by bees upon infection by Gram-negative bacteria [14]. Overall, it is 
known that infection from various pathogens causes honey bees to alter their hydrocarbon profiles 
[15], which could be examined in future studies by analyzing the chemical profiles of bands placed 
in hives. 
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The plant-derived compounds identified in this study could also be used to extrapolate 
information about hive health, as honey bees obtain all necessary proteins, lipids, and vitamins from 
pollen [32]. It has been shown that not only the quantity of pollen collected, but also the quality and 
diversity of compounds available in the pollen, determine hive productivity and longevity [32]. As a 
result, the detection of numerous compounds from contact with pollen could help researchers 
investigate the impact of local flora on honey bee hives. These results indicate that deploying silicone 
bands in honey bee hives may help researchers gain insight into several different aspects of honey 
bee health, including the regulation of important metabolic pathways, the presence of parasites and 
pathogens, and the quality of pollen being gathered. 

4.2. General Applicability of Bands to Honey Bee Research 

The log octanol–water partition coefficients (Log Kow) for compounds in this study range from -
3.38 to 16.6, as reported in the Hazardous Substances Data Bank (HSDB) [40]. This exceeds the 
capacity of most passive samplers currently in use [24], overcoming the major drawback of currently 
used passive sampling methods in hives that target certain compound groups [16–19]. The diversity 
in compounds adsorbed by silicone bands thus removes the necessity for multiple passive samplers 
when the compounds of interest vary significantly in structure and physical and chemical properties. 
Despite our expectation that this method would primarily target VOCs and SVOCs, non-volatile 
compounds were consistently seen across samples, arising from direct contact of the bees with the 
bands. If future implementation of silicone bands in hives chose to sample VOCs and SVOCs only, 
then an approach to maintain separation between the bees and bands would be needed (e.g., fine 
wire mesh cage for the bands). 

This study also provides a method that allows researchers to quantitatively compare hive 
chemical profiles without needing to determine compound concentrations in the air of each hive. 
Previous studies have shown that the consistent adsorption of silicone bands allow samples to be 
compared without the need for further calculations, provided the dimensions of the silicone sampler 
and deployment length are the same [25,48]. Silicone bands are more consistent in their compound 
adsorption ratios than several other passive samplers such as polyurethane foam, urine sampling, 
and hand wipes [25,26], potentially because the silicone matrix stabilizes compounds until extraction 
[24]. 

Unlike SPME fibers, silicone bands can be used for quantitative analysis of compounds, 
provided that any comparisons are between band samples, as concentrations adsorbed to the bands 
do not directly represent environmental concentrations [22,24,25]. It has also been shown that 
concentrations of volatile compounds adsorbed by the silicone matrix remain stable under transport 
conditions of 30 ℃ for 7 days and under storage conditions of −20 ℃ for approximately 6 months 
[24]. To compare concentrations of chemicals from different compound classes between bands, the 
specific affinities of the silicone matrix to different compounds would need to be examined. In 
addition, to connect the chemical compounds detected to the health of the hive, a future study would 
need to also measure specific infections and diseases, such as N. ceranae, the Varroa destructor mite, 
deformed wing virus, and European foulbrood, in addition to chemical compounds of interest. Any 
future study must be designed to be large enough so that statistical testing between chemicals and 
health to be made. 

4.3. Modifications for Future Studies 

One concern with the use of silicone wristbands is the large amount of solvent needed to clean 
and process the bands; however, in this study, the amount of sample necessary for compounds to be 
detected via GC–MS and GC–FID was approximately 3 × 10−5 times our original extract per run. This 
shows that future studies could use fractions of silicone wristbands, rather than the entire band, 
significantly reducing the amount of solvent needed per sample. Researchers would have to ensure 
that each section of band being deployed was the same length, width, thickness, and surface area if 
they wished to compare concentrations of compounds between samples. It would also be necessary 
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to ensure each band is deployed for the exact same duration, as many of the compounds may not 
reach equilibrium and could exhibit time-dependent concentrations [24]. 

Since the bands are capable of adsorbing both volatile and non-volatile chemicals, the placement 
of the bands in the hive will be critical to ensure non-biased quantitative analysis. If researchers are 
interested in volatile compounds, isolating the bands from the bees using a mesh cage (as previously 
mentioned) will be essential to obtain non-biased results. If the researcher is interested in non-volatile 
compounds, such as hydrocarbons or pesticides, they could pin the band flat in front of the entrance 
of the hive, requiring bees to walk over it when entering and exiting the hive. This approach would 
make the quantification of chemicals challenging, but it would provide a broad overview of the 
compounds worker bees are carrying into the hive. 

5. Conclusions 

Considering the ease with which chemicals in bands can be compared, the minimal disturbance 
to the hive, and the variety of compounds detectable, using silicone bands to investigate the 
relationship between chemical compounds and honey bees shows great potential. Further, our results 
show that bands did not collect detectable compounds from outside of the hive, as no compounds 
were detected on the outside bands. This contrasts with SPME fibers, which are easily contaminated 
by background volatiles [16] and are quite expensive. Researchers can use bands as samplers in the 
open hive environment, as was done in this study, as well as in closed sampling containers. In a 
closed system, it would be possible to sample the volatile chemicals released by bees or adhered to 
the surface of bees based on certain castes, age groups, or environmental conditions, without the need 
for complicated air flow systems or filters. As a result, we believe using silicone band passive 
samplers provides alternative, flexible, more affordable opportunities to explore the chemical ecology 
of honey bees and the factors that influence their health, behavior, and survival. 

Supplementary Materials: The following are available online at www.mdpi.com/2306-7381/7/3/86/s1, Table S1: 
Locations of hives sampled in this study, Table S2: All compounds identified on bands. 
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