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Abstract: Global gene expression in liver transcriptome varies among cattle breeds. The present
investigation was aimed to identify the differentially expressed genes (DEGs), metabolic gene
networks and metabolic pathways in bovine liver transcriptome of young bulls. In this study,
we comparatively analyzed the bovine liver transcriptome of dairy (Polish Holstein Friesian (HF);
n = 6), beef (Hereford; n = 6), and dual purpose (Polish-Red; n = 6) cattle breeds. This study
identified 895, 338, and 571 significant (p < 0.01) differentially expressed (DE) gene-transcripts
represented as 745, 265, and 498 hepatic DE genes through the Polish-Red versus Hereford, Polish-HF
versus Hereford, and Polish-HF versus Polish-Red breeds comparisons, respectively. By combining
all breeds comparisons, 75 hepatic DE genes (p < 0.01) were identified as commonly shared
among all the three breed comparisons; 70, 160, and 38 hepatic DE genes were commonly shared
between the following comparisons: (i) Polish-Red versus Hereford and Polish-HF versus Hereford;
(ii) Polish-Red versus Hereford and Polish-HF versus Polish-Red; and (iii) Polish-HF versus Hereford
and Polish-HF versus Polish-Red, respectively. A total of 440, 82, and 225 hepatic DE genes were
uniquely observed for the Polish-Red versus Hereford, Polish-HF versus Hereford, and Polish-Red
versus Polish-HF comparisons, respectively. Gene ontology (GO) analysis identified top-ranked
enriched GO terms (p < 0.01) including 17, 16, and 31 functional groups and 151, 61, and 140 gene
functions that were DE in all three breed liver transcriptome comparisons. Gene network analysis
identified several potential metabolic pathways involved in glutamine family amino-acid, triglyceride
synthesis, gluconeogenesis, p38MAPK cascade regulation, cholesterol biosynthesis (Polish-Red
versus Hereford); IGF-receptor signaling, catecholamine transport, lipoprotein lipase, tyrosine
kinase binding receptor (Polish-HF versus Hereford), and PGF-receptor binding, (Polish-HF versus
Polish-Red). Validation results showed that the relative expression values were consistent to those
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obtained by RNA-seq, and significantly correlated between the quantitative reverse transcription
PCR (RT-qPCR) and RNA-seq (Pearson’s r > 0.90). Our results provide new insights on bovine liver
gene expressions among dairy versus dual versus beef breeds by identifying the large numbers of
DEGs markers submitted to NCBI gene expression omnibus (GEO) accession number GSE114233,
which can serve as useful genetic tools to develop the gene assays for trait-associated studies as well
as, to effectively implement in genomics selection (GS) cattle breeding programs in Poland.

Keywords: liver; cattle; transcriptome; gene expression; gene-transcripts; GO terms; pathway
enrichment; cytoscape-Clue-GO; Polish-Red; Polish-HF; Hereford; RNA-seq

1. Introduction

With the advancement of next-generation genome sequencing (NGS) technology, transcriptome
complexity and dynamics can now be explored at different levels [1]. RNA-sequencing (RNA-seq)
has revolutionized sequencing-based technology [2], and is commonly used for characterizing and
comparing the gene expression profiling to identify genome-wide differentially expressed (DE)
gene-transcripts between two or more biological conditions of interest in various tissue samples.
A comparison of transcriptome of taurine (Bos taurus) breeds provides not only a high-resolution survey
of the gene expression variation at different levels, but also provides important biological insights
into the phenotypic differentiation among cattle breeds [3]. In Poland, the Polish-Red and Polish
Holstein-Friesian (Polish-HF) are the two native taurine breed reared in active breeding population [4].
The Polish-HF is characterized as dairy breed, while Polish-Red is characterized as dual purpose [5].
Both native breeds are used for the beef purpose in Poland, as in many countries of Central Europe [4,6].
In recent studies, it has been well documented that gene expression of different bovine transcriptome,
such as Longissimus thoracis [7], blastocysts [8,9], liver [10–15], mammary gland [16], adipose tissue [17],
horn cancer [18], milk fat globule [19], and subcutaneous adipose tissue [20], varies among cattle
breeds. However, little has been elucidated regarding the expression of genes and its regulation
mechanism in global cattle breeds, including the native Polish cattle breeds. Thus, understanding
the transcriptomic variation among global cattle breeds is an essential pre-requisite to unveil the
mechanistic knowledge on their differentiation on phenotypes, including appearance, physiological,
behavioral, and production traits [3]. Most of the recent RNA-seq studies that have been performed
in cattle were focused mainly on identifying the differentially expressed gene (DEG) variations that
influence economically important traits in cattle [21–26]. This genetic variation information based
on DEG markers has increasingly been used in cattle breeding improvement programs through
gene-assisted selection (GAS) and genomic selection (GS), to improve conventional phenotype selection.
In general, the identification of DEG markers for particular economically important traits has great
potential for the genetic improvement of cattle, and the implementation of GAS and GS programs
has been highly recommended for use in cattle breeding programs worldwide [27,28]. The liver
transcriptome is central to most of the economically important metabolic processes in cattle, and has
a major influence on the genetic improvement of production trait variation, namely, feeding efficiencies
in dairy and beef breeds [10–14], carcass trait including muscle growth and development in young
growing cattle breeds [5,7,24–26]. In this study, we aimed to compare the global gene expression across
the entire liver transcriptome in young growing bulls aged between 6 to 12 months using RNA-seq
to identify the DE gene-transcripts in bovine liver among cattle breeds (Polish-Red for dual purpose,
Polish-HF for dairy, and Hereford for beef), to compare the DE-gene transcripts among dairy versus
dual versus beef breeds, and to improve the liver transcriptome annotation of the bovine genome.
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2. Materials and Methods

2.1. Animals and Biological Sample Collection

A total of 18 young bulls aged between 6 to 12 months representing Polish-HF, Polish-Red
and Hereford cattle breeds (n = 6, for each breed) were investigated using RNA-seq. In this paper,
we only investigated the comparison of liver transcriptome among three cattle breeds. The age
groups within the cattle breed were not analyzed and investigated because of small sample size.
However, a total of 44 young bulls were investigated to validate the RNA-seq experiment using
qRT-PCR. The investigated animals were purchased at birth randomly. Just after birth, they were
brought to the experimental herd/farm of Institute of Genetics and Animal Breeding (IGAB), Polish
Academy of Science (PAS), Jastrzębiec, Poland and reared under uniform environment and feeding
system. After the systematically slaughtering of young bulls, the collected liver tissues samples were
immediately kept in liquid nitrogen and finally stored in a deep freezer at –80 ◦C. All procedures
involving rearing of animals were performed in accordance with the guiding principles for the care and
use of research animals, and were approved by the local ethics commission (permission No. 3/2005) of
IGAB, PAS, Jastrzębiec, Poland. The phenotypic database of investigated animals was summarized in
Table 1.

Table 1. Mean phenotypic values of carcass traits in young growing bulls (n = 18) from three cattle breeds.

Breeds n Cold Carcass
Weight (kg)

Carcass
Yield (kg)

Right Half
Carcass (kg)

Valuable Cut
Meat (kg) Meat (kg) Bones (kg) Fat (kg)

Polish-HF 6 188.9 ± 5.3 53 ± 2.4 94.9 ± 1.6 59.4 ± 1.9 42.3 ± 2.6 15.4 ± 3.6 9.9 ± 3.8
Polish-Red 6 166.6 ± 6.4 56.5 ± 3.6 86 ± 2.6 54.5 ± 3.4 40.7 ± 4.1 15.4 ± 5.7 10.9 ± 6.0
Hereford 6 193.9 ± 8.9 59.6 ± 4.6 100.2 ± 2.9 62.9 ± 3.1 45.4 ± 3.9 17.1 ± 5.6 13.0 ± 5.8

HF: Holstein Friesian.

2.2. Laboratory Methods

Complete workflow of RNA-seq laboratory method is presented in Figure S1. Total RNA was
extracted and prepared from 50–60 mg of frozen bovine liver tissues (n = 18) using the guanidinium
thiocyanate method [29] (TRIzol reagent: Thermo Fisher Scientific Inc., Waltham, MA, USA). The total
RNA from each sample was further purified to remove the genomic DNA contamination using the
RNase-free DNase clean-up kit (Thermo Fisher Scientific Inc., Waltham, MA, USA). The RNA quality
and quantity were assessed using automated capillary gel electrophoresis on a Bioanalyzer 2100 with
RNA 6000 Nano Labchips according to manufacturer’s instructions (Agilent Technologies, Palo Alto,
CA, USA). The RNA integrity number (RIN) values of all the biological samples (n = 18) ranged
from 6.9 to 8.5 (Figures S2–S4). A total 5 µg total RNA were used for mRNA isolation, and two
biological replicates were used for each biological sample. The dUTP directional mRNA libraries
preparation were carried out using the Dynabeads mRNA Direct™ kit (Thermo Fisher Scientific
Inc., Waltham, MA, USA), and NEBNext Ultra Directional RNA library preparation Kit for Illumina
according to manufacturer’s instructions (New England Bio Labs, Hitchin, UK). The cDNA fragments
were end-repaired, A-tailed, and ligated to the TruSeq y-tail single indexes using Illumina TruSeq
DNA kit, followed by cutting of the indexed libraries with user enzyme, and PCR amplifications
for 12 cycles. Finally, to get the highest quality data on NextSeq 500 Illumina sequencing platform,
optimum cluster deposition was made by quantitation of libraries using qPCR according to the Illumina
sequencing library qPCR quantification guide (Kapa Biosystems, Wilmington, MA, USA). Finally,
156 × 156 bp paired-end sequence reads were generated using the Illumina NextSeq 500 platform high
output/300 cycle kits [30,31].

2.3. Sequence Quality Control and Read Mapping

Adaptors were removed using Cutadapt software [32]. The minimum overlap length was set to
10 and the error rate was set to 0.05. After cutting the adaptor, the low-quality bases were trimmed
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with an average score of 15 for five consecutive bases from the 3’-end. The processed reads were
mapped to the Ensembl75_UMD3-1.1 reference genome (https://oct2018.archive.ensembl.org/Bos_
taurus/Info/Index) based the Hereford cow, L1 Dominette 01449 (http://bovinegenome.elsiklab.
missouri.edu/Apollo2/22875/jbrowse/index.html) and to the Y chromosome from the Btau_4.6.1
assembly using Bowtie2 through TopHat [33], and the HTSeq framework version 0.5.3p9 [34] used to
count the number of aligned reads for each gene. The current reference Bos taurus genome assembly
is represented by 19,994 and 26,740 annotated coding genes and gene transcripts (https://oct2018.
archive.ensembl.org/Bos_taurus/Info/Annotation). The FASTQ sequencing data of this present study
were deposited in the NCBI database under submission number: SRS1296732 (http://www.ncbi.
nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=312148) [31] and the gene expression data
of investigated animals (n = 18) were deposited in the NCBI database under submission number:
GSE 114233 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114233) and summarized in
Table 2.

Table 2. Hepatic gene expression NCBI database of Polish-Red, Polish-HF and Hereford cattle breeds.

Animal ID Gene Expression
Omnibus Acc. No. Breed Web-Link

CP19 GSM3138303 Polish Red https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138303
CP20 GSM3138304 Polish Red https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138304
CP21 GSM3138305 Polish Red https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138305
CP22 GSM3138306 Polish Red https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138306
CP23 GSM3138307 Polish Red https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138307
CP24 GSM3138308 Polish Red https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138308
CP27 GSM3138309 Polish HF https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138309
CP28 GSM3138310 Polish HF https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138310
CP29 GSM3138311 Polish HF https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138311
CP30 GSM3138312 Polish HF https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138312
CP31 GSM3138313 Polish HF https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138313
CP32 GSM3138314 Polish HF https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138314
CP35 GSM3138315 Hereford https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138315
CP36 GSM3138316 Hereford https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138316
CP37 GSM3138317 Hereford https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138317
CP38 GSM3138318 Hereford https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138318
CP39 GSM3138319 Hereford https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138319
CP40 GSM3138320 Hereford https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3138320

2.4. Breed Comparisons Analysis of RNA-seq Read Count Data Using DEseq and EdgeR Bioconductor Packages

Bioconductor is the most popular and commonly used bioinformatics tools for the analysis of
RNA-seq read count data using the R statistical programming language [35]. In our study, we used
two R Bioconductor packages (v2.14.1, Open source software for bioinformatics, Boston, MA, USA),
the DEseq [36] and EdgeR [37,38], for the normalization of RNA-seq DE gene-transcripts data generated
by comparing the liver transcriptomes of Polish-HF, Polish-Red, and Hereford cattle. Although they
are similar in terms of differential analysis, they differ in dispersion estimation. DEseq is more
conservative [39], while EdgeR is more sensitive to outliers [40]. Prior to DE gene-transcript analysis,
the read counts were adjusted for each sequenced library (n = 18) using the DEseq and EdgeR packages
with one normalized scaling factor.

The DEseq R package 1.12.0 (https://bioconductor.org/packages/release/bioc/html/DESeq.
html) was used to analyze DE with the DEseq pipeline approach, and the Benjamini and Hochberg
method [41] was used to correct the p-values. The EdgeR GLM approach was applied to determine the
DE gene-transcripts between cattle breeds using the trimmed mean of M values (TMM) normalisation
method [42]. For both pipelines, the false discovery rate (FDR) adjustments were performed to
account for multiple testing in the DE gene-transcript comparisons among the three breeds. The DE
gene-transcripts with an adjusted two-sided p-value of ≤ 0.01 that showed a greater than 2-fold
change in expression was considered differentially expressed. The DEseq and EdgeR platforms were
used to perform pairwise comparisons among breeds using parametric tests, where the read-counts
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followed a negative binomial distribution with a gene-specific dispersion parameter. These packages
mainly differ in estimation of the dispersion parameter and the type of normalization they follow.
The DEseq and EdgeR programs normalize the read-count per gene based on the total gene depth per
individual. These two methods were selected based on evidence in the literature of their robustness.
For DEseq, the DE gene-transcripts were defined as those genes with an absolute log fold change
(logFC) of > 1 and an adjusted p-value of ≤ 0.01 as the threshold, whereas for EdgeR, the DE
gene-transcripts with a logFC of > 1 and an adjusted FDR of ≤ 0.01 were adopted as the standard
for judging statistically significant differences in gene expression. In our study, three cattle breed
comparisons were performed using the DEseq and EdgeR packages, and the DE Gene-transcripts
were identified by comparing the bovine liver transcriptome between (i) Polish-Red versus Hereford,
(ii) Polish-HF versus Hereford, and (iii) Polish-HF versus Polish-Red cattle breeds. After identification
of DE gene-transcripts, RNA-seq data normalization by the p-value and FDR calculation, the resulting
expression intensity values were further visualized based on the heat-map plots and Venn diagrams
using the standard protocols [43–47].

2.5. Comparative Analysis of GO Terms among Cattle Breeds Using TopGO and ClueGO Packages

To understand the biological differences between cattle breeds based on the differential expression
analyses, we carried out GO terms analysis of DE gene-transcripts to annotate the genes to
biological/cellular/molecular terms in a hierarchically structured way using TopGO [48] enrichment
analysis for biological processes. Furthermore, the functional distribution of GO terms for bovine liver
tissues of cattle breeds were analyzed to assign genes to functional pathways, as well as, to interpret
and visualize the functionally group terms in the form of gene networks and pathways charts
using Cytoscape-ClueGO [49,50]. The ClueGO plug-in can extrapolate the biological function of
large gene lists by identifying significant GO terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways [51,52]. It also facilitates the visualization of functionally related genes displayed as
a clustered network and chart. The statistical test used for the enrichment was based on a right-sided
hypergeometric option with a Benjamini–Hochberg correction for multiple testing (FDR < 0.05) and
a kappa score of 0.3. The ClueGO software calculates enrichment scores for selected sets of genes
against a user-provided gene list [48–50].

2.6. Validation of DE Gene-Transcripts Using RT-PCR/qPCR

A total of eight DE gene-transcripts primers set were designed based on the significant DE
gene-transcripts identified by RNA-seq experiment. For the Polish-Red versus Hereford comparison:
gene encoding calpain 11 (CAPN11), Insulin-like growth factor level (IGF-I), and Bos taurus insulin-like
growth factor binding protein, acid labile subunit (IGFALS); for the Polish-HF versus Hereford
comparison: gene encoding Calpain-2 catalytic subunit (CAPN2), insulin like growth factor binding
protein 2 (IGFBP2), and growth hormone (GH); and for the Polish-HF versus Polish-Red comparison:
gene encoding insulin like growth factor binding protein 1 (IGFBP1) and family with sequence
similarity 13 member A (FAM13A) DEGs markers were selected (Table 3). The primer pairs were
designed between exons to prevent false positive amplification from contaminating genomic DNA.

2.6.1. RT-PCR/qPCR

A total of 44 RNA samples were treated with DNase I (Thermo Fisher Scientific, Cleveland,
OH, USA) and reverse-transcribed using a Roche RT-PCR reagent kit (Transcriptor high fidelity cDNA
synthesis kit, Roche, Basel, Switzerland) in the presence of random hexamers. The cDNA samples
were quantified on a Roche 480 LightCycler® system using the qPCR SYBR Green I Master (Roche).
Approximately 1 µg of RNA was used as the template for qPCR using the primer sets listed in Table 3,
with cycling conditions of 10 min at 95 ◦C followed by 40 cycles of 5 s at 95 ◦C, 15 s at 60 ◦C, and 20 s at
72 ◦C. The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene transcript was used as the internal
control [53].
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2.6.2. qPCR Statistics

The sample cycle threshold (CT) values were standardized for each template using the GAPDH
reference gene as a control, and a robust qPCR efficiency assessments method [54] was used to
analyze the relative change in gene expression from the qPCR experiments. Three biological replicates
and three replicate reactions per sample were used to ensure statistical credibility. The expression
levels of each of the identified DE gene-transcripts determined by qPCR were analyzed using the
Mann-Whitney. Two-tailed p-values were used for all analyses, and p-values < 0.01 were considered
statistically significant. Statistical analyses and production of Pearson’s correlation graphs [55] were
performed with IBM SPSS 20 (IBM Corp. Released 2011, IBM SPSS Statistics for Windows, Version 20.0,
Armonk, NY, USA) and GraphPad Prism 6 software (GraphPad Software, San Diego, CA, USA).

3. Results

3.1. Comparison of Liver Transcriptome in Cattle Breeds

Using the DEseq and EdgeR pipelines, the bovine liver transcriptome were compared across three
cattle breeds; hepatic non-DE gene-transcripts and hepatic DE genes were identified and compiled
into the following datasets: (i) Polish-Red versus Hereford (Table S1), (ii) Polish-HF versus Hereford
(Table S2), and (iii) Polish-HF versus Polish-Red (Table S3). All the filtered non-DE gene-transcripts
without any cut-off p-values formed the hepatic non-DE gene-transcripts dataset (Tables S1–S3:
Sheet-2), whereas all the filtered DE gene-transcripts with an adjusted cut-off p-value of < 0.01
formed the dataset of significant hepatic DE genes (Tables S1–S3: sheet-3). By comparing all the
filtered non-DE gene-transcripts without any cut-off p-values of bovine liver transcriptome, a total of
51,575, 51,560, and 50,985 hepatic gene-transcripts, represented as 18,217, 18,201, and 17,977 hepatic
genes (Tables S1–S3: Sheet-2), were identified in the breed comparison of Polish-Red versus
Hereford, Polish-HF versus Hereford, and Polish-HF versus Polish-Red cattle, respectively. Similarly,
by comparing the bovine liver transcriptome with an adjusted cut-off p-value of < 0.01, a total of
895, 338, and 571 significant hepatic DE gene-transcripts, represented as 745, 265, and 498 hepatic DE
genes (Tables S1–S3: Sheet-3), were identified in the breed comparison of Polish-Red versus Hereford,
Polish-HF versus Hereford, and Polish-HF versus Polish-Red cattle, respectively.

Furthermore, all three breed comparisons were analyzed using online Venn diagram web
resources (http://bioinformatics.psb.ugent.be/webtools/Venn/). In case of all the filtered hepatic
gene-transcripts without any cut-off p-values, the Venn diagram revealed that the majority of hepatic
gene-transcripts (n = 17,093) were commonly shared among all three breed comparisons; a total of
674, 450, and 434 hepatic gene-transcripts were commonly shared between the following comparisons:
(i) Polish-Red versus Hereford and Polish-HF versus Hereford; (ii) Polish-Red versus Hereford and
Polish-HF versus Polish-Red; and (iii) Polish-HF versus Hereford and Polish-HF versus Polish-Red,
respectively (Figure 1, Table S4).

In case of all the filtered hepatic genes with an adjusted cut-off p-value of < 0.01, the Venn
diagram revealed a total of 75 DE hepatic genes that were commonly shared among all three breed
comparisons; a total of 70, 160, and 38 DE hepatic genes were commonly shared between the following
comparisons: (i) Polish-Red versus Hereford and Polish-HF versus Hereford; (ii) Polish-Red versus
Hereford and Polish-HF versus Polish-Red; and (iii) Polish-HF versus Hereford and Polish-HF versus
Polish-Red, respectively (Figure 2, Table S5). Moreover, a total of 440, 82, and 225 DE hepatic genes
were uniquely observed in the breed comparisons of Polish-Red versus Hereford, Polish-HF versus
Hereford, and Polish-Red versus Polish-HF, respectively (Figure 2, Table S5).

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Figure 1. Venn diagram based on the Tables S1–S3 (Excel-Sheet-2) revealed identifications of all
the hepatic non-DE genes (without cut-off p values) in all three breeds using DEseq and EdgeR
pipelines. Figure denotes the comparisons among Polish-Red versus Hereford, Polish-HF versus
Hereford, and Polish-HF versus Polish-Red cattle breeds. The numeric values (n) of the Venn diagram
representing the hepatic non-DE genes are listed in Table S4.
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Figure 2. Venn diagram based on the Tables S1–S3 (Excel-Sheet-3) revealed identifications of significant
hepatic DE genes (p < 0.01) in all three breeds comparisons using DEseq and EdgeR pipelines. Figure
denotes the comparisons among Polish-Red versus Hereford, Polish-HF versus Hereford, and Polish-HF
versus Polish-Red cattle breeds. The numeric values (n) of Venn diagram representing the hepatic DE
genes are listed in Table S5.



Vet. Sci. 2019, 6, 36 8 of 18

3.2. Comparison of Gene Ontology Terms among Cattle Breeds Using TopGO Enrichment Analysis

To understand the biological differences between cattle breeds based on the differential expression
analyses, we carried out gene ontology (GO) term analysis of DE gene-transcripts to annotate the genes
to biological/cellular/molecular terms in a hierarchically structured way using TopGO enrichment
analysis for biological processes. The complete list of the top 150 enriched GO terms from all GO-seq
analyses (adjusted p-value of < 0.01) are summarized in Table S6. For the Polish-Red versus Hereford
comparison, the 150 top-ranked GO terms, including the molecular function (MF), biological process
(BP), and cellular component (CC) terms, were identified and summarized in Table S6: Sheet 1.
For this comparison, the MF GO term, BP GO term, and GO CC term analyses identified some genes
overrepresented or most enriched in various biological activities (presented in Table S6: Sheet 1).
Similar data are presented in Table S6: Sheet 2 for the Polish-HF versus Hereford comparison, and in
Table S6: Sheet 3 for the Polish-HF versus Polish-Red comparison.

3.3. Comparison of Gene Ontology Terms among Cattle Breeds Using Cytoscape-ClueGO

3.3.1. Assignment of Genes to Functional Pathways

The functional distribution of GO terms for bovine liver tissues were analyzed to assign the genes
to functional pathways using Cytoscape-ClueGO. Overall, results revealed a total of 64 gene functional
groups and 352 genes with a corresponding function that were assigned to functional pathways in the
bovine liver transcriptome in all the three breed comparisons. The corresponding numbers were 17
and 151 for the Polish-Red versus Hereford (Table S7), 16 and 61 for the Polish-HF versus Hereford
(Table S8), and 31 and 140 for the Polish-HF versus Polish-Red (Table S9) comparisons.

3.3.2. Interpretation and Visualization of Functionally Group Terms in the Form of Gene Networks
and Pathways Charts

Analysis of the biological processes and gene network of all significant DE gene-transcripts
(p < 0.01) in bovine liver tissue was performed to identify and interpret the GO functionally group
terms representing upregulated and downregulated genes (Figures S5–S10), as well as to visualize
the functionally grouped networks and pathways with upregulated and downregulated genes
(Tables S10–S12), using Cytoscape-ClueGO.

The GO terms comparative analysis of Polish-Red versus Hereford identified significantly
upregulated GO terms (Figure S5) and gene networks/pathways (Table S10) related to alpha amino
acid catabolic process, metabolic processes of triglyceride and unsaturated fatty acid, gluconeogenesis,
nucleoside diphosphate phosphorylation, positive regulation of p38MAPK cascade, cholesterol
biosynthesis process, and significantly downregulated gene network (Figure S6) and pathways
(Table S10) related to regulation of interferon and cytokine production, regulation of actin nucleation,
negative regulation of extrinsic apoptotic signaling pathway via death domain receptors, regulation of
Iron ion transport and post-embryonic eye morphogenesis.

The GO terms comparative analysis of Polish-HF versus Hereford identified significantly
upregulated gene network (Figure S7) and pathways (Table S11) related to IGF receptor
signaling, catecholamine transport, quaternary ammonium group transmembrane transporter activity,
the regulation of lipoprotein lipase activity and tyrosine kinase binding receptor, and significantly
downregulated gene network (Figure S8) and pathways (Table S11) related to positive regulation
of glucose import, monocarboxylic acid binding, IGF ternary complex processes, regulation of
corticosteroid hormone secretion, negative regulation of tumor necrosis factor production, xenobiotic
process, retinoid binding, unsaturated fatty acid metabolic process, steroid metabolic process,
and hormone metabolic process.

Finally, the GO terms comparative analysis of Polish-HF versus Polish-Red identified significantly
upregulated gene network (Figure S9) and pathways (Table S12) related to negative regulation
of viral genome replication, proton symporter activity, post-embryonic eye morphogenesis,
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platelet-derived growth factor receptor binding, iron ion import into cell and protein activation
cascade, and significantly downregulated gene network (Figure S10) and pathways (Table S12) related
to cholesterol biosynthetic process, isoprenoid metabolic process, retinoic acid binding, oxidoreductase
activity, negative regulation of protein processing, cholesterol efflux and ATP biosynthetic process.

3.4. Validation of DE Gene-Transcripts Using Quantitative Real Time PCR (qPCR)

The eight DE gene-transcripts identified from the RNA-seq experiment were validated by
RT-PCR/qPCR assays (Table 3). The fold change values and p values of selected DE gene markers
represented in both RNA-seq and RT-PCR/qPCR were considered to interpret the DE gene-transcripts
validation results (Figure 3A–C). Results revealed that relative gene expression patterns of the selected
genes were significantly correlated between the RT-PCR/qPCR and RNA-seq (Pearson’s r > 0.90;
Figure 3D−F). Thus, the RT-PCR/qPCR result largely confirmed the reliability of bovine liver RNA-seq
data (Figure 3).

Vet. Sci. 2019 9 of 18 

 

(Pearson’s r  >  0.90; Figure 3DF). Thus, the RT-PCR/qPCR result largely confirmed the reliability of 

bovine liver RNA-seq data (Figure 3). 

 

Figure 3. Validation of breed-specific bovine liver RNA-seq experiment via RT-qPCR. (A–C) denotes 

the fold change (FC) with p values of eight selected DE gene-transcripts calculated with mRNA 

expressions of breed-specific bovine liver tissues determined via RNA-seq and qPCR, and (D–F) 

denotes the correlation of fold changes in gene expression between the RNA-seq and qPCR by 

Pearson’s correlation analysis. 

Figure 3. Validation of breed-specific bovine liver RNA-seq experiment via RT-qPCR. (A–C) denotes
the fold change (FC) with p values of eight selected DE gene-transcripts calculated with mRNA
expressions of breed-specific bovine liver tissues determined via RNA-seq and qPCR, and (D–F)
denotes the correlation of fold changes in gene expression between the RNA-seq and qPCR by Pearson’s
correlation analysis.
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Table 3. List of selected DE gene-transcripts for the validation of RNA-seq experiment by qRT-PCR.

Gene Full Name Calpain 11 Calpain 2
Insulin Like
Growth Factor
Binding Protein 1

Insulin Like
Growth Factor
Binding Protein 2

Insulin Like
Growth Factor I

Insulin Like Growth
Factor Binding
Protein, Acid Labile
Subunit (IGFALS)

Somatotropin

Family with
Sequence
Similarity 13
Member A

Gene symbol CAPN11 CAPN2 IGFBP1 IGFBP2 IGF-I IGFALS GH FAM13A

Forward primer GAACCTTCAA CCAACATTGA TAGCGTAAAT GTGCAAGAT GAGTGCAGG CAGGTAACA AGCCATCTG CCTTTCTATTT
CTGTCAAGCG CGAGATTGACA TGGCAGGGAA GTCTCTGAACG AAACAAGAACT AGCTGGCCTA TTGTTTGCCC GAGCAGTGCC

Reverse primer TTGAGTCGGT ATTGTCTGCA ACACTGTGTT TGCTCGTTGT TTGGTAGGT GTGGTCCAG TATTAGGAAA CTGAGTCCTCT
TCTGGCTTAT ACTCAAAGGC CCCATGTTTG AGAAGAGATGA CTTCTGGTGTT GTAGAGTTTCT GGACAGTGGGAG GAACTTTGG

Ensembl Gene ID
ENSBTAG000 ENSBTAG000 ENSBTAG00 ENSBTAG00 ENSBTAG00 ENSBTAG000 ENSBTAG00 ENSBTAG000
21066 12778 46768 5596 11082 33299 17220 11187

Ensembl Transcript
ID

ENSBTAT00 ENSBTAT00 ENSBTAT00 ENSBTAT000 ENSBTAT00 ENSBTAT000 ENSBTAT00 ENSBTAT00
4690 47532 64194 7349 14713 47326 22885 14855

BTA chromosome 23 16 4 2 5 25 19 6

Gene Start (bp) 17,807,298 27,781,671 76,720,883 1.05E + 08 66,532,877 1,366,647 48,768,618 37,355,568

Gene End (bp) 17,820,479 27,840,009 76,725,301 1.05E + 08 66,604,734 1,368,479 48,772,014 37,457,493

Transcript Start (bp) 17,807,298 27,781,671 76,720,883 1.05E + 08 66,532,877 1,366,647 48,768,618 37,355,568

Transcript length 2675 3179 917 1141 862 1833 817 5125
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4. Discussion

In cattle, the identification of breed-specific DE gene-transcripts is critical findings for the
implementation of effective GAS and GS programs to an active global cattle breeding population
for genetic improvement of economically important traits [27,28]. In general, the primary goal
of genome-wide DE gene-transcripts identification using RNA-seq is to identify significant DE
gene-transcripts expressed within the candidate genes (CGs) that provide a complete set of gene
expression variations for specific economically important traits. In global cattle breeding practices,
the identification of such breed-specific DE gene-transcripts, within the trait-associated CGs can
serve as suitable gene assays for trait-associated studies, which can be effectively utilized in GS
programs [28].

In our study, large datasets of hepatic gene-transcripts in dairy, dual purpose, and beef cattle
breeds (n = 154, 121), including significant hepatic DE genes (n = 1804), were identified. Moreover,
we observed that large numbers (n = 170, 93; 91.6%) of identified overlapping hepatic gene-transcripts
without any cut-off p-values were shared commonly in all three breeds, in contrast to only 75
(6.9%) significant (p < 0.01) DE gene-transcripts. Furthermore, in Figure 1, we did not observed any
unique hepatic DE gene-transcripts for the single breed comparison, However, in Figure 2, when the
cutoff values were marked (p < 0.01), 440 (40.4%), 82 (7.5%), and 225 (20.6%) unique hepatic DE
gene-transcripts were observed in dual versus beef, dairy versus beef and dairy versus dual breed
comparisons, respectively. From both Figures 1 and 2 data, one can conclude that when hepatic gene
transcript data without cutoff values compared, the majority of overlapping unique hepatic gene
transcript are sheared in the all three breeds (91.6%) category. In a recent study on comparisons of
hepatic expression in Angus, Charolais, and Kinsella Composite (KC) beef breeds similarly identified
96.1% (n = 11,636) of the expressed genes that were common to all the three breeds, whereas, a total
of 72, 41 and 175 significant DE genes with FDR < 0.01 and Fold change (FC) > 2, were identified in
Angus, Charolais, and KC, respectively [13].

Our RNA-seq study reporting for the first time large set gene-expression dataset (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114233) in Polish native cattle breeds. Such hepatic
expression dataset for Polish cattle breeds can be very useful to understand the expression profiling of
economic trait; for example, Polish Red cattle is characterized by valuable traits such as high resistance
to adverse environmental conditions, good health, longevity, good fertility, ease of calving, great calf
vigor, and ease of rearing, as well as high biological value of milk. Although the productivity of the
breed is poor, the breed may be used for multiple purposes and meets the needs of extensive and
ecological breeding [56].

Identification of hepatic DE genes in divergent cattle breeds that are specialized for either milk
or meat production or raised as dual-purpose breeds might also have significant impact to detect
signatures of selection for economically important dairy and beef production traits [57], as well
as detecting potential genomic regions relevant to milk and beef production, which were in good
agreement with known quantitative trait loci (QTLs) or candidate genes [58,59]. A recent study
on genome-wide SNP analysis of Polish-HF and Polish-Red cattle identified 19 genomic regions
encompassing 55 protein-coding genes and numerous quantitative trait loci, which potentially
underlined some of the phenotypic traits [60].

In cattle, very few studies have reported the identification of DE genes in the bovine liver
transcriptome. In a recent study, the RNA-seq data of liver biopsy samples from 19 dairy cows
were used to identify the DEGs between high- and low-feeding efficiency (FE) groups of cows based
on residual feed intake (RFI); a comparison between the high and low RFI groups revealed 70 and
19 significant DEGs in Holstein and Jersey cows, respectively [61]. Moreover, a breed comparison
study that analyzed the RNA sequence of bovine leukocyte transcriptomes from Holstein, Jersey,
and Cholistani breeds identified a total of 165 and 3383 breed-specific DEGs for the Holstein versus
Jersey and Holstein versus Cholistani breeds comparisons, respectively. The DEG analysis showed
a high similarity between the Holstein and Jersey breeds, and a much greater difference between

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114233
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114233
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the taurine and indicine breeds [3]. However, a study by Cesar et al. [62] in Nellore cattle did not
identify any DEGs (FDR 10%) in samples with a high linoleic acid or stearic acid content, and very
few DEGs for eicosapentaenoic acid (five DEGs), docosahexaenoic acid (four DEGs) and palmitic acid
(123 DEGs), while large numbers of DEGs were associated with oleic acid (1134 DEGs) and conjugated
linoleic acid (cis-9, trans-11; 872 DEGs). In another study that evaluated multiple tissues (liver, fat,
muscle and pituitary gland) for the sexual dimorphic genes, a total of 24, 14, 86, and 57 tissue-specific
DEGs were identified, including gene encoding DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked
(DDX3Y), ubiquitin specific peptidase 9, Y-linked (USP9Y), and zinc finger protein, Y-linked (ZFY) that
were commonly found in all four tissues [63].

Our identification of breed-specific hepatic DE genes from the three different cattle breeds
suggests that the bovine liver transcriptome of different cattle breeds have divergent genetic profiles;
for example, the breed-specific shared hepatic DE genes were highest in the Polish-Red versus Hereford
and Polish-HF versus Hereford breed comparisons, in contrast to the comparison of the native
Polish-HF versus Polish-Red breeds (Figures 1 and 2). This suggests that native (Polish) breeds
have a greater number of similar genes in common, or fewer hepatic DE genes, when compared to the
Hereford beef breed. This finding could be suggested that the selected dairy and dual-purpose Polish
cattle are the typical early maturing breeds that reach puberty at about 264 days old, compared to the
Hereford, the typical late-maturing breed that reaches puberty at day 326 [64,65].

Furthermore, by comparing the young bulls from dairy versus dual versus beef breeds
hepatic DE genes, our study identified several gene networks and pathways charts of bovine liver
active in young growing bulls. When we compared the young bulls from dual versus beef breed:
(i) the significant upregulated metabolic pathways for carbohydrate metabolism (gluconeogenesis),
fat metabolism (metabolic processes of triglyceride and unsaturated fatty acid, cholesterol biosynthesis
process), protein metabolism (alpha amino acid catabolic process), nucleotide metabolism (nucleoside
diphosphate phosphorylation), and postnatal muscle growth (positive regulation of p38MAPK
cascade); (ii) the highly significant downregulated metabolic pathways for muscle and body growth
(regulation of actin nucleation), and molecule transportation and signaling (regulation of Iron
ion transport, negative regulation of extrinsic apoptotic signaling pathway via death domain
receptors) were identified. However, when we compared the young bulls from dairy versus beef
breed, the significant upregulated metabolic pathways for body growth (IGF receptor signalling,
catecholamine transport, quaternary ammonium group transmembrane transporter activity), lipid
metabolism (the regulation of lipoprotein lipase activity), and energy metabolism (tyrosine kinase
binding receptor) were identified; (iii) the significant downregulated metabolic pathways for
carbohydrate metabolism (positive regulation of glucose import), fat metabolism (unsaturated fatty
acid metabolic process, monocarboxylic acid binding), hormone and steroid metabolism (steroid
metabolic process and hormone metabolic process, regulation of corticosteroid hormone secretion),
and body growth (IGF ternary complex processes, negative regulation of tumor necrosis factor
production, xenobiotic process, retinoid binding) were identified. Finally, when we compared the
young bulls from dairy versus dual breed, the significant upregulated metabolic pathways for postnatal
body growth (platelet-derived growth factor receptor binding, iron ion import into cell, and protein
activation cascade) and transporting molecules (proton symporter activity) were identified; (iv) the
significant downregulated metabolic pathways for fat metabolism (cholesterol biosynthetic process,
cholesterol efflux, and ATP biosynthetic process), body growth and development (isoprenoid metabolic
process, retinoic acid binding, negative regulation of protein processing), and energy metabolism
(oxidoreductase activity) were identified.

In young growing bulls aged between 6 to 12 months, the liver is not fully metabolic stressed.
However, it has major impact on feeding efficiencies [61,66–68], postnatal muscle growth and
development [25,62,69,70], puberty [65], and carcass trait [24]. In cattle, several RNA-seq studies
on liver and muscle tissues [13,61,66–70] have been reported and identified the metabolic pathways:
(i) by comparing the liver transcriptome of Charolais, Angus, and KC beef breed; oxidation of
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fatty acids pathways were identified in KC and angus breed [13], (ii) by comparing the high- and
low-RFI groups of Holstein and Jersey cows, several metabolic pathways that affect or regulate
FE, including steroid hormone biosynthesis, retinol metabolism, starch and sucrose metabolism,
ether lipid metabolism, arachidonic acid metabolism, and drug metabolism by cytochrome P450
were identified [61], (iii) by comparing the mild negative energy balance and severe negative
energy balance in the liver of lactating HF cows with a severe negative energy balance, the steroid
hormone biosynthesis pathway was identified [66], (iv) by comparing the different diets (low-impact,
nutraceutical versus conventional diets) in young Belgian Blue × Holstein bulls, the metabolic
pathways of cholesterol biosynthesis, liver X receptor/retinoid X receptors (LXR/RXR) activation,
and glutathione metabolism were identified [67], (v) by comparing the rumen epithelial transcriptome
of Hereford x Angus steers, energy generating pathways such as glycolysis, tricarboxylic acid cycle,
and oxidative phosphorylation were identified [68], (vi) by comparing the grass- and grain-fed Angus
steers in bovine latissimus dorsi transcriptome, metabolic pathways related to beef quality and animal
walfare were identified [69], (vii) by comparing the muscle tissue of Nellore cattle with divergent meat
tenderness, the glycine metabolic pathways was identified [70].

5. Conclusions

This is the first study to report the breed-specific DE gene-transcripts of native Polish cattle breeds
and the Hereford reference breed using NGS-based transcriptome analysis of liver tissue, and provide
a global view of the complexity of the bovine liver transcriptome. Our results demonstrate that
the RNA-seq approach can be very useful for identifying the large amount of DE gene-transcripts
(DEGs markers) in selected breeds of livestock animals. These identified hepatic DEG markers can
serve as useful genetic tools to develop the gene assays for trait-associated studies, which can be
effectively utilized in GS programs to improve the genomic resources available for cattle, especially
for beef breeds. In this study, we provide the first transcriptome evidence that demonstrates cattle
breed differences in the global gene-transcripts expression of dairy versus dual purpose versus beef
cattle breeds. Our results clearly highlighted numerous hepatic gene-transcripts (n = 154, 120) and
hepatic genes (n = 54, 395), as well as associated metabolic pathways in bovine liver transcriptome
that were specific to the native breeds of Poland and the Hereford. Identification of breed-specific
associate pathways in hepatic tissues of young bulls can further explore and understand the molecular
regulations of the key metabolic pathways necessary in bovine postnatal body growth and muscle
development, feeding efficiencies (RFI), puberty and carcass trait of young growing bulls from three
cattle breeds. Finally, our study might eventually contribute to improve the cattle genome annotation
by providing the accumulated biological knowledge of the functional groups of the genes that were
found to be assigned to functional pathways in the liver transcriptome of dairy versus dual versus
beef cattle breeds.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-7381/6/2/36/s1,
All hepatic expression data of cattle breeds (n = 18) were submitted to NCBI acc. No.: GSE114233 https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114233 (Table 2). Figure S1: Workflow of RNA-seq laboratory
method; Figure S2: RIN values of investigated Polish-Red young bulls; Figure S3: RIN values of investigated
Polish-HF young bulls; Figure S4: RIN values of investigated Hereford young bulls; Figure S5: Identification of
GO/pathway terms specific for upregulated genes as shown in cluster-1 and cluster-2 for all DE genes expressed
in liver tissues by comparing the Polish-Red versus Hereford cattle breeds using Cytoscape-ClueGo. (On Right:
Functional terms in ClueGo chart. On left: Functional groups in ClueGo overview); Figure S6: Identification of
GO/pathway terms specific for downregulated genes as shown in cluster-1 and cluster-2 for all DE genes expressed
in liver tissues by comparing the Polish-Red versus Hereford cattle breeds using Cytoscape-ClueGo. (On Right:
Functional terms in ClueGo chart. On left: Functional groups in ClueGo overview); Figure S7: Identification of
GO/pathway terms specific for upregulated genes as shown in cluster-1 and cluster-2 for all DE genes expressed
in liver tissues by comparing the Polish-HF versus Hereford cattle breeds using Cytoscape-ClueGo. (On Right:
Functional terms in ClueGo chart. On left: Functional groups in ClueGo overview); Figure S8: Identification of
GO/pathway terms specific for downregulated genes as shown in cluster-1 and cluster-2 for all DE genes expressed
in liver tissues by comparing the Polish-HF versus Hereford cattle breeds using Cytoscape-ClueGo. (On Right:
Functional terms in ClueGo chart. On left: Functional groups in ClueGo overview); Figure S9: Identification of
GO/pathway terms specific for upregulated genes as shown in cluster-1 and cluster-2 for all DE genes expressed
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in liver tissues by comparing the Polish-HF versus Polish-Red cattle breeds using Cytoscape-ClueGo. (On Right:
Functional terms in ClueGo chart. On left: Functional groups in ClueGo overview); Figure S10: Identification
of GO/pathway terms specific for downregulated genes as shown in cluster-1 and cluster-2 for all DE genes
expressed in liver tissues by comparing the Polish-HF versus Polish-Red cattle breeds using Cytoscape-ClueGo.
(On Right: Functional terms in ClueGo chart. On left: Functional groups in ClueGo overview).

Table S1: Identification of all hepatic genes without cut-off p value and with cutoff p value (p < 0.01),
expressed in bovine liver tissues by comparing the Polish-Red vs. Hereford cattle breeds using DEseq and EdgeR
pipelines; Table S2: Identification of all hepatic genes without cut-off p value and with cutoff p value (p < 0.01),
expressed in bovine liver tissues by comparing the Polish-HF vs. Hereford cattle breeds using DEseq and EdgeR
pipelines; Table S3: Identification of all hepatic genes without cut-off p value and with cutoff p value (p < 0.01),
expressed in bovine liver tissues by comparing the Polish-HF vs. Polish-Red cattle breeds using DEseq and EdgeR
pipelines; Table S4: Identifications of all the hepatic non-DE genes counts (without cut-off p values) expressed in
bovine liver tissues by comparing all three breeds using DEseq and EdgeR pipelines as shown in Venn Figure 1;
Table S5: Identifications of significant DE genes counts (p < 0.01) expressed in bovine liver tissues by comparing all
three breeds using DEseq and EdgeR pipelines as shown in Venn Figure 2; Table S6: Identification of top ranked
150 GO terms (GO-MF, GO-BP, and GO-CC) in bovine liver tissues using DEseq and EdgeR pipelines (Sheet 1
to 3); Table S7: Analysis of functional distribution of DE genes in liver tissues by comparing the Polish-Red vs.
Hereford cattle breeds using Cytoscape-ClueGo; Table S8: Analysis of functional distribution of DE genes in liver
tissues by comparing the Polish-HF vs. Hereford cattle breeds using Cytoscape-ClueGo; Table S9: Analysis of
functional distribution of DE genes in liver tissues by comparing the Polish-HF vs. Polish-Red cattle breeds using
Cytoscape-ClueGo; Table S10: The gene network and biological processes for genes specific to all DE genes in
liver tissues by comparing the Polish-Red vs. Hereford cattle breeds using Cytoscape-ClueGo. The distribution of
two clusters visualized on the functionally grouped network with terms as nodes linked based on their kappa
score level (≥0.3), where only the label of the most significant term per group is shown. The node size represents
the term enrichment significance. Terms with up/downregulated genes are shown in red/blue, respectively.
The colour gradient shows the gene proportion of each cluster associated with the term; Table S11: The gene
network and biological processes for genes specific to all DE genes in liver tissues by comparing the Polish-HF vs.
Hereford cattle breeds using Cytoscape-ClueGo. The distribution of two clusters visualized on the functionally
grouped network with terms as nodes linked based on their kappa score level (≥0.3), where only the label of the
most significant term per group is shown. The node size represents the term enrichment significance. Terms with
up/downregulated genes are shown in red/blue, respectively. The colour gradient shows the gene proportion of
each cluster associated with the term; Table S12: The gene network and biological processes for genes specific to
all DE genes in liver tissues by comparing the Polish-HF vs. Polish-Red cattle breeds using Cytoscape-ClueGo.
The distribution of two clusters visualized on the functionally grouped network with terms as nodes linked based
on their kappa score level (≥0.3), where only the label of the most significant term per group is shown. The node
size represents the term enrichment significance. Terms with up/downregulated genes are shown in red/blue,
respectively. The colour gradient shows the gene proportion of each cluster associated with the term.
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