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Simple Summary

This study first proposed an enhanced JDT-based motion-status-driven hierarchical piglet
tracking method, named MSHMTracker, to address the challenges of identity switches and
target losses during piglet tracking caused by crowding, occlusion, and shape deformation.
In MSHMTracker, a score- and time-driven hierarchical matching mechanism (STHM) was
proposed to establish the spatio-temporal association by motion status. Then the piglets’
motion information obtained from MSHMTracker was analyzed to recognize piglet groups’
stress (aggregation/dispersion) behavior responses to the sow’s posture changes. Later, the
correlation between the movement patterns (aggregation and dispersion) of piglets and the
posture transitions (upwards and downwards) of the sow was explored. MSHMTracker
achieved improvements of 2.1% and 2.3% in IDF1 and MOTA, respectively, compared to the
baseline model. The average accuracy of piglets’ stress (aggregation/dispersion) behavior
recognition reached 87.49%. And the correlation values between piglets’ aggression and
dispersion and the sow’s upward and downward posture changes were 0.6 and 0.82, laying
the foundation for research on the social relationships and behavioral patterns between
lactating sows and piglets.

Abstract

Understanding how piglets move around sows during posture changes is crucial for their
safety and healthy growth. Automated monitoring can reduce farm labor and help prevent
accidents like piglet crushing. Current methods (called Joint Detection-and-Tracking-based,
abbreviated as JDT-based) struggle with problems like misidentifying piglets or losing
track of them due to crowding, occlusion, and shape changes. To solve this, we developed
MSHMTracker, a smarter tracking system that introduces a motion-status hierarchical
architecture to significantly improve tracking performance by adapting to piglets’ motion
statuses. In MSHMTracker, a score- and time-driven hierarchical matching mechanism
(STHM) was used to establish the spatio-temporal association by the motion status, helping
maintain accurate tracking even in challenging conditions. Finally, piglet group aggregation
or dispersion behaviors in response to sow posture changes were identified based on the
tracked trajectory information. Tested on 100 videos (30,000+ images), our method achieved
93.8% tracking accuracy (MOTA) and 92.9% identity consistency (IDF1). It outperformed
six popular tracking systems (e.g., DeepSort, FairMot). The mean accuracy of behavior
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recognition was 87.5%. In addition, the correlations (0.6 and 0.82) between piglet stress
responses and sow posture changes were explored. This research showed that piglet move-
ments are closely related to sow behavior, offering insights into sow–piglet relationships.
This work has the potential to reduce farmers’ labor and improve the productivity of
animal husbandry.

Keywords: social relationships; behavioral patterns; stress behavior recognition; multi-object
tracking; hierarchical matching mechanism

1. Introduction
Currently, a large number of researchers are dedicated to selective breeding programs

for improving pig productivity, disease resistance, and physical and mental health through
observing and exploring the social relationships and behavioral patterns between lactating
sows and piglets [1,2] since the traits of pigs can be reflected directly by their individual,
group, and social behaviors. For example, piglet groups exhibit aggregation or dispersion
behavior in response to sow posture transitions [3–5]. When the sow lies down to nurse,
piglets will gather around her udders. When the sow stands up or moves, piglets will
disperse to avoid harm. These behaviors help reduce piglet crushing and ensure the safety
and healthy growth of piglets [6,7]. However, the acquisition of this information mainly
relies on manual observation, which is time-consuming, labor-intensive, and prone to
errors. Therefore, the automatic monitoring of sow postural changes and piglet movement
patterns may help reduce piglet crushing, which is necessary and crucial for selective
breeding programs to further promote the development of the pig farming industry.

In automatic monitoring systems, non-contact computer-vision-based monitoring is
more economical, convenient, and beneficial for animal welfare protection compared to
wearable- or embedded-sensor-based monitoring. This non-contact and efficient computer
vision technology has been widely used for monitoring pig behaviors such as feeding [8,9],
moving [10,11], and abnormal [12–14] and other behaviors [15,16]. However, there has
been limited research on automatic recognition and on exploring the social relationships
and behavioral patterns between the mother sow and her piglets. And these studies
mainly focused on the nursing behavior [17,18] and nosing behavior [19] of pigs, which
are very different from our study on stress behavior in pig groups in response to a sow’s
postural changes. These approaches focused on spatial–temporal localization through
segmentation and keypoint detection and were not concerned with motion trajectories.
For example, nursing was defined by the piglet location in the nursing zone, whereas
nosing behavior was assessed through piglet–sow distance measurements. We observed
that piglets’ stress responses to sow postural changes involve more complex kinematic
signatures: movement patterns relative to the mother sow. For instance, when piglets are
playing around the sow, their spatial positions may change, but the piglets do not show a
significant direction (toward/away from the mother sow). However, this study still faced
challenges in behavioral inconsistency within the group. Also, the interaction between
individual sow and piglet responses in the movement direction needs to be explored.
Therefore, a new method that can capture the location, movement direction, and piglet ID
was the focus of this work.

Multi-object tracking (MOT) technology conducts target recognition and tracking
in video scenes, capturing the target category, position, motion direction, and trajecto-
ries, which are critical for accurate behavior recognition, facilitating livestock farmers’
decision-making [20]. Recently, MOT has achieved state-of-the-art performance in behavior
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recognition in pigs [16,21,22]. Most studies use a tracking-by-detection (TBD) method,
where detection and tracking are conducted in sequence by two independent modules.
So, tracking highly depends on the accuracy of detections and requires a complex data
association algorithm to link detections over time. Currently, YOLO-based networks [16,23]
constitute the mainstream detection method due to YOLO’s excellent detection perfor-
mance, and they are commonly combined with Byte [24] or Sort-like trackers [25] for
multi-target tracking. For example, YOLOv5 was used to detect individual pig behaviors,
and then the Byte method was used to track the behaviors of individual pigs [26]. The
detection network was enhanced by integrating an efficient attention mechanism into the
backbone network, followed by the Byte algorithm to track the movement trajectories of
individual pigs [15]. YOLO v7 and DeepSORT were used to detect and track pigs in videos
to model the pig behavior patterns for health monitoring [27]. YOLOv4 and YOLOv7
were used to locate ear-biting regions and associated these detections with DeepSORT and
centroid tracking algorithms [28].

Compared with TBD paradigms, the joint detection and tracking (JDT) paradigm inte-
grates detection and tracking into a single network, potentially reducing the dependence
of the tracker on the detector. The key in JDT is learning features from multi-frame data,
simultaneously capturing spatial and temporal features, which may dig out potential asso-
ciation clues about the targets between adjacent frames. For instance, Krhenbühl et al. [29]
introduced CenterTrack, a point-based framework designed to simplify object association
across time. Zhang et al. [30] introduced FairMOT, a point-based framework similar to Cen-
terTrack, enhancing object association through Re-ID feature recognition. Although these
methods demonstrate simplicity and effectiveness, they still have limitations in associating
lost targets with the previous trajectory and struggle to locate targets in complex scenes,
such as those with occlusion and crowding. In addition, the behavioral analysis of sows
and piglets within free-range pens is challenged by certain characteristics: (1) occluded,
densely crowded, and clustered piglets; (2) similar appearance and shape deformation;
(3) irregular movement and interaction among pigs. These factors can exacerbate target
loss or ID switching.

To address these challenges and better explore the social relationships and behavioral
patterns between lactating sows and piglets, we proposed a JDT-based MOT method, named
MSHMTracker, to analyze stress behaviors in piglet groups in response to a sow’s posture
changes. In the matching process, we introduced a score-driven and time-driven hierarchi-
cal matching mechanism (STHM) to extract subtle yet useful clues for associations between
low-score, occluded, and reappearing objects and previous tracklets, ensuring trajectory com-
pleteness. Finally, by integrating the target trajectory and movement direction, we explore the
social relationships and behavioral patterns between lactating sows and piglets.

2. Materials and Methods
2.1. Data Collection

The data on lactating sows and piglets were collected from a Lejiazhuang farm in
Foshan city, Guangdong province, China. The sows belong to a local breed officially
named “Small-ear Spotted pig”, which have small spots on their bodies. The piglets
are completely black and are hybrid offspring from crosses between Small-ear Spotted
pigs and either Tibetan Xiang pigs or Duroc pigs. In order to develop a robust tracking
algorithm, the experimental data were captured in different time batches, under different
lighting conditions, and using different cameras. The experimental data were captured
from 11 pens, resulting in a total of 11 sows and over 100 piglets, where piglets in different
pens were different ages.
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From the recordings of each pen, we selected 10 30-s videos, resulting in
110 videos/33,000 images in total. Those videos with shape deformation, occlusion, crowd-
ing, or variable lighting conditions were also selected. These videos were divided into the
training set, validation set, and test set. Dataset partitioning is described in Table 1, which
shows that the training set contained 72 videos/21,600 images from 8 pens, the validation
set contained 8 videos/2400 images, and the testing set contained 30 videos/9000 images
from the other 3 pens.

Table 1. Description of dataset used for tracking and behavior analysis.

Dataset Video Pen

Training set 72 Pen 1, Pen 2, Pen 4, Pen 7, Pen 8, Pen 9, Pen 10, Pen 11
Validation set 8 Pen 1, Pen 2, Pen 4, Pen 7, Pen 8, Pen 9, Pen 10, Pen 11
Test set 30 Pen 3, Pen 5, Pen 6

Sow behavior Video Description

Upward posture change 52 Such as sitting-to-standing, lying-to-standing, lying-to-sitting
Downward posture change 34 Such as standing-to-sitting, standing-to-lying, sitting-to-lying
Rolling posture change 14 Such as ventral lying-to-lateral lying, lateral lying-to-ventral lying

Piglet group behavior Video Description

Aggregation 41 Over 50% of piglet population exhibits movement towards the sow
Dispersion 36 Over 50% of piglets exhibit movement away from the sow
Others 23 No obvious gathering or dispersing behavior

For subsequent supervised learning and performance validation, the ground truth
(GT), including the ID and position information of each pig in a video, was labeled by using
the DarkLabel v1.3 software. It should be noted that the consistency of the corresponding
pig ID in all frames of each video must be carefully maintained.

To explore the social relationships and behavioral patterns between lactating sows
and piglets, we manually extracted 100 videos of sow posture changes to analyze piglet
groups’ stress responses to sows’ posture changes. The dataset comprised 100 annotated
sow-posture-change episodes (52 upward/34 downward/14 other), with the correspond-
ing piglet group behaviors quantified as 41 aggregation events, 36 dispersion events, and
23 undefined responses, as described in Table 1. Figure 1 illustrates the aggregation, disper-
sion, and other behaviors of piglets in response to sows’ upward, downward, and rolling
posture changes. The number prefixed with “#” in the upper left corner of each image
represents the frame ID.

 

Figure 1. Examples of aggregation, dispersion, and other behaviors of piglets in response to the sow’s
upward, downward, and rolling posture changes.
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2.2. The Overall Framework of Behavior Exploration

Figure 2 presents the overall framework of the proposed methodology for exploring
the social relationships and behavioral patterns between lactating sows and piglets based
on a tracking method. It consists of two main components: motion-status-driven piglet
tracking and tracker-based social behavior exploration.

 

Figure 2. Overview of behavior exploring framework.

2.3. Motion-Status-Driven Piglet Tracking
2.3.1. Problem Formulation

JDT aims to associate identical objects across video frames to obtain complete motion
trajectories using a single network. It establishes spatio-temporal relationships between
multi-frame images by learning from consecutive frame data, which can be formulated as(

Dt, M = FJDT([It, It−1]),
Tt = Gmat(Dt, M),

)
(1)

where FJDT(·) represents the JDT tracker. It and It−1 represent the frames at time t and time
t − 1, respectively. Dt represents the detection results of frame It, which usually contains
the position and size of the bounding box. M represents the inter-frame motion vector of
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objects in frame It. The JDT method typically employs a simple matching method Gmat(·)
such as a greedy or Hungarian algorithm to perform data association.

JDT can capture potential temporal associations, reducing the reliance on detection quality
and enhancing its robustness in complex environments. However, in a real pig farm envi-
ronment, JDT still struggles with ID switching and mismatching due to shape deformations,
crowding, overlapping, and occlusion. Therefore, this paper proposes a motion-state-driven
hierarchical matching model for piglet tracking (MSHMTracker), building upon the foundation
of JDT. MSHMTracker takes a step further by incorporating the ReID model and introducing a
systematic and hierarchical matching strategy based on the decomposition of the object motion
process. The MSHMTracker can be formulated as follows:(

Dt, M, At = FJDT([It, It−1], ht−1),
Tt = Gstm(Gmat(Dt, M), At),

)
(2)

where ht−1 is the heatmap produced from FJDT(·). At represents the appearance feature of
objects, generated by the proposed ReID head. During matching, a score–time-weighted
appearance similarity matching method Gstm is introduced to enhance the tracking perfor-
mance for reappearing objects.

2.3.2. Overall Architecture of MSHMTracker for Piglet Tracking

As shown in Figure 1, MSHMTracker consists of three key modules: cross-temporal
feature extraction, spatio-temporal information acquisition, and score–time-driven hierar-
chical matching mechanism (STHM). MSHMTracker follows the JDT paradigm and is built
upon the anchor-free CenterNet, using Deep Layer Aggregation (DLA) as its backbone
network. MSHMTracker takes the current input It, the previous frame It−1, and the heatmap
ht−1 as inputs, and it outputs an object response heatmap, object center offsets, object size,
object tracking displacement, and the object ReID appearance feature. This information
is fed to the STHM matching module for target association, and the target trajectory is
established by the proposed hierarchical data association mechanism.

2.3.3. Cross-Temporal Feature Extraction

MSHMTracker takes the current frame It ∈ RW×H×C, the previous frame It−1 ∈ RW×H×C,
and a heatmap ht−1 rendered from the prior tracks’ center points {P0, P1, ···, Pn} as inputs.
Here, the pair of frames It and It−1 enables the network to estimate the changes in the
scene and potentially recover the occluded objects at time t that were visible at time t − 1.
The heatmap ht−1 of prior tracklets helps the network learn to repeat the predictions from
the prior frame and simplifies MSHMTracker to match objects across time. As shown in
Figure 1, we applied the encoder–decoder network of DLA-34 with deformable convolution
layers to the backbone of CReIDTrack for feature extraction.

2.3.4. Spatio-Temporal Information Acquisition

After feature extraction, these features were fed into a spatio-temporal information
acquisition module to obtain object spatial position, appearance, and temporal motion
information. Unlike the mainstream JDT-based algorithms, a ReID branch was introduced
to achieve trajectory recovery and alleviate the target loss and ID switch. Also, the ReID
results will be transferred to the score–time-driven hierarchical matching stage, which
will be described in Section 2.3.5. In general, the spatio-temporal information acquisition
process consists of three key branches: the detection head, motion head, and ReID head.
Each branch is realized by a task head that is composed of a 3 × 3 convolution layer, a Relu
layer, and a 1 × 1 convolution in sequence.
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The ReID branch is used to obtain the appearance features of piglet targets, which
can distinguish piglets and will be used to re-identify the target ID during the matching
stage to match the same object over time. As with the other branches, the ReID branch
consists of two convolutional layers and a Relu layer, with an output feature size of
Dim × W

4 × H
4 , where W and H are the length and width of the input image, respectively,

Dim = 64 is the number of output feature channels. Here, we extract an identity feature
vector at the object di center on the heatmap and map it to a class distribution vector
Q̂i

(m) = {q(m), m ∈ (1, M)}, where M is the number of categories, and q(m) is 0 or 1,
indicating the id flag of category m. This mode aims to obtain identity features without in-
creasing the computational overhead. The one-hot representation of the ground-truth label
is denoted as Qi(m). The loss function of ReID Lreid is defined as the cross-entropy loss:

Lreid =
1
N

N

∑
i=1

M

∑
m=1

Qi(m)log(q(m)) (3)

2.3.5. Score–Time-Driven Hierarchical Matching (STHM)

We observe that the JDT paradigm usually employs a simple greedy matching algo-
rithm based on the displacement of the target center across frames and ignores ID recovery
during matching. Under the condition of target deformations, crowding, overlap, and oc-
clusion, the typical matching method of JDT can lead to target loss and ID switching during
piglet tracking. Existing ReID methods employ appearance information to help restore
missing objects, but this does not work on occluded and deformable targets. To improve
the matching ability, especially for occluded and reappearing objects, an STHM module
was proposed that utilizes hierarchical matching based on the motion status of the object.

To systematically analyze the motion status of piglets, we performed a thorough
observation and analysis of our experimental scenario and the locomotion patterns of
piglets. We randomly selected two scenes and recorded the detection scores of occluded
and unobstructed objects over time. As shown in Figure 3, blue bounding boxes repre-
sent continuously visible piglets, and green ones denote piglets that become gradually
occluded and then reappear. It is not difficult to observe that when the object is partially
occluded, the detection score decreases significantly. When the object reappears, the de-
tection score increases noticeably. Usually, during the process of target tracking, occluded
objects frequently suffer from missed detection due to reduced confidence scores, whereas
reappearing objects tend to cause ID switches due to positional changes.

To address this problem, based on the pig movement status and detection score,
we classified objects into three categories: continuously visible, partially occluded, and
reappeared. Based on the characteristics of these three types of objects, a score–time-driven
hierarchical matching mechanism (STHM) was proposed. It first performs matching for
the first type of object by the inter-frame center distance, then associates the objects that
reappear without occlusion by the score–time-weighted appearance similarity, and finally
associates the objects that reappear with partial occlusion by a saving-and-iteration strategy.
The matching process of STHM is shown in Figure 4.

(1) First matching for continuously appearing objects

When piglets maintain continuous visibility in video sequences (whether fully visible
or partially occluded), reliable ID matching is achievable through the inter-frame center
point distance computation of piglets within the point-based JDT framework. Compared
with the IoU metric, the center point distance is not sensitive to the size variations caused
by occlusion, clustering, and deformation. During the matching process, the unmatched
detections tend to be newly appearing or reappearing targets, while the unmatched tracklets
may be caused by target loss.
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(2) Second matching for reappeared objects

In this section, score–time-weighted appearance similarity is proposed for reappearing
objects. The similarity computation method is illustrated in Figure 5. During tracking, any
unmatched tracklets are retained in their original time sequence while preserving their
confidence scores. Specifically, if the number of piglets currently matched is lower than the
total count, the unmatched detections and unmatched tracklets are associated through the
following steps:

Step 1: Calculating appearance similarity according to the following formula (see
formula in blue dashed box, Figure 5):

Appearance similarity = α× β× feature_id, (4)

where α = t − ni indicates the duration (in frames) that a trajectory has remained un-
matched. β presents the confidence score. feature_id is the reID feature obtained from the
ReID head.

 

Figure 3. Variation in detection score of occluded objects over time.
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Detection

First matching for 
continuously 

appearing objects

Second matching 
for  objects that 

reappear without 
occlusion

Third matching 
for objects that 
reappear with 
partial body 
occlusion

Obtain target 
detection, center 

point, and appearance 
features

Obtain the distance 
from the detections at 
the current frame to 
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frame

ID matching 
based on 
Greedy 

algorithm

Update tracks for matched detections

If matched detections are less than the total number 
of piglets, send the unmatched detections to the 

second matching, else matching is over 

Obtain high-score 
detections based on a 
high-score threshold

ID matching based on 
Hungarian algorithm 

using score-time 
weighted appearance 

similarity

Update tracks for matched detections

If detections with high scores, create new trajectory. 
Update tracks for matched detections

If matched detections are less than the total 
number of piglets, send the unmatched 
detections to the third matching, else 

matching is over 

If matched detections are less than the 
total number of piglets, divided into 
high-score detection boxes and low-

score detection boxes, else matching is 
over

If detections with low scores, save detections for 3 
frames and execute the First matching

Figure 4. The matching process of STHM.

Step 2: Performing ID matching by using a Hungarian matching algorithm based on
appearance similarity.

(3) Third matching for newly emerging or reappearing piglets with significantly
altered appearance

If the number of currently matched piglets is lower than the total count, the unmatched
detections, unDets2, will be divided into unDets2_high and unDets2_low based on a high-
score threshold Scoreh. unDets2_high is likely to be newly emerging piglets, creating a
new trajectory. unDets2_low tends to be reappearing objects with significantly altered
appearance. These detections will be temporarily reserved for 3 frames and proceed to
the first matching based on the distance metric. If no successful matches occur during this
period, these detection boxes are deleted from the tracking pipeline.

2.4. Behavioral Monitoring

For the process of dispersion/aggregation behavior recognition, a spatial range of
stress occurrence was defined, and it was specified as a circular domain centered at the
sow’s centroid, with a radius equal to the sow’s body length. Then the recognition and
statistical analysis of piglet aggregation/dispersion behaviors were conducted within the
specified spatial range. The recognition process is shown in Figure 6.



Vet. Sci. 2025, 12, 616 10 of 23

 

Figure 5. The matching process of score–time-weighted appearance similarity. The red dashed lines
indicate target matching across different time sequences, while the green dashed lines represent
target matching across different spatial locations. The black dashed line represents the time series.
Black arrows indicate methodological workflow. In the similarity matrix, color-coded cells indicate
varying degrees of similarity.

Figure 6. The process for recognizing the aggregation and dispersion behaviors of piglet groups.

Step 1: Acquire the i-th piglet’s centroid coordinates (xt
i , yt

i) and motion displacement(
dxt

i , dyt
i
)

at time t from MSHMTracker.
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Step 2: Calculate the Euclidean distance CDi between the sow’s centroid
(
xt

s, yt
s
)

and
the piglet’s centroid (xt

i , yt
i) of the i-th piglet at time t. Through this process, obtain the

center distance CDi =
{

CD1
i , CD2

i , ..., CDt
i

}
throughout the entire video clip. Denote the

distance difference as Dt
i = CDt

i − CDt−1
i : if Dt

i > 0, the piglet is approaching the sow;
otherwise, it is moving away.

Step 3: Calculate the piglet’s motion direction Opt
i and the piglet-towards-sow direc-

tion Ost
i at time t.

Denote the angle as Opst
i =

∣∣Opt
i − Ost

i
∣∣. When a piglet is moving towards

its mother sow, Opst
i is relatively small. Conversely, when a piglet is moving away

from its mother sow, Opst
i is bigger, as shown in Figure 7. We specify that if

|Ops t
i

∣∣∣< 75 degrees, the piglet exhibits movement towards the sow at time t, marking it

as ‘0’; if 105 degrees < Opst
i < 255 degrees, the piglet exhibits movement away from the

sow at time t, marking it as ‘1’; else it is marked as ‘2’. Based on this, obtain the motion
direction mark Ot

i of the i-th piglet.

Figure 7. Analysis of the angle Opst
i between a piglet’s movement direction Opt

i and the direction
towards the sow’s Ost

i under aggregation (a) and dispersion (b) behaviors. The red arrows represent
the piglet’s motion direction Opt

i . The green arrows represent the piglet-towards-sow direction Ost
i .

The black arrows represent the angle between Ost
i and Opt

i .

Step 4: Calculate the mean distance difference Davg
i and the most frequent movement

direction of piglets Omax_fre
i to assess the individual behavior of the i-th piglet in the video.

These two metrics have good robustness to the movement noise from crowding and sudden
movements. If Davg

i < 0 and Omax_fre
i = 0, the piglet is gathering towards the sow, marking

the piglet’s behavior Bi as 0; if Davg
i > 0 and Omax_fre

i = 1, the piglet is moving away from
the sow, marking the piglet’s behavior Bi as 1; otherwise, it is marked as 2. At this point,
we have obtained the individual behaviors of all the pigs and stored them in the set
Bi = {B1, B2, ..., BN}, where N is the number of piglets.

Step 5: Conduct a statistical analysis of pig group behavior from Bi. If the value of
Bi = 0 is more than N

2 , the pig group behavior is considered aggregation; if the value of
Bi = 1 is more than N

2 , the pig group behavior is considered dispersion; otherwise, it is
considered other behavior.

Step 6: Explore the social behavior by analyzing the aggregation and dispersion
behaviors of piglet groups under different states of sows’ posture changes and explore the
relationships and behavioral patterns between sows and piglets.
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2.5. Evaluation Metrics

MOTA (Multi-Object Tracking Accuracy), IDF1 (Identity F1 Score), ID Switch (IDs),
FP (False Positive), and FN (False Negative) were selected to evaluate the performance
of the piglet tracking model. The MOTA metric evaluates a tracker’s performance in
object detection and trajectory maintenance. IDF1 emphasizes the tracker’s ability to
maintain consistent target identities during re-identification scenarios. IDs counts the
identity switches during tracking. In addition, the tracking rate was used to evaluate our
method’s performance in each piglet tracking. The tracking rate represents the ratio of
frames in which the target was successfully tracked to the total frames with its ground-truth
presence. These metrics are widely recognized and commonly used in computer vision for
multi-object tracking.

2.6. Experimental Details

Three experiments were conducted: piglet tracking, aggregation and dispersion be-
havior recognition, and exploration of the relationship and behavioral patterns between
the sows’ posture changes and piglets’ group behaviors. During the training phase of the
piglet tracking model, the model was trained using the original Adam optimizer. The batch
size, learning rate, and epoch were set to 16, 0.0001, and 120, respectively. The default input
resolution for our pig images is 1920 × 1080. The images were resized to 960 × 544. We set
the high-score threshold Scoreh = 0.6 and the low score Scorel = 0.2. All experiments were
run using an Nvidia TITAN V GPU with the PyTorch 3.8 framework.

3. Results
3.1. The Results of Piglet Tracking
3.1.1. Comparison of Different Improvement Strategies Proposed in Our Tracking Model

MSHMTracker integrates a ReID module within the JDT framework and uses a hier-
archical data association strategy based on object motion status. Consequently, ablation
experiments on the hierarchical strategies were conducted. The results are presented in
Table 2. By using the FM (the first matching) and SM (the second matching), the method
exhibits significant improvements in IDF1 (+1.0%) and MOTA (+2.5%), and we owe this
improvement to the second matching’s ability to restore the target trajectory for the reap-
pearing targets. The third matching (TM) exhibits a minor improvement of 0.4% in IDF1
and a reduction of 0.3% in MOTA. This is mainly because the TM specifically handles
reappearing objects with partial occlusion that account for a small proportion of the dataset.

Table 2. Comparison of the proposed matching modules. FM, SM, and TM refer to the first, second,
and third matching. A checkmark (

√
) indicates the method was adopted in the experiment, while a

hyphen (-) means it was not employed. The arrow direction in the table shows a positive correlation
between the metric value and performance quality.

Method Evaluation Metrics

FM SM TM IDF1 ↑ MOTA ↑ IDs ↓
√

- - 91.5% 91.6% 0.1%√ √
- 92.5% 94.1% 0.2%√ √ √

92.9% 93.8% 0.1%

We also calculated the tracking rate for each piglet in all of the test videos. The results
are presented in Table 3. It can be seen that our module exhibits a good performance (with
a mean tracking rate of 0.98) for each piglet tracking. Only a small number of pigs have a
low tracking rate (e.g., 0.58, 0.69). These pigs were usually located in very dark areas or
had most of their bodies covered, which makes our model unable to recognize them.
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Table 3. The tracking rate of each piglet in all of our test data.

Video
ID

Piglet ID

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 0.991 0.981
2 0.97 1 0.99 1 1 1 1 1 - - - -
3 0.92 1 1 0.96 1 1 1 1 1 0.82 1 1
4 1 1 1 1 1 1 0.9812 0.975 - - - -
5 1 1 0.99 1 0.99 1 1 1 - - - -
6 0.94 1 0.94 1 1 0.961 1 0.99 1 - - -
7 1 0.94 0.99 1 1 0.99 0.99 0.99 0.99 1 1 0.99
8 1 1 1 1 1 1 1 1 0.99 0.97 1 0.96
9 1 0.99 0.98 1 0.76 1 1 1 1 0.911 0.98 0.981

10 1 1 1 1 1 0.99 1 1 - - - -
11 1 1 1 0.99 1 1 1 1 1 1 1 1
12 1 1 1 1 1 0.96 1 1 - - - -
13 1 1 1 1 1 1 1 1 1 1 0.95 1
14 0.99 1 1 1 1 1 1 0.99 - - - -
15 1 0.941 1 0.98 0.97 1 0.91 - - - - -
16 0.99 1 1 1 1 1 0.99 1 - - - -
17 1 1 1 1 1 1 1 1 1 1 1 1
18 1 0.99 1 1 1 0.95 1 0.85 1 1 0.99 0.89
19 1 0.99 1 1 1 1 1 1 0.94 - - -
20 1 1 1 0.99 1 0.94 1 0.98 - - - -
21 1 1 1 1 1 1 1 0.99 1 0.951 0.58 -
22 1 1 1 1 0.97 1 1 1 1 1 1 1
23 0.86 1 1 1 0.99 1 1 1 1 1 0.99 1
24 1 1 1 1 1 1 0.99 0.954 - - - -
25 0.99 1 1 1 1 1 1 0.902 1 1 1 0.77
26 1 1 1 1 1 1 1 1 - - - -
27 0.69 0.99 1 1 1 0.99 0.91 1 1 1 0.994 0.761
28 1 0.96 1 1 1 0.99 0.94 1 0.04 0.861 0.781 1
29 1 1 1 1 1 1 1 1 1 1 1 0.98
30 0.91 1 1 1 1 1 0.99 0.96 1 0.99 0 1

3.1.2. Comparison with Different Tracking Methods

We compared MSHMTracker with several mainstream methods, including Motdt,
FairMot, DeepSort, ByterTrack, Sort, and Centertrack. The results are presented in Table 4.
Note that all methods were trained on our training set, and the results were obtained from
our test set. Our method demonstrates superior performance among all compared methods.
Compared to the classic method Motdt, MSHMTracker achieves 37.8% (55.1% → 92.9%)
improvement in IDF1 and 9.1% (84.7% → 93.8%) improvement in MOTA. Compared to the
baseline method Centertrack, MSHMTracker achieves 2.1% (90.8% → 92.9%) improvement
in IDF1 and 2.3% (91.5% → 93.8%) improvement in MOTA. However, MSHMTracker has
no improvement in IDs compared to Centertrack; one of the possible reasons is that the
ID-switched targets are mostly reappearing targets and undergo severe deformation, which
poses a great challenge to the tracking algorithm.
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Table 4. Comparison among different tracking methods on our test dataset. The arrow direction in
the table shows a positive correlation between the metric value and performance quality.

Methods IDF1 ↑ MOTA ↑ IDs ↓ FP ↓ FN ↓
Motdt 55.1% 84.7% 4.7% 5.7% 4.9%
FairMot 61.7% 86.6% 2.3% 4.6% 6.6%
DeepSort 74.2% 80.1% 1.1% 10.4% 9.4%
ByterTrack 86.6% 79.1% 0.1% 11.0% 9.8%
Sort 87.6% 90.4% 0.4% 5.7% 3.6%
Centertrack 90.8% 91.5% 0.1% 6.0% 2.4%
MSHMTracker
(Ours) 92.9% 93.8% 0.1% 2.4% 3.4%

3.2. Study on Behavioral Patterns Between Lactating Sow and Piglets
3.2.1. The Results of Aggregation and Dispersion Behavior Recognition of Piglet Groups

To explore the social relationships and behavioral patterns between lactating sows and
piglets, we first identified the stress responses of piglets to changes in sow posture by using
the method described in Section 2.4. Here, the stress responses mainly include aggregation
and dispersion behaviors. In addition, we have also categorized another type of behavior.
The “other behaviors” category refers to instances where piglets showed little response to
a sow’s posture transition. This typically occurred when piglets were either sleeping or
spatially distant from the sow, indicating reduced sensitivity to the sow’s movements. In these
situations, the piglets show almost no response to stress changes in the posture of the sow.

The experiments were conducted on a total of 100 episodes containing 42 aggregation
events and 36 dispersion events. The recognition results are shown in Table 5. For the
41 episodes of aggregation, 37 were recognized correctly, resulting in an accuracy of 95.24%.
For the 36 videos of dispersion, only 26 were recognized, and 9 were misclassified as
other behaviors. The main reason is that piglets tend to briefly scatter and then re-cluster
during sow posture transitions. Generally, they rapidly disperse to maintain a safe distance
during the sow’s posture changes, followed by re-clustering to resume suckling proximity,
maintain body temperature, or gain a sense of security. Under these conditions, the recog-
nition algorithm tends to misclassify dispersion as other behaviors. This occurs because
dispersion/aggregation behaviors are modeled based on the mean distance difference and
the most frequent movement direction of piglets across the entire video. The later irregular
motions may weaken the characteristic features of dispersion.

Table 5. The results of behavior recognition on piglet group.

Recognition
Ground Truth

Aggregation Dispersion Others

Aggregation 37 1 0
Dispersion 0 26 0
Others 4 9 23

Accuracy/% 90.24 72.22 100.00

Total accuracy/% 87.49%

3.2.2. The Exploration of Piglet Group Behavior Responses to Sow Posture Changes

The association between piglets’ aggregation/dispersion behaviors and sow posture
changes is explored in this section. The mother sow’s posture changes were manually
classified into downward posture changes, upward posture changes, and rolling posture
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changes. The statistical results for the video count and 95% confidence interval (CI) of piglet
aggregation/dispersion behaviors during sow posture transitions are shown in Table 6.

Table 6. The statistical results for piglet aggregation/dispersion behavior under different sow
posture transitions.

Classification of Sow Posture Changes Aggregation
Videos (95% CI)

Dispersion
Videos (95% CI)

Others
Videos (95% CI)

Upward posture changes 14 [8, 20] 27 [20, 34] 11 [5, 17]
Downward posture changes 21 [16, 27] 6 [2, 10] 7 [2, 12]
Rolling posture changes 6 [3, 10] 3 [1, 6] 5 [2, 9]

As shown in Table 6, piglet aggregation/dispersion behaviors varied significantly un-
der different posture changes. Specifically, of 52 videos with upward posture changes
in sows, dispersion behavior was observed in 27 cases, and aggregation occurred in
14 instances. Of 34 videos of downward posture changes in sows, dispersion behavior was
observed in 21 cases, and aggregation occurred in 6 instances. Comparison of the statistical
results of aggregation and dispersion revealed a significant correlation between the piglet
aggregation/dispersion behavior and the sow’s posture changes. Statistical correlations
derived from 100 video samples are illustrated in Figure 8. The correlation values between
piglets’ aggregation and dispersion and sows’ upward and downward posture changes are
0.6 and 0.82. The results demonstrate a significant correlation between piglets’ movement
patterns (aggregation or dispersion) and sows’ posture changes (upwards or downwards).

Figure 8. The correlation between piglets’ movement patterns and sows’ posture changes.

4. Discussion
4.1. Performance Analysis of the Proposed Model for Piglet Tracking

Some representative examples are selected to demonstrate the performance of our
proposed piglet tracking model. We demonstrate its tracking results under various lighting
conditions, including normal-lighting, bright-lighting, and low-lighting environments,
compared with the ByteTrack, Sort, and CenterTrack methods. The visual results are
shown in Figure 9. The red arrows point to false negatives, while the green arrows point
to false positives. The number prefixed with “#” in the upper left corner of each image
represents the frame ID. The colored rectangles represent the bounding boxes of pigs,
with each color corresponding to a distinct individual. The number in the upper left
corner of the bounding box indicates the target ID. Note that these symbols maintain
consistent semantic representations across all subsequent figures. It can be observed that
MSHMTracker has good robustness to lighting conditions. ByterTrack and Sort are sensitive



Vet. Sci. 2025, 12, 616 16 of 23

to lighting variations and may falsely detect dark objects as targets, e.g., shadows or the
dark ears of the sow. This can be attributed to two aspects of MSHMTracker: (1) using the
heatmap as input enhances the judgment of object detection, reducing false positives, like
the targets highlighted with green arrows; (2) the proposed STHM integrates detection
scores and loss duration, enabling the aggregation of appearance features from the same
instance across different frames in the temporal domain, which enhanced the ID association
of targets with low scores caused by occlusion, crowding, and abnormal lighting.

 

Figure 9. Visualization of tracking results of ByterTrack, Sort, CenterTrack, and the proposed method
under normal-, bright-, and dim-lighting environments.

We also selected several crowded and occluded samples to demonstrate the detection
and tracking capabilities of our tracking model. The visualization results are shown in
Figure 10. The yellow arrows highlight the occluded piglets. As shown in the first row of
Figure 10, the piglet with ID12 was occluded by the piglet with ID6 in frame 61, while it
was re-identified in frame 108. Similarly, in the second row, the piglets with ID2 and ID8
were occluded by the sow in frame 30, while they were re-identified in frame 43. In the
third row, the piglet with ID12 was re-identified after it was occluded for seven frames. This
can be attributed to the score–time-driven hierarchical matching mechanism STHM, which
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establishes spatio-temporal and appearance similarity associations to maintain identity
continuity during occlusion transitions.

Figure 11 presents the tracking trajectories of ByterTrack, Sort, CenterTrack, and our
method to demonstrate the overall performance of video tracking. Different colored lines
represent the motion trajectories of different targets. Each target is described in the legend.
We present tracking trajectories from three video sequences, displayed in three columns,
and the number of pigs in the three video sequences is 12, 9, and 12, respectively. It can
be observed that the tracking trajectory with our method is the most similar to the real
trajectory. Most methods in Figure 11 tend to assign new IDs when previously lost targets
reappear during the tracking process, resulting in the total number of piglets being greater
than the real number. Qualitative analysis of video sequence 2 reveals that our method
still suffers from identity switches. The main reason is that significant posture variations
and shape deformation occur after occlusion events, which simultaneously degrade both
appearance-based re-identification and motion-based association performance.

Figure 10. Visualization of occlusion examples.
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Figure 11. Visualization of piglets’ trajectories obtained with different methods. The colored lines
present the trajectories of the pigs, with each color corresponding to a distinct individual.

4.2. Analysis and Exploration of Behavior Patterns Between Sow and Piglets

We selected a video clip of piglets gathering toward the sow and performed a visual
analysis of their movement direction and relative distance to the sow. As can be seen from
Figure 12, the distance between the sow and piglets gradually decreases over time, and
the piglets’ movement direction is oriented toward the sow. In Figure 12, each target is
described in the legend. These results demonstrate that the sow–piglet distance and the
piglet’s movement direction are closely related to the behavior of the piglet group and are
capable of distinguishing piglet aggregation/dispersion behaviors.
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（d）

#1 #5 #17 #30

（a）

（b） （c）

Figure 12. Visualization of piglet movement characteristics during the sow’s upward posture change.
(a) The movement trajectories of the piglets. The colored lines present the trajectories of the pigs,
with each color corresponding to a distinct individual. (b) The changes in the center points of the sow
and piglets over time. (c) The changes in the distance between the sow and piglets over time. (d) The
angular variation between the piglet movement direction and sow orientation over time. The angle
reflects the piglet’s movement direction relative to the sow.

From the statistical results of piglets’ stress behavior responses to the sow’s posture
changes, it is evident that the aggregation and dispersal behaviors of piglets are closely
associated with changes in the sow’s posture. Under the sow’s upward posture changes,
dispersion behavior predominated over aggregation behavior. This pattern likely occurs
because most upward posture transitions involve the sow standing up, typically followed
by locomotion. During this process, piglets tend to stay away from the sow to avoid
being crushed. However, piglets tend to aggregate during the sow’s downward posture
transitions. This phenomenon likely occurs because most downward postural transitions
involve sows nursing or resting. During this process, piglets tend to gather around sows
for breastfeeding, playing, or resting. Besides that, piglet aggregation/dispersion behaviors
have no significant correlation with the rolling posture changes in sows, where the specific
response of piglets usually depends on the intention of the mother sow. In addition, these
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behaviors are closely related to the maternal ability of sows, which can reflect their willing-
ness to breastfeed, the quality of maternal care, and even their stress state. For instance,
aggregation potentially facilitates offspring protection, reflecting a good maternal behavior,
whereas a high dispersion frequency is often associated with inferior maternal ability.

4.3. Limitations and Potential Applications
4.3.1. Limitations

While MSHMTracker has demonstrated robust performance in our experimental
conditions, several limitations should be noted:

(1) The current validation was conducted exclusively on pig data collected from a single farm,
limiting the generalizability of the findings. Although our multi-object tracking algorithm
has shown good generalization across varying illumination conditions, occlusions, and
high-density environments (see Section 4.1), its performance on other livestock species,
pen structures, and atypical behavioral states has not been validated yet.

(2) Our tracking module still faces the challenges of ID loss and ID switching when
piglets reappear but have undergone severe deformation or occlusion. Although
we have implemented a temporary retention-and-iteration mechanism to address
this issue, this approach is only effective when piglets regain their original shape
or become non-occluded within a very short time frame. Moreover, the mechanism
introduces non-negligible latency. Figure 13 presents several examples where our
tracking module failed. At the top of Figure 13, occlusion led to the tracking failure
of Target 2 in frame 262, followed by an ID switching event between Targets 2 and 3
in frame 267 due to severe shape deformation. Similarly, at the bottom of Figure 13,
under low-light conditions, the tracking system lost Target 3 in frame 230 and incurred
an identity mismatch in frame 245 due to a blurred appearance.

 

Figure 13. Examples of our tracking module’s failures.

(3) The piglet group behavior recognition, the mean distance difference, and the most
frequent movement direction of piglets were calculated to assess the individual
behavior of piglets in the overall video. These metrics are sensitive to noise. For
example, the unconscious wandering or body swaying of piglets may affect the
overall mean distance difference and the most frequent movement direction due to
the generated displacement and movement direction.
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4.3.2. Potential Applications

While this study has certain limitations, this work can provide information support
for selective breeding and pig health management. In addition, the proposed multi-object
tracking method and group behavior recognition approach provide novel insights for
individual tracking and group behavior analysis in intensive farming environments. This
work can be extended to several potential applications:

(1) The proposed tracking method can reduce ID losses and switches under crowding,
occlusion, and deformation conditions, which can be used for other animals’ tracking.

(2) Our system can be expanded to maternal behavior detection, such as nursing refusal, hostile
chasing, or aggression, by remodeling the trajectory information of individual movements.

(3) Individual-level tracking of individual stress behavior responses to sow posture
changes could reduce piglet crushing. In future work, we will focus on individual-
level monitoring to provide farmers with piglet-specific welfare indicators.

5. Conclusions
In this work, an enhanced JDT-based multi-object tracking method named MSHM-

Tracker was proposed, which focuses on the spatio-temporal and appearance similarity
association driven by motion status to maintain identity continuity during occlusion tran-
sitions. Extensive ablation experiments and comparison experiments were conducted on
data from a real pig farm. All results demonstrate the superiority of MSHMTracker in
terms of IDF1 (+2.1%) and MOTA (+2.3%). Further, the sow–piglet distance and the piglet’s
movement direction relative to the sow were calculated and used to identify the piglet
aggregation/dispersion behavior. The average accuracy of behavior recognition reached
87.49%. Finally, statistical analysis of the piglet aggregation/dispersion behavior under
the sow’s posture changes demonstrates that the movement patterns (aggregation and
dispersion) of piglets are closely related to the posture transition (upwards and downwards)
of sows. This result lays the foundation for research on social relationships and behavioral
patterns between lactating sows and piglets.
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