Immunologic Effects of a Novel Bovine Lactoferrin-Derived Peptide on the Gut and Clinical Perspectives
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of LF-MQL
2.3. Isolation of Peritoneal Macrophages
2.4. Cytotoxicity of LF-MQL on Mф
2.5. Pinocytic Activity of Mф
2.6. Measurement of IL-6 and IL-1β mRNA Expression by Mф
2.7. Animals and Experimental Design
2.8. Determination of SIgA, NF-кB, IL-6 and IL-10 mRNA Expression in the Small Intestine
2.9. Statistical Analysis
3. Results
3.1. Preparation and Characterization of LF-MQL
3.2. Evaluation of LF-MQL Cytotoxicity
3.3. Pinocytic Activity of Peritoneal Macrophages
3.4. mRNA Expression of IL-6 and IL-1β, by Macrophages After LF-MQL Treatment
3.5. Effects of LF-MQL on SIgA and NF-кB mRNA Expression
3.6. mRNA Expression of IL-6 and IL-10 by Intestinal Tissue After LF-MQL Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sorensen, M.; Sorensen, S. The proteins in whey. Comptes. Rendus. Trav. Lab. Carlsberg 1939, 23, 55–99. [Google Scholar]
- Groves, M.L. The isolation of a red protein from Milk2. J. Am. Chem. Soc. 1960, 82, 3345–3350. [Google Scholar] [CrossRef]
- Masson, P.; Heremans, J.; Schonne, E. Lactoferrin, an iron-binbing protein Ni neutrophilic leukocytes. J. Exp. Med. 1969, 130, 643–658. [Google Scholar] [CrossRef]
- Yamauchi, K.; Tomita, M.; Giehl, T.J.; Ellison, R.T., 3rd. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 1993, 61, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Vorland, L.H.; Ulvatne, H.; Andersen, J.; Haukland, H.; Rekdal, O.; Svendsen, J.S.; Gutteberg, T.J. Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scand. J. Infect. Dis. 1998, 30, 513–517. [Google Scholar] [CrossRef]
- Gruden, Š.; Poklar Ulrih, N. Diverse Mechanisms of Antimicrobial Activities of Lactoferrins, Lactoferricins, and Other Lactoferrin-Derived Peptides. Int. J. Mol. Sci. 2021, 22, 11264. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Han, F.; Xie, Y.; Wang, Y. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals 2011, 24, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi-Sakamoto, M.; Maeda, T.; Kimura, M.; Yusa, J.; Ito, H.; Tani, H.; Kato, Y.; Hirose, K. Bovine lactoferrin increases the poly(I:C)-induced antiviral response in vitro. Biochem. Cell Biol. 2022, 100, 338–348. [Google Scholar] [CrossRef]
- Wang, W.P.; Iigo, M.; Sato, J.; Sekine, K.; Adachi, I.; Tsuda, H. Activation of intestinal mucosal immunity in tumor-bearing mice by lactoferrin. Jpn. J. Cancer Res. 2000, 91, 1022–1027. [Google Scholar] [CrossRef]
- Kruzel, M.L.; Harari, Y.; Mailman, D.; Actor, J.K.; Zimecki, M. Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice. Clin. Exp. Immunol. 2002, 130, 25–31. [Google Scholar] [CrossRef]
- Legrand, D. Lactoferrin, a key molecule in immune and inflammatory processes. Biochem. Cell Biol. 2012, 90, 252–268. [Google Scholar] [CrossRef]
- Gordon, S. The macrophage. Bioessays 1995, 17, 977–986. [Google Scholar] [CrossRef]
- Puddu, P.; Valenti, P.; Gessani, S. Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie 2009, 91, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Van Snick, J.L.; Masson, P.L. The binding of human lactoferrin to mouse peritoneal cells. J. Exp. Med. 1976, 144, 1568–1580. [Google Scholar] [CrossRef]
- Perez-Lopez, A.; Behnsen, J.; Nuccio, S.P.; Raffatellu, M. Mucosal immunity to pathogenic intestinal bacteria. Nat. Rev. Immunol. 2016, 16, 135–148. [Google Scholar] [CrossRef]
- Kong, X.; Yang, M.; Guo, J.; Feng, Z. Effects of Bovine Lactoferrin on Rat Intestinal Epithelial Cells. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 645–651. [Google Scholar] [CrossRef]
- Cox, T.M.; Mazurier, J.; Spik, G.; Montreuil, J.; Peters, T.J. Iron binding proteins and influx of iron across the duodenal brush border. Evidence for specific lactotransferrin receptors in the human intestine. Biochim. Biophys. Acta 1979, 588, 120–128. [Google Scholar] [CrossRef] [PubMed]
- An, Y.X.; Li, H.T.; Wang, K.; Zhu, Y.Z.; Liu, Y.H.; Feng, Z.; Miao, L.G. Effects of Physical and Chemical Factors on Antibacterial Activity of Antimicrobial Peptide FLa-AA-FLc. Spec. Wild Econ. Anim. Plant Res. 2013, 35, 7–11. [Google Scholar] [CrossRef]
- Zhong, H.-P.; Liu, Y.-H.; Zhu, Y.-Z.; Li, H.-T.; Feng, Z.; Wang, K.; Miao, L.-G. Protective Role of MSL on the Pullorum Disease. Spec. Wild Econ. Anim. Plant Res. 2013, 35, 23–26. [Google Scholar]
- Feng, Z.; Liu, Y.; Xiao, J.; Zhu, Y.; Li, H.; Zhong, H.; Miao, L. Preventive Effects of MSL Antimicrobial Peptide on the Rat Infected with Salmonella Infection. Spec. Wild Econ. Anim. Plant Res. 2014, 36, 6–8. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Li, H.-T.; Zhu, Y.-Z.; Zhang, R.-X.; Xiao, J.-M.; Miao, L.-G. The Damage Effect of MSL Antimicrobial Peptide on the Membrane of the Pseudomonas aeruginosa and Staphylococcus aureus. Spec. Wild Econ. Anim. Plant Res. 2015, 37, 5–8. [Google Scholar] [CrossRef]
- Liu, Z.; Xing, J.; Huang, Y.; Bo, R.; Zheng, S.; Luo, L.; Niu, Y.; Zhang, Y.; Hu, Y.; Liu, J.; et al. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages. Int. J. Biol. Macromol. 2016, 82, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Xie, Z.; Huang, S.; Tai, Y.; Cai, Q.; Jiang, W.; Sun, J.; Yuan, Y. Immune-enhancing effects of polysaccharides extracted from Lilium lancifolium Thunb. Int. Immunopharmacol. 2017, 52, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Iigo, M.; Alexander, D.B.; Long, N.; Xu, J.; Fukamachi, K.; Futakuchi, M.; Takase, M.; Tsuda, H. Anticarcinogenesis pathways activated by bovine lactoferrin in the murine small intestine. Biochimie 2009, 91, 86–101. [Google Scholar] [CrossRef] [PubMed]
- Brock, J.H. Lactoferrin—50 years on. Biochem. Cell Biol. 2012, 90, 245–251. [Google Scholar] [CrossRef]
- Hirano, S.; Zhou, Q.; Furuyama, A.; Kanno, S. Differential Regulation of IL-1β and IL-6 Release in Murine Macrophages. Inflammation 2017, 40, 1933–1943. [Google Scholar] [CrossRef]
- Legrand, D.; Vigié, K.; Said, E.A.; Elass, E.; Masson, M.; Slomianny, M.C.; Carpentier, M.; Briand, J.P.; Mazurier, J.; Hovanessian, A.G. Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. Eur. J. Biochem. 2004, 271, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Sorimachi, K.; Akimoto, K.; Hattori, Y.; Ieiri, T.; Niwa, A. Activation of macrophages by lactoferrin: Secretion of TNF-alpha, IL-8 and NO. Biochem. Mol. Biol. Int. 1997, 43, 79–87. [Google Scholar] [CrossRef]
- Tanida, T.; Rao, F.; Hamada, T.; Ueta, E.; Osaki, T. Lactoferrin peptide increases the survival of Candida albicans-inoculated mice by upregulating neutrophil and macrophage functions, especially in combination with amphotericin B and granulocyte-macrophage colony-stimulating factor. Infect. Immun. 2001, 69, 3883–3890. [Google Scholar] [CrossRef]
- Zemankova, N.; Chlebova, K.; Matiasovic, J.; Prodelalova, J.; Gebauer, J.; Faldyna, M. Bovine lactoferrin free of lipopolysaccharide can induce a proinflammatory response of macrophages. BMC Vet. Res. 2016, 12, 251. [Google Scholar] [CrossRef]
- Pizarro, T.T.; Dinarello, C.A.; Cominelli, F. Editorial: Cytokines and Intestinal Mucosal Immunity. Front. Immunol. 2021, 12, 698693. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Yimin; Kohanawa, M.; Ozaki, M.; Haga, S.; Fujikawa, K.; Zhao, S.; Kuge, Y.; Tamaki, N. Mutual modulation between interleukin-10 and interleukin-6 induced by Rhodococcus aurantiacus infection in mice. Microbes Infect. 2008, 10, 1450–1458. [Google Scholar] [CrossRef] [PubMed]
- Ireland, S.J.; Monson, N.L.; Davis, L.S. Seeking balance: Potentiation and inhibition of multiple sclerosis autoimmune responses by IL-6 and IL-10. Cytokine 2015, 73, 236–244. [Google Scholar] [CrossRef]
- Kühn, R.; Löhler, J.; Rennick, D.; Rajewsky, K.; Müller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993, 75, 263–274. [Google Scholar] [CrossRef]
- Madsen, K.L.; Doyle, J.S.; Tavernini, M.M.; Jewell, L.D.; Rennie, R.P.; Fedorak, R.N. Antibiotic therapy attenuates colitis in interleukin 10 gene-deficient mice. Gastroenterology 2000, 118, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.X.; Wang, B.; Li, B. IL-10 and IL-22 in Mucosal Immunity: Driving Protection and Pathology. Front. Immunol. 2020, 11, 1315. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Kato, I. Gut microbiota, inflammation and colorectal cancer. Genes Dis. 2016, 3, 130–143. [Google Scholar] [CrossRef]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef]
- Rallis, K.S.; Corrigan, A.E.; Dadah, H.; Stanislovas, J.; Zamani, P.; Makker, S.; Szabados, B.; Sideris, M. IL-10 in cancer: An essential thermostatic regulator between homeostatic immunity and inflammation—A comprehensive review. Future Oncol. 2022, 18, 3349–3365. [Google Scholar] [CrossRef]
- Li, Y.; Jin, L.; Chen, T. The Effects of Secretory IgA in the Mucosal Immune System. Biomed. Res. Int. 2020, 2020, 2032057. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, B.; Tomela, K.; Olejnik-Schmidt, A.; Mackiewicz, A.; Schmidt, M. Secretory IgA in Intestinal Mucosal Secretions as an Adaptive Barrier against Microbial Cells. Int. J. Mol. Sci. 2020, 21, 9254. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shen, J. NF-κB Inducing Kinase Regulates Intestinal Immunity and Homeostasis. Front. Immunol. 2022, 13, 895636. [Google Scholar] [CrossRef]
- Wullaert, A. Role of NF-kappaB activation in intestinal immune homeostasis. Int. J. Med. Microbiol. 2010, 300, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, H.A.; Quinn, G.A.; Nasef, M.M.; Mishra, V.; Aljabali, A.A.A.; El-Tanani, M.; Serrano-Aroca, Á.; Webba Da Silva, M.; McCarron, P.A.; Tambuwala, M.M. Crocin Inhibits Angiogenesis and Metastasis in Colon Cancer via TNF-α/NF-kB/VEGF Pathways. Cells 2022, 11, 1502. [Google Scholar] [CrossRef]
- De Simone, V.; Franzè, E.; Ronchetti, G.; Colantoni, A.; Fantini, M.C.; Di Fusco, D.; Sica, G.S.; Sileri, P.; MacDonald, T.T.; Pallone, F.; et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 2015, 34, 3493–3503. [Google Scholar] [CrossRef]
- Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-kB in development and progression of human cancer. Virchows Arch. 2005, 446, 475–482. [Google Scholar] [CrossRef]
- Cutone, A.; Rosa, L.; Ianiro, G.; Lepanto, M.S.; Bonaccorsi di Patti, M.C.; Valenti, P.; Musci, G. Lactoferrin’s Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules 2020, 10, 456. [Google Scholar] [CrossRef]
Name | Primer | Sequence (5′-3′) of Primer | Size (bp) |
---|---|---|---|
IL-6 | IL-6-F | TCTGGTCTTCTGGAGTACCATAGC | |
IL-6-R | TGTGACTCCAGCTTATCTCTTGGT | 142 | |
IL-1β | IL-1β-F | TGCCACCTTTTGACAGTGATGA | |
IL-1-R | GTTGATGTGCTGCTGCGAGA | 140 | |
SIgA | SIgA-F | GGCATGTCAGGGACAAGAG | |
SIgA-R | GGAACAGTGGCGCATCATTC | 141 | |
NF-кB | NF-кB-F | ACAAAAACTGGGCCACTCTGG | |
NF-кB-R | TCCCGGAGTTCATCTCATAGTTGT | 117 | |
IL-10 | IL-10-F | AGGCGCTGTCATCGATTTCTCC | |
IL-10-R | GTAGACACCTTGGTCTTGGAGC | 96 |
Stage 1 | pre-denaturation | Rep: 1 | 95 °C | 30 s |
Stage 2 | cyclic reaction | Reps: 40 | 95 °C | 10 s |
60 °C | 30 s | |||
Stage 3 | melting curve | Rep: 1 | 95 °C | 15 s |
60 °C | 60 s | |||
95 °C | 15 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Yang, H.; Qi, X.; Zhao, Y.; Huang, T.; Miao, L. Immunologic Effects of a Novel Bovine Lactoferrin-Derived Peptide on the Gut and Clinical Perspectives. Vet. Sci. 2024, 11, 545. https://doi.org/10.3390/vetsci11110545
Cui H, Yang H, Qi X, Zhao Y, Huang T, Miao L. Immunologic Effects of a Novel Bovine Lactoferrin-Derived Peptide on the Gut and Clinical Perspectives. Veterinary Sciences. 2024; 11(11):545. https://doi.org/10.3390/vetsci11110545
Chicago/Turabian StyleCui, Haiyue, Huan Yang, Xiaoxi Qi, Yang Zhao, Tianle Huang, and Liguang Miao. 2024. "Immunologic Effects of a Novel Bovine Lactoferrin-Derived Peptide on the Gut and Clinical Perspectives" Veterinary Sciences 11, no. 11: 545. https://doi.org/10.3390/vetsci11110545
APA StyleCui, H., Yang, H., Qi, X., Zhao, Y., Huang, T., & Miao, L. (2024). Immunologic Effects of a Novel Bovine Lactoferrin-Derived Peptide on the Gut and Clinical Perspectives. Veterinary Sciences, 11(11), 545. https://doi.org/10.3390/vetsci11110545