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Simple Summary: Machine learning (ML) is subfield of artificial intelligence that enables computers
to learn from data and improve their performance without being explicitly programmed by a human.
ML has the potential to enhance veterinary medical education by improving learning, teaching,
and assessments. This primer introduces ML concepts to veterinary educators and administrators,
highlighting their similarities and differences with classical statistics. It then provides a step-by-step
example using simulated veterinary student data to address a specific question: which records in
the simulated veterinary student data will predict a student passing or failing a specific course. The
example demonstrates the use of the Python programming language to create a random forest ML
prediction model, a type of ML algorithm which is composed of many decision trees and each of these
trees is composed of nodes and leaves. During the creation of the random forest model, we emphasize
specific considerations such as managing student records which may have missing information. The
results show how decisions made by veterinary educators during ML model creation may impact
which type of records are shown to be most important. While this form of ML may prove to be
beneficial, transparency in creating ML models is crucial, and further research is needed to establish
best practices and guidelines for veterinary medical education ML projects.

Abstract: Machine learning (ML) offers potential opportunities to enhance the learning, teaching,
and assessments within veterinary medical education including but not limited to assisting with
admissions processes as well as student progress evaluations. The purpose of this primer is to
assist veterinary educators in appraising and potentially adopting these rapid upcoming advances in
data science and technology. In the first section, we introduce ML concepts and highlight similari-
ties/differences between ML and classical statistics. In the second section, we provide a step-by-step
worked example using simulated veterinary student data to answer a hypothesis-driven question.
Python syntax with explanations is provided within the text to create a random forest ML prediction
model, a model composed of decision trees with each decision tree being composed of nodes and
leaves. Within each step of the model creation, specific considerations such as how to manage
incomplete student records are highlighted when applying ML algorithms within the veterinary
education field. The results from the simulated data demonstrate how decisions by the veterinary
educator during ML model creation may impact the most important features contributing to the
model. These results highlight the need for the veterinary educator to be fully transparent during the
creation of ML models and future research is needed to establish guidelines for handling data not
missing at random in medical education, and preferred methods for model evaluation.

Keywords: machine learning; veterinary medical education; random forest; medical education;
artificial intelligence; Python; R; veterinary educators; educational data mining; learning analytics
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1. Introduction

In recent years, the field of health professions education has witnessed significant
advances with the integration of machine learning (ML). ML, a subfield of artificial intelli-
gence (AI), involves the development of algorithms and models that enable computers to
learn from data and make predictions or decisions without being explicitly programmed.
ML holds tremendous potential in creating adaptive learning platforms and intelligent
tutoring systems, and has shown promise in the assessment and analysis of large-scale
datasets including clinical records [1], diagnostic images [2], etc.

ML also offers the potential to enhance the learning, teaching, and assessments within
veterinary medical education and may be incorporated across all aspects of veterinary
medical education including admissions processes as well as student progress evaluations.
Accordingly, veterinary educators must adapt to these rapid upcoming advances in technol-
ogy and data science. As the field of veterinary medical education increasingly embraces
data-driven approaches and evidence-based practices, understanding the fundamental
differences and similarities between ML and classical statistics is paramount. Equally
important is the recognition of the benefits, risks, and ethical dilemmas that may arise when
utilizing machine learning within the veterinary education field. While a full discussion
of machine learning ethics is outside the scope of this manuscript, veterinary educators
should be aware of ongoing recommendations in the medical field to provide “machine
learning literacy” to medical students and medical school faculty [3].

The purpose of this primer is to (i) introduce veterinary educators and veterinary col-
lege administrators to ML concepts, (ii) highlight similarities/differences between ML and
classical statistics, and (iii) describe important considerations when using ML prediction
models to answer hypothesis driven veterinary education questions.

This manuscript is divided into two sections. The first section defines educational
data mining (EDM) and provides an overview of classical statistics commonly used in the
veterinary medical education field. Information is presented alongside basic ML concepts
and workflow to help illustrate the similarities and differences between these two main
methodology categories. The second section provides a step-by-step worked example using
simulated veterinary student data to answer a hypothesis driven question. Python syntax
with explanations is provided within the text to create a random forest ML prediction
model and within each step, specific considerations are highlighted when applying ML
algorithms within the veterinary education field. A brief discussion follows highlighting
additional considerations during the decision-making processes and interpretation of the
random forest models after the initial models are constructed.

1.1. Introduction to Educational Data Mining and Machine Learning

Educational data mining (EDM) uses educational and student data and can potentially
inform educational issues and learning environments [4,5]. Specifically, one of the key
applications of ML within EDM is to better understand student progression in a degree
program or course [5] and to develop prediction models to identify students at risk of
not completing their degree program or a specific course [5,6]. EDM methodologies can
be classified into three general methods, (1) classical statistical analysis (e.g., regression
analysis), (2) artificial intelligence (e.g., neural computing), and (3) machine learning
(e.g., random forests) [6]. This paper focuses on ML models and highlights uses of this
methodology, although it is important to note that methodologies should be selected based
upon the educational question that needs to be addressed.

The premise behind the use of ML is that it (1) enables computers to “learn” without
requiring an individual to directly program it to do so [7,8] and (2) most often to build
predictive models using big data or large, high-dimensional datasets [8]. A predictive
model is a model which predicts future events or outcomes based upon the patterns found
in the input data. The concept of big data can be viewed as large sized datasets (also known
as large volume); datasets which contain diverse data such as numeric, text, graphics, etc.
(also called wide variety); and allow quick generation of the data (also known as high
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velocity) [9]. For example, in a study assessing a medical school’s curricula, clustering ML
techniques were employed to visualize the relationship between the learning objectives of
courses and required competencies of medical students [10]. This type of question cannot be
answered using classical statistical analysis. Statistical analysis may refer to the descriptive
use, “to present and summarize data” [11] or the inferential use, “the process of drawing
conclusions which have a wider applicability than solely to the sample of observations or
measurements obtained”, and described in terms of probability or the likelihood of the
occurrence of an event [11].

1.2. Comparison of Classical Statistical Analysis and Machine Learning Models

To help understand the difference between ML models and classical statistical analysis,
assumptions, and the approach used to build such models or analyses, we discuss a recently
published example of logistic regression that was used to evaluate if veterinary school
admissions variable(s) would serve as predictors for students at risk of academic difficulty
in the professional program. The statistical model building was structured following three
main steps, (1) model specification, (2) parameter estimation, and (3) parameter probability
distribution derivation [12].

During model specification, the authors calculated zero-order correlations [13], which
means that the authors pre-determined potential correlations between two independent
variables and only selected variables with zero-order correlations to include when building
a single logistic regression model. The data included in the model adhered to specific
assumptions including (1) the relationship between the logit (also known as log-odds) of
the outcome and each of the included continuous independent variables were all linear,
(2) there were no highly influential outlier data points, (3) there were no highly correlated
independent variables (i.e., absence of multicollinearity), (4) the observations were inde-
pendent of each other, and (5) the sample size was sufficient which is typically considered
at least 10 observations of the least frequent outcome for each independent variable [14].
The parameter estimation was completed using a method such as maximum likelihood
estimation (MLE), and subsequently tested the significance of each regression parameter
based on the parameter distribution calculated previously [12].

While there are many different ML algorithms, the steps for constructing a model
are quite similar and involve (1) model specification and (2) parameter estimation steps
(i.e., training of the model). The approach to model specification and parameter estimation
is different for ML algorithms as the model specification typically is data-driven rather than
theory-driven [15]. This means that often, the parameter probability distribution derivation
is not specified before training the ML model which results in ML models having better
prediction power [12]. Furthermore, during the training of the ML model, many different
empirical models need to be built using the ML algorithm. These initial models are built
by the ML algorithm based on the relationships between the input and output variables
using training sets of data. While the algorithm completes this step, the veterinary educator
will need to make educated decisions when specifying the parameters for the final, best
performing ML model. For example, the educator will need to specify certain parameters
such as how many iterations should be performed for optimal performance of the trained
model, and in response, the outputs of the ML models created from the training dataset
will provide these answers. Furthermore, when constructing a ML model, it is important
to note that each ML algorithm will have different assumptions or have no assumptions
about the data. For example, with logistic regression models, five assumptions were listed
above whereas many commonly used ML models do not make any assumptions about the
data. Due to few to no assumptions about the data and because the training of the model
typically consists of multiple datasets or resampling of the same dataset to form multiple
datasets during parameter estimation within the ML model, highly correlated variables
and outliers may be able to be included in the ML model. The same cannot be included in
a logistic regression model [12,16,17] which could be disadvantageous for addressing some
veterinary education and curricula questions.
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In part 2 of this primer, we describe step by step, (i) how a training model is built,
(ii) the different parameters of these models can be specified based upon the training of
the model, and (iii) the specific assumptions for the algorithm selected in support of the
working example.

1.3. Overview of the Main Types of Machine Learning Algorithms and Random Forest Machine
Learning Models

Within ML, the algorithms employed are commonly categorized into four main cate-
gories, (1) supervised learning, (2) unsupervised learning, (3) semi-supervised learning,
and (4) reinforcement learning [18]. In supervised ML, the veterinary educator serves as
the “teacher” and the training data contain a range of predictors while the outcome is
known. Following the veterinary school admissions example presented earlier, if each
student was assigned a set of admissions variables and if it was known whether the stu-
dent had academic difficulties (defined as dismissed from the DVM program or put on
academic probation) or no academic difficulties, this could be used in the supervised
model. In unsupervised ML, the outcome is unknown and instead the algorithm focuses
on identifying relationships and groupings within the data [8]. In semi-supervised ML,
the outcome is known for some of the dataset [18]. As such, utilizing the same veterinary
school admissions example, the model would be trained only using student data with
the known outcomes of academic difficulties or no academic difficulties. Immediately
following, we would then iteratively apply the model to data with many unknown student
academic difficulty outcomes. Reinforcement learning refers to the process when the ma-
chine/computer learns about its environment and chooses the optimal behavior to gain the
greatest reward. The ML algorithm learns the behavior through trial and error, with some
behaviors receiving rewards while other behaviors not deserving to receive rewards [18].

Selection of the ML algorithm is typically based upon the data structure type and the
question being asked. In veterinary education, most data could be considered structured
or unstructured. Briefly defined, structured data are typically stored in tabular format
and follow a standard order such as student names, addresses, grades, etc. Unstructured
data have no pre-defined format or organization, such as videos, audio files, presentations,
and e-mails.

The example in this primer focuses on using structured data, which are simulated
student records. We opted to use random forest as the example ML algorithm to help
illustrate the steps for creating and evaluating a ML model. This model is one of the most
utilized supervised learning algorithms and offers numerous benefits such as handling
non-parametric data and being robust to outliers [6,19–23], both of which are commonly
observed in veterinary educational data.

A random forest model is composed of decision trees as shown in Figure 1. Each
decision tree is composed of nodes and leaves. The root node sits at the top of the decision
tree and is the first division where the dataset is divided based upon whether the data are
true or false. For example, if we asked whether a student practiced suture tying more than
15 h, if true, the data on the student move to the true decision node and if false, then they
are assigned to the false decision node. At each subsequent node, the same division occurs
with the student’s data being classified as “true” or “false” based upon that specific node’s
statement (e.g., the student has more than 250 h of working as a surgical technician). The
leaf node is the final output of the decision tree. Furthermore, Figure 1 shows how decision
trees are a type of bagging (also known as bootstrap aggregating) ML algorithm. Bagging
or bootstrapping is a method used to create smaller, random datasets out of the full dataset
with replacement to estimate a population parameter [24].
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terminal nodes are known as leaf nodes. After the creation of each decision tree, the results of each 
decision tree are averaged (bagging) and the final prediction is the ensemble model as it is based 
upon the results of all the generated decision trees. 
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hypothesis, an ensemble learning method will construct a set of hypotheses [25]—in our 
case, multiple decision trees. These hypotheses are assigned weights and voted upon by 
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Figure 1. The original dataset is subset into many smaller, random datasets by the process known as
bootstrap sampling. The number of bootstrap samples is equal to the number of decision trees that
are created. Each decisions tree consists of a root node. If the data are true to the statement within the
root node (e.g., a student’s Graduate Record Exam (GRE) > 300), all true data will go to the decision
node on the left whereas all false data will go to the decision node on the right. The terminal nodes
are known as leaf nodes. After the creation of each decision tree, the results of each decision tree are
averaged (bagging) and the final prediction is the ensemble model as it is based upon the results of
all the generated decision trees.

Random forest models are a type of ensemble learning algorithm because the model
contains many different decision trees which are then combined to produce the most
effective optimal prediction model (Figure 1). In other words, rather than using a single
hypothesis, an ensemble learning method will construct a set of hypotheses [25]—in our
case, multiple decision trees. These hypotheses are assigned weights and voted upon by
the ML algorithm which ultimately will result in providing the most important features
contributing to the random forest models [20,22,25]. By creating many trees with a subset
of the data, then combining the output of all trees, it helps to reduce over-fitting (i.e., the
algorithm model trains the data too well and fails to be predictive for the testing data),
reduces variance, and ultimately improves the model’s performance [20,22,25].

1.4. Programming Languages and Tools

When constructing ML models, there are several different programming languages,
tools, and software that can be used, each with different strengths. Here, we recommend
veterinary educators use Anaconda Distribution, an open-source repository and toolkit.
Anaconda is a platform that provides Python and R programming languages as well as a
range of packages including a package management system [26]. An R or Python package is
a collection of functions, compiled codes, sample data, and documentation in a well-defined
format and is used to complete specific tasks or analysis. Within Anaconda, a designated
environment is created specifically for a research study to avoid executing an installation or
update that would disrupt packages or other frameworks such as integrated development
environments (IDEs) (Figure 2). IDEs such as Spyder combine common developer tools
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with a single graphical user interface (GUI) and as such, not every action requires a line
of code. Another way to think about Anaconda is to equate it to a mansion and a toolbox.
Anaconda provides rooms where you can dedicate that room to a specific type of work
or theme. Many times, the packages (i.e., the tools) will interact with each other or cause
problems, which is why it is important to dedicate a specific “room” in the mansion for
each project you are working on, as then, once your model is complete, it will always run
within that room without issues. If you update or install a new package for a different
project, it will not affect the other projects. This highlights that it is essential to report the
version of the IDE, the programming language and the package version, used in creation of
the ML models as not all versions may be compatible [27].
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Figure 2. A screenshot showing the IDE Spyder with a few of the available panes or windows
available. The Editor panel is outlined in a blue dashed line wherein the educator can create, open,
and modify files with features such as autocompletion and syntax highlighting. The IPython console
is outlined in an orange dashed line wherein the code is executed (Python code is run). The Plots
window is outlined in a solid pink line and displays a beeswarm plot. Spyder is the IDE preferably
utilized by the authors for Python projects and the IDE RStudio for R projects.

2. Simulation of Dataset and Creation of a Random Forest Machine Learning Model

In this second part of the primer, we provide a working example of creating a ML
model using simulated data and Python programming language to answer a hypothesis
driven research question. Figure 3 shows a visual workflow of the working example. Within
each step of the process, important considerations for the veterinary educator community
will be discussed and it will be illustrated how data quality and decisions by the educator
may impact the ML model.

2.1. Defining the Project Goals

The first step requires defining the problem or hypothesis and determining the data
needed to answer the question. Here, we explore two project goals. The first project goal
is to demonstrate a ML Python pipeline for creating a random forest classification model
from simulated data. The purpose of this ML model is to identify the most important
predictors utilizing a simulated dataset that contributes to students failing a course during
the pre-clinical years of veterinary school training. Our hypothesis suggests that students’
GRE scores are the most important predictor for determining if a student will pass or fail
a course in the Doctor of Veterinary Medicine (DVM) program. Our second project goal
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delineates specific considerations for building ML models which incorporate veterinary
student data.
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2.2. Data Collection and Storage Plan

After defining the project goals, it is critical to design a data collection and storage
plan. The quality and performance of the ML models depends on the quality of data that
are collected [28]. A good data collection strategy and well-designed storage medium for
the dataset is essential for appropriate analyses and interpretation (i.e., database or Excel
spreadsheets). For this to occur, the veterinary educator should have a basic understanding
about the model being used. This requires educators to determine if the raw data can be
used in the model or if different transformation processes will need to be used first. For
example, a random forest model cannot handle non-numeric data; therefore, if a student’s
demographic data are collected, they will need to be transformed (transformations are
discussed in Section 2.4). When collecting the demographic data, it is important to decide
if it should be collected by multiple choice options or free-text entry. Multiple choice may
limit responses if a student does not identify with the options, but if free-text entry is used,
then the veterinary educator will need to ensure that all answers entered are identical in
format and spelling (i.e., the programming languages will view “black” and “Black” as
two different ethnicities) and have pre-defined groups (e.g., Will Hispanic and Latinx be
grouped together or separately?). Additionally, some random forest models cannot handle
missing data, and so the veterinary educator should establish a plan for how to deal with
an incomplete student record. By addressing these considerations, we can prevent a variety
of problems that arise from poorly defined or poorly collected datasets such as ensuring
the data collected are adequate to answer the hypothesis or question [12,29].

2.2.1. Simulated Data Collection and Storage

The dataset format is based upon OutReach IQ [30], an internal database of students
enrolled at Ross University School of Veterinary Medicine (RUSVM) where all data can
only be viewed by faculty with approved Institutional Review Board (IRB) protocols or
IRB exemptions to maintain student confidentiality. For this example, three simulated
datasets were created, and each contains 400 simulated student records. To keep the
analysis simple, the number of variables in the simulated datasets are limited to: Full name,
gender, ethnicity/race, age, pre-admission GPA, and GRE (Table 1). All three datasets are
imbalanced, meaning those passing and failing a course are not equal. All three datasets
have 10% of the students failing a course and 90% not failing a course. All three datasets
have identical values except for the GRE value as this will represent commonly missing
GRE values, a result of not being an admission requirement for many veterinary schools.
In the dataset named “BiasedGRE1”, we removed the lowest GRE from 14 of the students
who experienced failure and from 71 of the students who did not experience failure. In the
dataset named “BiasedGRE2”, we randomly removed GRE scores from 200 student records.
The simulated datasets and all code for the models created in this manuscript are available
at https://github.com/RUSVMCenter4/Veterinary_Education_ML_Tutorial (accessed on
14 May 2023) [31].

2.2.2. Importing the Dataset

The first step to creating a ML model is to load the required Python packages and the
dataset(s). We used Python version 3.11.1 within Spyder version 5.1.5 for all coding. To
load our datasets, we used a package called pandas [32], version 1.4.3. Any characters or
text after a pound sign (#) are not read by Python and this provides a way to insert notes
into the Python code.

#Import required packages:
Import pandas as pd
#Import the dataset using the function pd.read_excel().
Dataset = pd.read_excel(r’C:\location_of_data\name_of_excell_datafile.xlsx’,
sheet_name = ‘name’)
#To view the first 10 rows of the dataset with the column names:
Dataset.head(10)

https://github.com/RUSVMCenter4/Veterinary_Education_ML_Tutorial
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Table 1. All simulated variables for the student records are shown with the range of values or
potential options. As an introductory primer for educators, some variables displayed in the table
were limited to reduce the complexity of the analysis. The fail variable is the target variable with 0
describing a student who did not fail the veterinary school course (0 = no) and 1 describing a student
who did fail the veterinary school course (1 = yes).

Variable Name Range of Values Type of Data

Full Name 400 randomly generated
female and male names Categorical

Gender Male or Female Categorical

Race/Ethnicity Asian, Black, Latinx, Not
Provided, White Categorical

Age 20–40 years Numeric

Pre-Vet School GPA 3.00–4.00 Numeric

GRE 260–330 Numeric

Fail 0–1 Numeric

2.3. Exploratory Data Analysis

Once the dataset is loaded, we recommend that data visualization and descriptive
statistics are completed prior to moving to the next step. This helps the veterinary educator
to understand if the data contain outliers, missing data, the distribution of variables, and
much more. We are limited in further expanding upon this critical step considering that we
randomly generated our small dataset and selected the distribution of the values.

2.4. Data Preprocessing

Data preprocessing describes the process of when the raw data are prepared for
training and testing the ML model. As a first step in protecting student confidentiality, we
recommend that student records be assigned a randomized ID, and the list of names along
with the assigned random IDs be stored safely per IRB standards at your institution. This
can be easily done in Python using a for loop with a random number generator function
from the random module which is built-in to Python. A for loop in Python is a line of
code which repeatedly uses, or iterates, a function, and in this case, we repeat the function
400 times. This is equal to the number of student records in our dataset. All python code
for this step is available at https://github.com/RUSVMCenter4/Veterinary_Education_
ML_Tutorial (accessed on 14 May 2023) and shows how to generate random student IDs
and then add the IDs as a column to the dataset [31]. This step is not included here because
we simulated the entire datasets. Additionally, in this manuscript, we do not address all
steps and considerations when making a dataset completely anonymous, and therefore we
recommend an expert be consulted if outcomes of the ML project are made public.

We use the random forest algorithm provided in the Python package scikit-learn [33].
To begin to prepare the datasets for this ML algorithm, categorical data such as gender
and ethnicity/race must be converted to numerical values. This is accomplished through
one-hot encoding or dummy encoding. One-hot encoding ensures a rank is not assigned to
categorical variables while the variable is converted into numerical data. One-hot encoding
adds a new binary variable for each unique categorical value and the original encoded
variable is removed (Figure 4). Dummy encoding uses binary variables and creates the
number of columns equal to the number of categories minus 1 (Figure 4).

https://github.com/RUSVMCenter4/Veterinary_Education_ML_Tutorial
https://github.com/RUSVMCenter4/Veterinary_Education_ML_Tutorial
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Figure 4. The race/ethnicity raw data is composed of categorical variables which are converted to
numerical values using one-hot encoding. There are now five columns for race with one-hot encoding
as one-hot encoding adds a new binary column for each category. Students who identify as Asian
will have a 1 in the Asian column and a 0 in all other columns.

#To one-hot encode for race column, use the get_dummies() from the pandas package
#We assign this transformed data to a new variable called dataset_OneHot
#We also need the argument drop_first to not be true in order to perform one-hot
#encoding.
Dataset_OneHot = pd.get_dummies(dataset, columns = [“Race”], drop_first = False)
dataset_OneHot.head() #To view the first several rows and column names
It is important to note that Python functions have different arguments or parameters,

and when these arguments have an assigned value, they are used when the function is
performed. To perform dummy encoding (Figure 4, we will need to set the argument
drop_first to true.

#To dummy encode the gender column
dataset_OneHot = pd.get_dummies(dataset_OneHot, columns = [“Gender”],
drop_first = True)
print(dataset_OneHot.head()) #To view the first several rows and column names
For continuous variables such as age, pre-admission GPA, and GRE, scaling the

variables, commonly known as feature scaling, or standardizing the variables may need
to occur. When employing feature scaling techniques, our goal is to make sure that all
the variables are on the same scale or nearly the same scale. This will not change the
distribution of the data. This means this step will not transform non-parametric data into
normally distributed data. For example, within our dataset, age ranges from 20 to 40
whereas GPA ranges from 3.00 to 4.00 and GRE ranges from 260 to 330. If we were using a
ML model that was unsupervised and cluster based upon relationships and groupings [8],
leaving these values unscaled could impact the results due to many models being based
upon Euclidean Distance, or the distance between two data points.

We kept age as a continuous variable as random forests are not a distance-based
classifier, robust to outliers, and do not need parametric data [23]. We also kept pre-
admission GPA and GRE scores continuous because random forests handle high non-
linearity between independent variables [34]. Non-linear parameters typically do not affect
the performance of the decision tree models because the splitting of the decision nodes is
based upon absolute values, “yes” or “no” (Figure 4), and the branches are not based upon
a numerical value of the feature [20,21,23,34,35].

GRE is a continuous variable, with two of the simulated datasets containing missing
GRE scores. It is important to determine if the data are missing not at random (MNAR)
due to a specific reason (i.e., a student does poorly on the GRE and so does not report
the result), or if the missing data are missing at random (MAR) or missing completely at
random (MCAR). MAR data are missing and while randomly missing, can be explained by
another observed variable (i.e., a dataset contains information on medical absences and
course exam grades, a student with a missing course exam grade could be explained if they
had a medical absence). MCAR data refer to missing data that are randomly distributed
across the variable and is not related to the other variables (i.e., if the dataset contained a
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few student records without GPA scores due to human error inputting the scores into the
student record database). GRE was chosen as an example variable for missing data because
the GRE is recommended or no longer required for many veterinary professional programs
as there are concerns the GRE may hinder diversity and inclusion efforts and may be a
burden for low-income students [36,37]. How the veterinary educator decides to handle
these data will impact the results of the ML model. This will be shown when reviewing the
results of the ML models created using the three datasets.

Unfortunately, currently there are no established methods for handling MNAR data in
medical education, and therefore there are no guidelines on imputation methods, or the
action of replacing missing values in the dataset with an alternative or predicted value. Our
code below demonstrates loading 1 of the 2 biased GRE datasets and use listwise deletion
(deletion of the student recording containing NAs) and substitution (the mean or median
value for the column) [38,39], which are two common methods reported in education and
often are the default methods in R and Python packages.

#Import the first dataset with missing GRE values using the function pd.read_excel().
Biased_dataset = pd.read_excel(r’C:\location_of_data/name_of_excell_datafile.xlsx’,
sheet_name = ‘name’)
#Code to drop delete each student record that does not have a GRE score reported
#The “empty” GRE value will be noted as an “na” in Python, therefore we use the
#dropna()
#The argument axis = 0 means the row with the “na” will be dropped.
#The argument how = ’any’ means that any “na” will result in the row being deleted
#The argument inplace = True means that a new dataframe will not be created
biased_dataset_OneHot.dropna(axis = 0, how = ‘any’, inplace = True)
#Code to replace each missing GRE score with the mean of the GRE value
biased_dataset_OneHot.fillna((biased_dataset_OneHot[‘GRE’].mean()), inplace = True)
The full code to create the base random forest models using the two missing GRE

datasets is available on Github [31]. These datasets with missing GRE were created to
illustrate NMAR and MCAR data and how commonly accepted methods for handling
these data types in the literature have the potential to affect the model; therefore, only base
random forest models were created and no hyperparameter search was conducted.

2.5. Data Feature Extraction

Feature extraction, also commonly referred to as feature selection or dimension reduc-
tion, refers to when different techniques are used such as principal component analysis
(PCA) or stepwise regression to reduce the number of variables into the model [40]. Our
original datasets contained 5 variables after removing the student names. After one-hot
encoding, our datasets expanded to 9 variables. These datasets are quite small and do not
need to undergo dimension reduction or reducing the number of variables (i.e., feature
selection). However, veterinary educators need to be aware that having datasets with high
dimensionality will require higher computational power to run the ML algorithm [41].
More importantly, some ML algorithms may have lower predictive performance and
have the potential to fail to provide meaningful results when there are a large number of
variables [41,42].

2.6. Model Creation and Performance Evaluation

ML algorithms learn from the input dataset which is typically divided into training and
testing datasets. The training dataset is used to train the ML model followed by evaluating
the model with the testing dataset. Splitting the dataset is commonly done to help reduce
the risk of over-fitting. If over-fitting occurs, this means the model only performs well on
the data used to train it, and the model’s performance is reduced when it is applied on
new data [43]. We recommend that multiple models be trained with different parameters
and compared to find the best candidate model for the identified educational research
question. This is commonly done by what is termed as a ML pipeline. The parameters
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within the pipeline can be adjusted in any of the steps, (1) data pre-processing, (2) feature
extraction, (3) model training, and (4) model evaluation. Model evaluation is completed
by comparing a variety of different metrics which may include accuracy, F-scores, receiver
operating characteristic (ROC) curves, and others which we will expand upon more in the
experimental section.

2.6.1. Generation of Base Random Forest Model

The first step of creating a ML model, including random forests, is to take the dataset
and separate the variables into one dataframe (a table with rows and columns) and the
target column in a second dataframe. The target column is the outcome we wish to predict.
Within our example, we are creating a classification model, so the outcome is a binary
outcome, either a “Pass” or a “Fail. In the “Fail” target column, a 0 indicates a student did
not fail a course and 1 indicates a student failed a course.

#X is our variable dataframe and y is our target dataframe
#create dataframe without target, [rows, columns], the : indicates to select all rows
X = dataset_OneHot.loc[: , dataset_OneHot.columns != ‘Fail’]
y = dataset_OneHot[‘Fail’] #target variable for prediction
We are most interested in determining what variables lead to the outcome or target

column. Considering that the simulated dataset is composed of a majority and minority
class (target variable does not have an equal number of 0 s and 1 s), the dataset has an
imbalance bias, one of the three main types of recognized biases in ML [44]. The two main
approaches to deal with imbalanced target variables is to use an oversampling technique
which creates additional minority classes (student records with a course failure) or under-
sampling techniques to randomly delete majority classes (student records without a course
failure). We selected to turn our dataset into a balanced dataset by using an oversampling
method called synthetic minority oversampling technique (SMOTE) which is a common
method for dealing with models predicting student success in higher education [45–47].
After performing SMOTE, our dataset will result in students who failed a course being
equal to the number of students who did not fail a course.

#Import required python function of SMOTE from Python package imbalanced-learn
#version 0.10.1from imblearn.over_sampling import SMOTE,
#Oversampling to allow 0 and 1 target to be equal
#Assigning a value to the random state argument ensures that anyone can generate
#the same set of random numbers again
X_resampled, y_resampled = SMOTE(random_state = 23).fit_resample(X, y)
With a balanced target variable, we are now ready to split our dataset into training

data and testing data. Splitting the dataset is commonly done to help reduce the risk of
over-fitting. As our code shows below, we used train_test_split() from scikit learn Python
package (version 1.1.1) to split our dataset. We also provide code showing the data structure
as the length dataframes containing the variables must be the same length as its counterpart
containing the target, otherwise the random forest model will not be constructed.

#Import required functions:
from sklearn.model_selection import train_test_split
#Use the balanced data to create testing and training datasets with 70% of the data
#being training and 30% of the data being testing.
X_trainSMOTE, X_testSMOTE, y_trainSMOTE, y_testSMOTE =
train_test_split(X_resampled, y_resampled, stratify = y_resampled, test_size = 0.3,
random_state = 50)
#Check sizes of arrays to make sure it they match each other
print(‘Training Variables Shape:’, X_trainSMOTE.shape)
print(‘Training Target Shape:’, y_trainSMOTE.shape)
print(‘Testing Variables Shape:’, X_testSMOTE.shape)
print(‘Testing Target Shape:’, y_testSMOTE.shape)
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Once we have our training and testing dataset, we are ready to construct the base
random forest model with the arguments, or parameters, being left at their default values.
The model must first be built and then trained using the training data.

#Import required functions:
from sklearn.ensemble import RandomForestClassifier
#Build base model without any changes to default settings
forest_base = RandomForestClassifier(random_state = 23)
#Train the model via fit()
forest_base.fit(X_trainSMOTE, y_trainSMOTE) #using training data

2.6.2. Evaluation of the Base Random Forest Model

Once the base ML model is created, then we evaluate how well the model performs
when it is shown new data, the test data. ML model performance can be assessed using
different techniques which are discussed individually below. Each of the model perfor-
mance methods uses a range from zero to one, with one indicating perfect performance
and zero indicating all predictions were wrong. We recommend that cross-validation (CV)
be included in each of the performance metric calculations.

CV is used to help detect overfitting while evaluating the performance of the ML
model on new data. We used k-fold cross validation, which is one of the most common
cross validation techniques [48]. In k-fold cross validation, the dataset is divided into folds
(consider these as subset datasets) based upon the assigned k-value. One fold is saved as
a validation dataset and the other folds are used to train the model. As Figure 5 shows,
this process is repeated multiple times with each repeat holding out a different fold for
validation of the model. The results from each validation set are averaged to produce the
final performance value. Typical k-values are 3, 5, and 10, but there are no established rules
guiding the selection of these values.
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Figure 5. An example of a k-fold cross validation with k = 5. Five iterations of the training dataset
are evenly divided into five folds, four of which are used for training and the last one for testing the
model. This is repeated five times. The final validation would take place using the testing dataset
(not shown).

To prepare our model for the performance metrics, we must define the k-value for
the CV and input our testing dataset into the trained random forest model. The trained
random forest ML model will predict the target category or outcome of whether a student
failed a course or not based upon what it learned from the training dataset.

#Make predictions using testing data set
y_predictions = forest_base.predict(X_testSMOTE)
y_trueSMOTE = y_testSMOTE #Rename the test target dataframe
#Import required function
from sklearn.model_selection import KFold
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#Defining the cross-validation to be able to compute the performance metrics using
#the k-fold CV
kf = KFold(shuffle = True, n_splits = 5)
Overall accuracy, recall (i.e., sensitivity or true positive rate), specificity (i.e., true

negative rate), precision, F-score (i.e., F1-score), and receiver operating characteristic (ROC)
curves are performance metrics which are computed using the true negative (TN), false
negative (FN), false positive (FP), and true positive (TP) values. A confusion matrix
summarizes the results of the random forest classification algorithm and defines these
values as shown in Table 2.

Table 2. A confusion matrix defines the true negative (TN), false negative (FN), false positive (FP),
and true positive (TP) values used in the calculation of the performance metrics. As shown in the
chart, a TN outcome is when the model correctly predicts the student did not fail the course; a TP
outcome is when the model correctly predicts the student failed a course; a FN outcome is when the
model incorrectly predicts the student did not fail, but in reality the student did fail the course; and a
FP outcome is when the model incorrectly predicts a student failed a course, but in reality the student
did not fail the course.

Actual Negative
Class: 0, Student Who Did

Not Fail

Actual Positive
Class: 1, Student Who Did

Fail

Predicted negative
Class: 0, student who did

not fail
True negative (TN) False negative (FN)

Predicted positive
Class: 1, student who did fail False positive (FP) True positive (TP)

The overall accuracy is determined by the proportion of the total number of student
predictions that were correct over all type of predictions made, and can be calculated using
Equation (1):

Overall accuracy =
(TN + TP)

(TP + TN + FP + FN)
(1)

#Import required function
from sklearn.model_selection import cross_val_score
#To calculate the accuracy of the model using k-fold cross validation
score_accuracy_mean = cross_val_score(forest_base, X_testSMOTE, y_trueSMOTE,
cv = kf, scoring = ‘accuracy’).mean()
print(score_accuracy_mean) #View the mean of the CV validation results for
#accuracy of the model.
The true positive rate (TPR), also known as sensitivity or recall, is defined as the

proportion of students who failed a course which were correctly classified as having failed
a course and was calculated using Equation (2):

recall or sensitivity or TPR =
TP

(TP + FN)
(2)

#To calculate the recall of the model using k-fold cross validation
recall = cross_val_score(best_grid_model, X_testSMOTE, y_testSMOTE, cv = kf,
scoring = ‘recall’).mean()
print(recall) #View the mean of the CV validation results for recall of the model



Vet. Sci. 2023, 10, 537 15 of 25

The true negative rate (TNR), also known as specificity, is defined as the proportion of
students who did not fail a course which were classified correctly as not failing and was
calculated using Equation (3):

speci f icity or TNR =
TN

(TN + FP)
(3)

There is no specificity or TNR option in the cross_val_score() and so we must define
specificity using the make_scorer() function.

#Import required function
from sklearn.metrics import make_scorer
#Define specificity
scoring = make_scorer(recall_score, pos_label = 0)
#Use our defined specificity as the type of score that is calculated
score_specificity_mean = cross_val_score(forest_base, X_testSMOTE, y_trueSMOTE,
cv = kf, scoring = scoring).mean()
cross_val_score(forest_base, X_testSMOTE, y_trueSMOTE, cv = kf, scoring = scoring)
print(score_specificity_mean) #View the mean of the CV validation results for
#specificity of the model
Precision is the number of correct predictions a student failure out of all students that

were classified as experiencing a failure and was calculated using Equation (4):

Precision =
TP

(TP + FP)
(4)

# To calculate the precision of the model using k-fold cross validation
score_precision_mean = cross_val_score(forest_base, X_testSMOTE, y_trueSMOTE,
cv = kf, scoring = ‘precision’).mean()
print(score_precision_mean) #View the mean of the CV validation results for
#precision of the model
The F-score (F1) is a weighted harmonic average of precision and recall and is calculated

using Equation (5):

F-score or F1 = 2× (precision× recall)
(precision + recall)

(5)

#To calculate the F-score of the model using k-fold cross validation
score_f1_mean = cross_val_score(forest_base, X_testSMOTE, y_trueSMOTE, cv = kf,
scoring = ‘f1’).mean()
print(score_f1_mean) #View the mean of the CV validation results for precision of
#the model
Receiver operating characteristic (ROC) curves are created by plotting the sensitivity

versus the specificity at different cut points for binary classification models [49]. The area
under the ROC curve (AUC) is calculated from the ROC curves and is the last validation
method we will use to assess each model. This single numerical score is considered a
superior method compared to accuracy when evaluating the performance of prediction
models [50].

#To calculate the ROC curve AUC of the model using k-fold cross validation
#score_auc_mean = cross_val_score(forest_base, X_testSMOTE, y_trueSMOTE, cv =
kf, scoring = ‘roc_auc’).mean()
print(score_auc_mean) ) #View the mean of the CV validation results for ROC curve
#AUC of the model

2.6.3. Tuning of the Random Forest Model

Now that we know our model results, we can try to use data-driven approaches
to improve the performance of our model. This means we will try to tune our model’s
hyperparameters to improve the performance of the model. First, we will define a list
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of hyperparameters, or the parameters that are specific before training the model. This
will help determine the best parameters that are learned during the training process of
the model. We will demonstrate two common data-driven hyperparameter approaches,
(1) Random search [51] and (2) Grid Search [52]. We first use random search as it requires
lower computational power and will test a user-specified random number of combinations
in the hyperparameter grid. Once we have the best estimates using random search, we
will define a new hyperparameter grid with values closer to the selected output values
from the random search. We will then use grid search, which will look at every possible
combination in the hyperparameter grid.

##Assess hyperparameters to try to improve upon base model:
#Import required functions:
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import GridSearchCV
# Create the hyperparameter grid for first the random search function
hyper_grid = {# Number of trees to be included in random forest

‘n_estimators’: [150, 200, 250, 300, 350, 400],
# Number of features to consider at every split

‘max_features’: [‘sqrt’],
#Maximum number of levels in a tree

‘max_depth’: [10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200],
# Minimum number of samples required to split a node

‘min_samples_split’: [2, 4, 6, 8, 10],
# Minimum number of samples required at each leaf node

‘min_samples_leaf’: [1, 2, 4, 6, 8, 10],
# Method of selecting samples for training each tree

‘bootstrap’: [True, False]}
#Initiate random forest base model to tune
best_params = RandomForestClassifier(random_state = (23))
#Use random grid search to find best hyperparameters, uses k-fold validation as cross
#validation method
#Search 200 different combinations
best_params_results = RandomizedSearchCV(estimator = best_params,
param_distributions = hyper_grid, n_iter = 200, cv = kf, verbose = 5, random_state = (23))
#Fit the random search model
best_params_results.fit(X_trainSMOTE, y_trainSMOTE)
#Find the best parameters from the grid search results
Print(best_params_results.best_params_)
#Build another hyperparameter grid using narrowed down parameter guidelines
#from above
#Then use GridSearchCV method to search every combination of grid
new_grid = {‘n_estimators’: [250, 275, 300, 325, 332, 350, 375],

‘max_features’: [‘sqrt’],
‘max_depth’: [160, 165, 170, 175, 180, 185, 190, 195],
‘min_samples_split’: [1, 2, 3, 4, 5, 6],
‘min_samples_leaf’: [1, 2, 3],
‘bootstrap’: [True]}

#Initiate random forest base model to tune
best_params = RandomForestClassifier(random_state = (23))
#Use GridSearchCV method to search every combination of grid
best_params_grid_search = GridSearchCV(estimator = best_params, param_grid =
new_grid, cv = kf, n_jobs = −1, verbose = 10)
#Fit the gridsearch model
best_params_grid_search.fit(X_trainSMOTE, y_trainSMOTE)
#Get the results of the search grid form the random forest model
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best_params_grid_search.best_params_
#Using the results of the best parameters, we will create a new model and show the
#specific arguments.
best_grid_model = RandomForestClassifier(n_estimators = 375, max_features = ‘sqrt’,
max_depth = (160), min_samples_split = 2, min_samples_leaf = 2, bootstrap = True)
#Best model based upon grid
best_grid_model.fit(X_trainSMOTE, y_trainSMOTE)
After creation of the model, the performance metrics can be calculated, and the

veterinary educator will need to decide which model is best, the base model or the model
using the new parameters.

2.6.4. Determining the Most Important Features of the Random Forest Model

After selecting the best model based upon the performance metrics, we need to
determine which features contribute most to the model being able to predict the outcome
of a student. Each feature has a score. A higher score means it contributes more to the
model’s prediction whereas a lower score indicates the feature has a lower contribution
to the model’s prediction. There are a variety of approaches to calculating the feature
importance values, and some approaches depend on the ML algorithm selected whereas
others can be used for a variety of ML algorithms [12].

We will use two methods to assess the features of importance, the Gini importance (or
mean decrease Gini) and the visual Shapley additive explanations (SHAP) (Shap python
package version 0.40.0). Gini importance is the most common method used to determine
the relative depth or rank of a feature used as a decision node within the random forest
model [20,53]. The most important features have a larger value and will be located most
often at decision nodes near the top of the individual trees (Figure 1). By being near
the top of the tree, a larger percentage of the input samples are utilized by that specific
decision node. This means that the feature contributes more to the final prediction decision
compared to decision nodes lower on the tree [33,53]. Features of importance determined by
SHAP are based upon classic game-theoretic Shapley values. SHAP measures local feature
interaction effects and helps provide a better understanding of the overall model [54] based
on combining the explanations for each student outcome that is predicted.

#Most important features from best performing random forest model, Gini im
#portance
feature_imp = pd.Series(best_grid_model.feature_importances_, index = X.columns)
feature_imp = feature_imp.sort_values(ascending = False)
print(feature_imp)
#Import required package
import shap
#Most important features from best performing random forest model, SHAP values
shap_feature_imp = shap.TreeExplainer(best_grid_model)
shap_values = shap_feature_imp.shap_values(X_testSMOTE)
shap.summary_plot(shap_values, X_testSMOTE) #Shows results in a plot

Model employment:
The best performing model is selected and used to address the educational research

question or problem.

3. Results

In the methods, we describe how a total of five random forest models were created.
The full code provided resulted in the production of two random forest models, a model
using the default parameters and a model with parameters selected after hyperparameter
tuning. Table 3 shows the performance metrics for both models which were built from the
complete dataset without any missing values.
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Table 3. The performance metrics calculated when the random forest base model and the tuned
random forest model was given the testing dataset.

Performance Metric Random Forest Base Model Radom Forest Tuned Model

Accuracy 87.07% 86.61%

Recall/Sensitivity/TPR 89.61% 89.77%

Specificity/TNR 87.15% 88.11%

Precision 86.46% 86.21%

F1-Score 86.24% 88.40%

ROC curve AUC 87.15% 88.11%

The most important features, as ranked by the Gini criterion, varied depending on
which dataset was used to train and test the model as well as the imputation or replacement
method selected to address the missing values. The full list of most important features
from each model are in Table 4.

Table 4. The Gini criterion ranking of all features from each of the five random forest models created
using the datasets. All GRE records dataset contained no missing values, whereas the missing low
GRE values removed dataset removed any incomplete student records or were replaced by the mean
values (missing low GRE values replaced with mean). The most important features for the randomly
removed GRE scores with all student records eliminated that were incomplete is shown in the random
missing GRE values removed columns and when those missing scores were replaced with the mean,
the most important features are shown in the respective column.

All GRE
Records

Feature Im-
portance
Score

Missing
Low GRE
Values
Removed

Feature Im-
portance
Score

Missing
Low GRE
Values
Replaced
with Mean

Feature Im-
portance
Score

Random
Missing
GRE
Values
Removed

Feature Im-
portance
Score

Random
Missing
GRE
Values
Replaced
with Mean

Feature Im-
portance
Score

GRE 0.241850 GRE 0.370290 GRE 0.357720 GRE 0.291419 preGPA 0.218575

Age 0.150457 Race_Not
Provided 0.131981 preGPA 0.152793 preGPA 0.199777 GRE 0.181400

Race_Not
Provided 0.146913 preGPA 0.106498 Age 0.146683 Age 0.163021 Age 0.180350

preGPA 0.130455 Age 0.100696 Race_Not
Provided 0.096973 Race_Not

Provided 0.071514 Race_Not
Provided 0.117902

Race_White 0.078924 Race_White 0.093832 Race_Latinx 0.062529 Race_Asian 0.062693 Race_White 0.073569

Race_Latinx 0.067359 Gender_Male 0.082514 Race_White 0.057276 Race_White 0.059140 Race_Black 0.071190

Gender_Male 0.063287 Race_Latinx 0.047706 Race_Asian 0.044694 Race_Black 0.051953 Race_Asian 0.062513

Race_Black 0.063043 Race_Black 0.041844 Gender_Male 0.042020 Gender_Male 0.050608 Race_Latinx 0.060454

Race_Asian 0.057713 Race_Asian 0.024639 Race_Black 0.039311 Race_Latinx 0.049876 Gender_male 0.034048

GRE and three of the one-hot encoded categorical variable levels from the race/ethnicity
column were identified by SHAP values as the most important features of the best-
performing random forest model without any missing values. The results are plotted
as summary beeswarm plots in Figure 6. Figure 7 shows the SHAP-determined most
important features of the four random forest models with missing GRE values and are
visually displayed as summary bar plots ranking the most important features at the top of
the y-axis.
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Figure 6. Beeswarm plots of the simulated dataset containing no missing GRE values. Each dot rep-
resents a student record with the feature value represented by a color. As the feature value color bar 
shows, a higher value is pink and a lower value is blue. The x-axis shows the SHAP values for the 
most important features listed along the y-axis. The y-axis values represent the features of im-
portance with the top variable being the most important and the subsequent ones organized in de-
scending rank of importance. (A) shows the SHAP values for students who did not fail any course, 
(B) shows the SHAP values for students who failed a course. 

Figure 6. Beeswarm plots of the simulated dataset containing no missing GRE values. Each dot
represents a student record with the feature value represented by a color. As the feature value color
bar shows, a higher value is pink and a lower value is blue. The x-axis shows the SHAP values for the
most important features listed along the y-axis. The y-axis values represent the features of importance
with the top variable being the most important and the subsequent ones organized in descending
rank of importance. (A) shows the SHAP values for students who did not fail any course, (B) shows
the SHAP values for students who failed a course.
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Figure 7. Global feature importance plots based on SHAP values for the datasets with missing GRE
values. The y-axis values represent the features of importance with the top variable being the most
important and the subsequent ones organized in descending rank of importance. The mean absolute
value for each feature for all student records in the dataset is displayed on the x-axis. (A) Shows the
features of importance for the simulated data where student records were eliminated with missing
low GRE values. (B) Shows the features of importance for the simulated data where student records
with missing low GRE scores were replaced with the mean GRE score of all applicants. (C) Shows the
features of importance for the simulated data where student records were eliminated with random
missing GRE values. (D) Shows the features of importance for the simulated data where student
records with randomly missing GRE scores were replaced with the mean GRE score of all applicants.

4. Discussion

ML has the potential to become a powerful tool in veterinary education; however, ML
algorithms have yet to be tapped by veterinary educators. This manuscript focuses on
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making ML more accessible by providing a practical overview of ML and the creation of a
supervised ML algorithm, a random forest ML model. As an emerging tool, there are some
important considerations that veterinary educators must be aware of when employing
ML models. We further highlight some of these considerations below which we initially
present in the working example section when creating the models by discussing the results
of the different models created by the different datasets.

Two of the most important considerations are the quality of a dataset and when it
contains incomplete records. As previously discussed, missing data can be categorized into
three main types. In education studies, often, the missing data will be MAR (e.g., a student
who is sick misses an exam and can be explained by a leave of absence) or NMAR (e.g., a
student chooses to not participate in an active learning exercise or chooses to not complete
a teaching evaluation). NMAR data are non-ignorable data, meaning simply eliminating
these students from the analysis will result in bias. In the literature, there are well accepted
methods for handling MCAR or MAR data in education [6,38,39,55,56], but there are not
commonly accepted methods for NMAR data in medical or veterinary education fields.

We utilized two pre-replacing methods that have been reported to be two of the most
frequently encountered techniques in the higher education literature [6,57], listwise deletion
and imputation (i.e., replacement). While there are many different imputation methods, we
selected a single imputation method over multiple imputation (the creation of many datasets
with the model results averaged). Our decision in part was to help maintain the simplicity of
our model for this introductory manuscript and to emphasize to the reader the importance
of recognizing and handling NMAR and MAR data. In Table 4, our random forest model
without missing data revealed that GRE, age, and race/ethnicity not reported were the top
three features that contributed most to our prediction model when Gini criteria were used.
When approximately 20% of the lower GRE values were eliminated, listwise deletion resulted
in GRE contributing more to the model with race/ethnicity not provided and pre-vet school
GPA being the second and third most important feature. When we used single imputation
with the mean, our top three most important features were GRE, pre-vet school GPA, and
age. Keeping in mind that our dataset has very few variables, and on a dataset with more
features, it is possible to see even more of a dramatic effect. The two random forest models
created with the MAR or MCAR GRE dataset shows listwise deletion and single imputation
were more similar than the NMAR GRE dataset. However, our simulation shows that both
listwise deletion and replacement with the mean still impacted the random forest model
with only the top two of the three top contributing variables being the same. This supports
that in the education field, there is a large gap of knowledge in how to deal with missing
data within student records and should be an area of future research. Until this can be
addressed, we recommend that any veterinary education studies choosing to use ML clearly
state why they selected the reported method for handling missing data, and to consider using
multiple replacement methods to compare the results between models and provide a better
understanding of the impacts of each replacement method.

Another important consideration that must be made when constructing ML models is
to decide how the decision trees are constructed and how the features of importance will
be determined. We opted to use the Gini index as the impurity function within our code.
This is the default option in the random forest function within the scikit learn package [33];
however, in random forest models, permutation importance is also commonly used [20].
While a full discussion between these methods is beyond the scope of this manuscript,
we selected the most commonly reported method in the EDM literature and, if we accept
a greatly oversimplified explanation, the Gini index (or Gini impurity criterion) can be
considered a robust and reliable impurity function and in part, it has been attributed to
helping to reduce the errors in prediction when combining the individual decision trees
into the random forest [16,20]. It is important to recognize that the Gini impurity criterion
is not perfect, and in our veterinary education datasets where there is a mix of continuous
variables, binary variables, and categorial variables, the Gini impurity criterion tends to
overestimate the importance of continuous variables [20].
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We can see how the continuous variables of GRE, age, and pre-vet GPA are in the
top four most important features based upon the Gini criterion (Table 4), but this changes
when we evaluate our model using the SHAP method to determine the features of most
importance. The SHAP method for estimating the features of importance in decision trees,
which uses the game-theoretic Shapley values as a basis, was proposed in 2020 [54], and is
beginning to gain popularity due to the SHAP method results relying heavily on a very
visual based report. The visual aspects of the SHAP method help to communicate the
models to non-technical stakeholders and provide a way for us to view the contribution of
each variable in the model for each row of student data (Figure 6).

The bar plots (Figure 7) show the mean absolute SHAP value with the most important
feature having the largest value and being at the top of the plot. As the SHAP value, or
feature importance, decreases, it descends along the y-axis. The beeswarm plots are similar
with the y-values representing the features of importance with the top variable being the
most important and the subsequent ones organized in descending rank of importance.
Beeswarm plots must be plotted for a single target variable, in our case a student with
a failure or a student without a failed course. In Figure 7, each dot represents a student
record with the feature value represented by a color. As the feature value color bar shows,
a higher value is pink and a lower value is blue. This helps us understand how the points
are distributed and how the value of the variable may impact our model’s prediction. In
the case of Figure 7, the most important feature on average is a student’s GRE scores,
with students who passed all their courses tending to have lower GRE scores compared to
students who failed a course (Figure 7B) tending to have higher GRE scores based upon
the simulated data.

As we can see, the features of importance are different when using the SHAP approach.
SHAP values did not rank age or pre-vet GPA as contributing to the model as greatly as the
Gini criterion method did (Figures 6 and 7 and Table 4). This may be explained by SHAP
values not being as biased towards overestimating the importance of continuous variables,
although it has been reported that in some datasets under certain conditions, SHAP has the
potential to still be biased towards certain feature types such as numerical features with
many unique values and categorical features with high cardinality [58]. Additionally, there
is some discussion in the data science community about adding up the SHAP values for
categorial variables that have been transformed with one-hot encoding to truly understand
the categorical variable’s contribution to the model (e.g., https://towardsdatascience.com/
shap-for-categorical-features-7c63e6a554ea (accessed on 1 May 2023)).

While our categorical data contained only five levels, one-hot encoding and dummy
encoding may not be appropriate for handling categorical data with many different categor-
ical levels (aka high-cardinality categorical variables). High cardinality categorical variables
can lead to statistical problems [59], “dilute” the features of importance, and reduce the
predictive performance of ML algorithms [59,60]. This means that other encoding methods
such as hashing may need to be explored, or reducing or limiting the number of unique
categories that are one-hot encoded.

Our mock dataset contained a low number of variables; however, often, academic
datasets will contain a large number of variables. Feature selection, a way to reduce high
dimensionality datasets, is routinely completed during the data preparation phase in order to
reduce computation power, improve the performance of the ML algorithm, and to help with
model interpretation [40]. It is important to consider the overall project goal as in veterinary
education, it may be just as important to understand which variables are contributing only at
a low level. Therefore, it may be best to consider developing models that undergo a feature
selection step as well as a model which does not undergo feature selection.

It is important to recognize that this practical introduction to ML provides veterinary
educators a basic knowledge of ML and to recognize how certain decisions, such as how to
handle missing data, can impact ML models such as our example random forest model.
While we cannot cover every aspect of building a ML model, there is one final consideration
which is often overlooked, but has begun to be recognized in clinical datasets, and that is

https://towardsdatascience.com/shap-for-categorical-features-7c63e6a554ea
https://towardsdatascience.com/shap-for-categorical-features-7c63e6a554ea
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inclusion of under-represented populations. When demographic variables have categories
that are highly underrepresented, this can result in bias [61,62] and provide potentially
misleading conclusions. Consider our veterinary student population. Most colleges of
veterinary medicine have a primarily white, female student population [63]; therefore, when
incorporating demographic data, it is important to realize that low numbers of students
from underrepresented minority groups, students who are or identify as male, and/or
students who identify as LGTBQIA+ are some potential variables to consider may result in
a biased model. Certain research questions, such as seeking to identify at-risk students, may
need to be answered by incorporating a double prioritized bias correction technique which
was recently published to correct bias in prognostic ML models where the dataset contained
underrepresented racial and age groups [62]. In this approach to eliminating bias, custom
ML models were built for each underrepresented group in addition to an all-encompassing
ML model. This may be suitable for helping eliminate the under-representation bias that
is present in the veterinary student population. Furthermore, this highlights one of many
research priorities as ML begins to be incorporated into veterinary education.

Prediction models, such as the model described in this manuscript, are one of the
primary uses of ML in higher education as the goal of predictive analytics is to identify
students at-risk in mastering knowledge and successful course completion—enabling
timely interventions [21,64]. Other potential uses of ML surrounding personalizing learning
experiences for veterinary students include adaptive learning platforms. These platforms
have been employed in medical education programs and use ML to analyze students’
performance and tailor the content based upon the identified strengths and weaknesses of
the learner [65]. Furthermore, much interest exists in assessing veterinary skills and being
able to provide objective, consistent, and immediate feedback to students. There is ongoing
work to train AI on visual and physiologic data such as surface electromyographical (sEMG)
data to use ML to help assess surgical skills of veterinary students [66].

5. Conclusions

Without established guidelines for handling data (i.e., MNAR) within the medical
education field nor preferred methods for model evaluation, our results using simulated
veterinary student data highlight the need for the veterinary educator to be fully transparent
during the creation of ML models. We suggest future research efforts be directed toward
establishing best practices within the education field for handling MNAR data and the
other critical considerations.
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