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Simple Summary: Monosodium glutamate (MSG, E62, C5H8NO4Na) is the most widely used food
additive in the world for enhancing flavour. The number of flavour-enhancers added to foods is very
important for the health of consumers. It has been determined by many researchers that MSG has
negative effects on various organs of the body. Since chicken embryos develop without the influence
of the maternal organism and allow toxicity to be evaluated very quickly and precisely, they have
become a preferred experimental model for investigating the embryotoxic and teratogenic effects of
chemicals, toxins, drugs, and numerous food additives and flavour-enhancing agents. This study
aimed to investigate the effects of in ovo MSG administration at different doses on the embryonic
development of the eye using histological and histometric techniques. The results of the present work
have shown that in ovo-administered MSG can adversely affect embryonic eye development.

Abstract: MSG is the most ubiquitous food additive in the food industry. The aim of this report was
to investigate the effects of in ovo MSG administration on embryonic chicken eye development using
histological and histometric methods. A total of 410 fertilized eggs obtained from Babcock Brown
laying hens (Gallus gallus domesticus) were used and divided into 5 groups: I (untreated control), II
(vehicle control), III (0.12 mg/g egg MSG), IV (0.6 mg/g egg MSG), and V (1.2 mg/g egg MSG), and
injections were performed via the egg yolk. At incubation day 15, 18, and 21, 6 embryos from each
group were sacrificed by decapitation and pieces of eye tissue were obtained. In all MSG groups,
it was determined that both corneal epithelium thickness and total corneal thickness decreased at
incubation time points 15, 18, and 21 days compared with the controls (p < 0.05). The total retinal
thickness, thickness of the outer nuclear layer (ONL), inner nuclear layer (INL), ganglion cell layer
(GL), and nerve fibre layers (NFL), as well as the number of ganglion cells decreased significantly at
incubation days 15, 18, and 21 (p < 0.05), and degenerative changes such as vacuolar degeneration and
retinal pigment epithelial detachment were also observed. In conclusion, MSG in ovo administration
can affect the cornea and distinct layers of retinal cells.

Keywords: monosodium glutamate; retina; cornea; eye; ganglion cells; chicken embryos

1. Introduction

Monosodium glutamate (MSG) has been used extensively to enhance the flavour of
seasonings in the food industry and restaurants. MSG can be found in processed food
without an indication on the label, especially to increase the consumption and flavour of
processed food such as snack food, chips, sauces, and soups [1,2]. Natural form glutamic
acid in food is not toxic, but industrially produced synthetic glutamic acid is a toxin [3].
MSG is available without limits in a wide variety of processed food. It is also added to
meals in unlimited quantities in restaurants, hospitals, nursing homes, and cafeterias. Food
manufacturers do not list the amount of MSG on their packaging, so there is no way to
know how much MSG an adult or child consumes in a day. According to industrial research,
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0.6% MSG is optimally added to food [4]. According to the U.S. Environmental Protection
Agency, the use of MSG in food should not be allowed for infants and especially children
under one year of age [4].

Glutamate is the primary neurotransmitter stimulant for brain networks and stimulates
respective receptors, which have important effects in both physiological and pathological
processes [5]. Excessive stimulation of glutamate receptors leads to the development of
excitotoxicity [6]. Glutamate is metabolized to non-toxic glutamine by glutamine synthetase
after being taken into Müller cells by the glutamate transporter, GLAST [7]. Glutamic acid
is responsible for synaptic transmission between bipolar, photoreceptor, and ganglion cells
in the retina, and its presence in high amounts is responsible for neuronal cell death [8],
such as retinal ganglion cells [9].

The toxic effects of MSG on the central nervous system, adipose tissue, hepatic tis-
sue, reproductive organs, and liver and kidney functions were determined by several
studies [2,10,11]. These studies revealed that MSG causes cytotoxicity [12,13] and oxidative
damage in the liver, kidney, and various tissues [14–18] and increased the risk of certain
cancers [16]. MSG may adversely affect immune system organs [13,18,19], the testes [20–22],
ovarium [23–27], pancreas [28], spleen [29–31], liver [15,32,33], and cardiac tissue [2]. It has
been reported that the incidence of certain diseases, such as obesity [34,35], diabetes, and
Alzheimer’s is increased in people who consume foods with added MSG [36,37].

MSG can cause neurotoxicity, neurodegeneration [38], and neuroendocrine abnormali-
ties [39]. There have been many studies investigating the negative effects of MSG on the
nervous system [40–45].

Reports have demonstrated that MSG can be toxic to foetal development, children, and
adults [4]. Maternal MSG exposure can result in neurotoxic effects and severe intrauterine
growth retardation in rats [46]. In addition, MSG has been found to cause apoptosis and
necrosis in the hippocampus of prepubertal rats [47]. Narayanan et al. [48] reported that
MSG showed neurotoxic effects when administered to newborn animals at high concentra-
tions. MSG has been reported to cause neurological damage by inducing oxidative stress
and neurotoxicity, which is more severe in newborns during brain development than in
adults [9]. In addition, Gim et al. [49] reported that MSG injection to newborn rats caused
histopathological changes in the brain and degeneration of the cerebral cortex. Bölük-
baş and Öznurlu [42] reported that in ovo MSG administration caused histopathological
changes such as necrosis, neuronophagia, and gliosis in brain tissue.

Studies have shown that exposure to MSG causes significant degenerative effects on
the eye and retinal layers [50–54]. Dénes et al. [55] revealed that subcutaneous injection of
MSG into rats causes retinal degeneration and pycnosis of retinal cells. Additionally, in
further study, it was reported that the density of ganglion cells in the retina was considerably
reduced in rat models exposed to MSG, in comparison with control rats [56]. Praputpittaya
and Wililak [57] reported that subcutaneous injection of MSG in different doses to newborn
rats caused deficits in visual performance. Swelim [58] reported that low concentrations of
subcutaneous MSG injections in neonate mice caused retinal damage.

It has been suggested that MSG administration in newborn rats leads to degeneration
of retinal ganglion cells, as well as degeneration of the optic nerve [51,56]. It has also been
reported to lead to degeneration of neurons in retinal layers, the arcuate nucleus, and vari-
ous other brain regions, delaying the emergence of certain reflexes during neurobehavioral
development and leading to temporary changes in reflex performance and motor coordina-
tion [59,60]. El-Sayyad et al. [61] found that MSG given orally to pregnant rats significantly
reduced total retinal thickness, outer and inner nuclear layers, and photoreceptor layer
thickness. It has also been reported that mother rats have retinal ganglion degeneration,
loss of pigment epithelium, and vacuolization in the plexiform inner layer. The chick eye
has been a common model to study embryonic development as well as eye diseases. The
chicken eye has similar basic components to the human eye including the cornea, ciliary
body, iris, lens, sclera, choroid, retina, and optic nerve [62,63]. While numerous studies
have reported the neurotoxic effects of MSG on humans, experimental animals, and chicken
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embryos [38,41,42,45,64,65], there is insufficient information about the effects of MSG on
the cornea and retina during the embryonic period. This study aimed to investigate the
effects of in ovo MSG administration at different doses on the cornea and retina in chicken
embryos using histological and histometric techniques.

2. Materials and Methods
2.1. Experimental Design and Preperation of Test Solution

For the experiments, 410 Babcock Brown fertilized eggs (50–55 g) obtained from
Babcock Brown laying hens (Gallus gallus domesticus) were examined. The MSG doses
were adjusted for 55 g egg weight. MSG (Sigma-Aldrich Chemical) was diluted with
sterilized distilled water. MSG doses of 0.12 mg/g, 0.6 mg/g, and 1.2 mg/g egg were
prepared and given in a volume of 100 µL. Prior to MSG injection, the eggs were disinfected
for 15 min under steam obtained from mixing 21 g of potassium permanganate with 42 mL
of formaldehyde/m3 in a closed cabin. The eggs were divided into 5 groups: Group I
(untreated control, 40 eggs), which includes non-treated eggs; Group II (vehicle control,
62 eggs), which injected only distilled water; and three MSG-injected groups as Group III
(0.12 mg/g egg MSG, 80 eggs), Group IV (0.6 mg/g egg MSG, 90 eggs), and Group V
(1.2 mg/g egg MSG, 138 eggs). Embryonic deaths were considered in numbers of eggs per
group. The eggs were injected just before starting the incubation period. In the injection
groups, the injection sites on the eggs were wiped with 96% ethanol for further disinfection.
All injections were performed in egg yolks at the beginning of the incubation period. By
drilling a hole on the side of the egg with a special egg driller, the test solution was injected
through a sterile insulin injector (26 Gx1/2”, Beybi) and then the hole was sealed with
liquid paraffin. Incubations were carried out in an incubator (Imza Technical Equipment,
Konya, Turkey), under optimal conditions (37.5 ◦C temperature and 65% relative humidity).
The eggs were subjected to turning angles of 45 with a turning frequency of 12 times daily.

2.2. Tissue Sampling and Histologic Procedures

At incubation days 15, 18, and 21, 6 embryos from each group were sacrificed by
decapitation. The stages of development of the living embryos were determined according
to the Hamburger–Hamilton (1951) scale (H–H scale) [66]. Eye tissue samples were collected
from embryos and fixed in 10% formalin for 24 h and then subjected to dehydration and
paraffin embedding. For routine histological examination, tissue sections were stained with
Crossmon’s trichrome [67], Toluidine blue, and Hematoxylin and Eosin (H&E) staining [68].
Histometric measurements were performed in serial sections taken from the eye tissue
obtained on incubation days 15, 18, and 21. The thickness of the total cornea and corneal
epithelium were measured from three different regions of the cornea. The thickness of total
retina and retinal layers were measured from four different retina regions. Additionally,
the ganglion cell number was determined by counting the number on a 100 µm line length
in three different fields per section. All evaluations were performed by two researchers
blinded to the sample identification.

Next, prepared sections were examined with a Leica DM-2500 model light microscope.
Digital images of the required areas were captured using an attached DFC-320 model
camera and analysed for histometric measurements. All histometric measurements were
performed using the Leica IM50 measurement program (Leica, Leica Microsystems GmbH,
Wetzlar, Germany) and numerical data of the investigated parameters were obtained.

2.3. Statistical Analysis

The collected data were given in mean± SD. A p-value of less than 0.05 was considered
statistically significant. Total corneal thickness, corneal epithelial thickness, total retinal
thickness, retinal layers thickness, and the number of ganglion cells were evaluated with
ANOVA and the Tukey test. This was performed by using SPSS 26 (SPSS, IBM Corp.
Released 2019, Armonk, NY, USA).
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3. Results
3.1. Incubation Day 15

On day 15 of incubation, the transparent structures that refract and focus light (cornea
and lens), muscle structures (iris and ciliary body), retina, pecten oculi, and optic nerve
have developed (Figure 1A–D).
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Figure 1. Eye histological section in Group I on 15th day of incubation (A); 18th day of incubation
(B); 21st day of incubation (C,D); retinal layers (D); OPN: optic nerve, thick arrow: sclera with visible
hyaline cartilage; arrow: Ganglion cells. Toluidine blue (B,C) and H&E (A,D) stains. Bar: 500 µm
(A–C). Bar: 50 µm (D).

It was noted that in the MSG-treated groups, corneal epithelium thickness and total
corneal thickness decreased depending on the dose in comparison to untreated and vehicle
controls (p < 0.05, Figure 2A–E, Table 1).

Table 1. Corneal epithelium thickness (µm) and total corneal thickness (µm) on days 15, 18, and 21
of incubation.

Groups n = 6 Day 15 of Incubation Day 18 of Incubation Day 21 of Incubation

Thickness of
epithelium

Total corneal
thickness

Thickness of
epithelium

Total corneal
thickness

Thickness of
epithelium

Total corneal
thickness

Group I 25.22 ± 2.02 a 328.42 ± 30.41 a 29.68 ± 2.54 a 416,70 ± 5.62 a 33.12 ± 3.35 a 417.85 ± 12.98 a

Group II 24.99 ± 2.18 a 318.59 ± 5.59 a 29.24 ± 1.19 a 413.51 ± 10.18 a 33.33 ± 6.11 a 413.05 ± 13.44 a

Group III 15.96 ± 1.67 b 249.22 ± 14.60 b 24.72 ± 1.80 b 308.73 ± 14.68 b 27.16 ± 1.77 b 377.58 ± 21.98 b

Group IV 13.15 ± 1.71 c 222.85 ± 21.31 c 22.82 ± 1.15 c 295.67 ± 7.16 c 26.30 ± 1.45 b 365.91 ± 13.43
bc

Group V 13.71 ± 1.61 c 210.04 ± 17.15 c 22.22 ± 1.86 c 291.36 ± 6.39 c 24.92 ± 2.34 b 359.04 ± 11.60 c

(a–c) Various superscript letters on the columns indicate a statistical difference (mean ± SD, p < 0.05).
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Figure 2. Comparison of chicken corneal layer thicknesses among Group I, II, III, IV, and V on the
15th (A–E), 18th (F–J), and 21st (K–O) days of incubation. Groups I (A,F,K), II (B,G,L), III (C,H,M),
IV (D,I,N), and V (E,J,O) on days 15, 18, and 21 of incubation, respectively. Arrowhead: endothelium;
E→: epithelium, S: stroma; stars (*): detachment of the epithelium layers. Crossmon’s triple staining.
Bar: 100 µm.

On the 15th day of incubation, it was observed that the retina consisted of 9 layers,
respectively, from the outside to the inside: retinal pigment epithelium (RPE), photore-
ceptor layer (PR), outer limiting membrane, outer nuclear layer (ONL), outer plexiform
layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL), ganglion cell layer
(GL), and nerve fibre layer (NFL) (Figure 1D). In the MSG groups, total retinal thickness
decreased significantly compared with the controls. Corneal epithelium thickness and
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total corneal thickness decreased in the MSG groups depending on the dose compared
with the controls, and the thickness of the retinal layers, especially the ONL, INL, GL, and
NFL layers decreased significantly (p < 0.05, Figure 3A–I). Furthermore, in these groups
retinal degeneration such as retinal pigment epithelium detachment (Figure 4C–E) and
vacuolization in the IPL, INL, GL, and NFL layers were observed (Figure 4C–E). Moreover,
ganglion cell count was significantly reduced in the GL layer and this layer was thinner for
all MSG groups (p < 0.05, Figure 4A–D, Table 2).

Table 2. Ganglion cell numbers of the granular layer on days 15, 18, and 21 of incubation.

Ganglion Cell Numbers

Groups n = 6 Day 15 of incubation Day 18 of incubation Day 21 of incubation

Group I 22.58 ± 2.91 a 21.47 ± 3.21 a 18.94 ± 4.86 a

Group II 21.01 ± 3.28 a 22,52 ± 4.32 a 17.58 ± 3.07 a

Group III 9.71 ± 3.56 b 12.74 ± 2.93 b 10.84 ± 4.36 b

Group IV 7.66 ± 3.04 b 9.11 ± 2.76 c 10.33 ± 1.93 b

Group V 7.44 ± 1.56 b 8.86 ± 2.94 c 8.27 ± 2.78 b

(a–c) Various superscript letters on the columns indicate a statistical difference (mean ± SD, p < 0.05). Ganglion cell
numbers were determined by counting the number on a 100 µm line length in three different fields per section.
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Figure 3. Comparison of chicken retina layer thicknesses (µm) among Group I, Group II, Group III,
Group IV, and Group V on the 15th day of incubation in chicken embryos. Retinal thickness (A);
thickness of RPE (B); thickness of PR (C); thickness of ONL (D); thickness of OPL (E); thickness of
INL (F); thickness of IPL (G); thickness of GL (H); thickness of NFL (I). (a–c) Various superscript letters
on the columns indicate a statistical difference (mean ± SD, p < 0.05).
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Figure 3. Sections from the retina of the Groups I (A), II (B), III (C), IV (D), and V (E) at day 15 of 
incubation. Blue stars (*): vacuole formation in the IPL, INL, GL, and NFL layers; black stars (*): 
retinal pigment epithelium detachment; arrow: ganglion cells; S: scleral cartilage; C: choroid; reti-
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Figure 4. Sections from the retina of the Groups I (A), II (B), III (C), IV (D), and V (E) at day 15 of
incubation. Blue stars (*): vacuole formation in the IPL, INL, GL, and NFL layers; black stars (*):
retinal pigment epithelium detachment; arrow: ganglion cells; S: scleral cartilage; C: choroid; retinal
pigment epithelium (RPE); nerve fibre layer (NFL); ganglion cell layer (GL); inner plexiform layer
(IPL); inner nuclear layer (INL); outer plexiform layer (OPL); outer nuclear layer (ONL). H&E staining.

3.2. Incubation Day 18

On incubation day 18, in MSG-treated groups retinal degenerations such as detach-
ment of the retinal pigment epithelium (Figure 5C,D) and vacuolization in the IPL, INL, GL,
and PR layer were observed (Figure 5E). Moreover, ganglion cell numbers were significantly
decreased in all MSG groups compared with controls (p < 0.05, Table 2, Figure 5C–E).
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Figure 5. Sections from the retina of Groups I (A), II (B), III (C), IV (D), and V (E) at incubation day 
18. Blue stars (*): vacuole formation in the PR, INL, IPL, and GL layer. Retinal pigment epithelium 
(RPE); photoreceptor layer (PR); nerve fibre layer (NFL); ganglion cell layer (GL); inner plexiform 
layer (IPL); inner nuclear layer (INL); outer plexiform layer (OPL); outer nuclear layer (ONL). H&E 
staining. 

In the MSG groups, corneal epithelium and total corneal thickness decreased de-
pending on the dose in comparison with controls (p < 0.05, Figure 2F-J, Table 1). Similarly, 
the total retinal thickness decreased significantly when compared with controls; in par-
ticular, thickness of the PR, ONL, INL, GL, and NFL layers was reduced (p < 0.05, Figure 
6A-I). 

Figure 5. Sections from the retina of Groups I (A), II (B), III (C), IV (D), and V (E) at incubation day 18.
Blue stars (*): vacuole formation in the PR, INL, IPL, and GL layer. Retinal pigment epithelium (RPE);
photoreceptor layer (PR); nerve fibre layer (NFL); ganglion cell layer (GL); inner plexiform layer (IPL);
inner nuclear layer (INL); outer plexiform layer (OPL); outer nuclear layer (ONL). H&E staining.

In the MSG groups, corneal epithelium and total corneal thickness decreased depend-
ing on the dose in comparison with controls (p < 0.05, Figure 2F–J, Table 1). Similarly, the
total retinal thickness decreased significantly when compared with controls; in particular,
thickness of the PR, ONL, INL, GL, and NFL layers was reduced (p < 0.05, Figure 6A–I).
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Figure 6. Comparison of retinal layer thicknesses (μm) among Groups I, II, III, IV, and V on incu-
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3.3. Incubation Day 21 
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thickness significantly decreased following MSG treatment in comparison with controls 
(p < 0.05, Figure 2K-O, Table 1). It was also noted that total RT as well as PR, ONL, INL, 
GL ,and NFL thickness significantly decreased when compared with controls (p < 0.05, 
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Figure 6. Comparison of retinal layer thicknesses (µm) among Groups I, II, III, IV, and V on incubation
day 18 in chicken embryos. Retinal thickness (A); thickness of RPE (B); thickness of PR (C); thickness
of ONL (D); thickness of OPL (E); thickness of INL (F); thickness of IPL (G); thickness of GL (H);
and thickness of NFL (I). (a–c) Various superscript letters on the columns indicate a statistical difference
(mean ± SD, p < 0.05).

3.3. Incubation Day 21

On incubation day 21, it was determined that corneal epithelium and total corneal
thickness significantly decreased following MSG treatment in comparison with controls
(p < 0.05, Figure 2K–O, Table 1). It was also noted that total RT as well as PR, ONL, INL,
GL, and NFL thickness significantly decreased when compared with controls (p < 0.05,
Figures 7A–E and 8A–I). These groups were observed to have retinal degenerations such
as detachment of the RPE and cellular vacuolization of INL and GL layers (Figure 7D).
Additionally, the number of ganglion cells in the GL layer of the MSG groups significantly
decreased in comparison with the control groups (p < 0.05, Table 2).



Vet. Sci. 2023, 10, 99 10 of 17
Vet. Sci. 2022, 9, x FOR PEER REVIEW 11 of 18 
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Figure 7. Sections from the retina of Groups I (A), II (B), III (C), IV (D), and V (E) at incubation day 21.
Blue stars (*): vacuole formation in the INL, IPL, and NFL layers. Retinal pigment epithelium (RPE);
photoreceptor layer (PR); nerve fibre layer (NFL); ganglion cell layer (GL); inner plexiform layer (IPL);
inner nuclear layer (INL); outer plexiform layer (OPL); outer nuclear layer (ONL). H&E staining.
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4. Discussion

In this study, we studied the effects of in ovo MSG administered at different doses
on the cornea and retina of chicken embryos. While a significant number of studies
have reported on the various adverse effects of MSG on humans, experimental animals,
and chicken embryos [38,41,42,45,64,65,69,70], no detailed studies have been found in the
literature on the effects of MSG on embryonic eye development in chick embryos.

Regulations have been imposed on the use of MSG as a flavour-enhancing food addi-
tive. In August 2017, the European Food Safety Authority (EFSA) corrected the acceptable
daily intake (ADI) for glutamic acid and salts from 120 mg to 30 mg per kilogram of body
weight. While the average daily intake of MSG ranges from 0.3 to 0.5 g per day among
European Union member countries, the average daily intake of MSG ranges are higher
in Asian countries, ranging from 1.6–2.3 g/day in South Korea, 1.5–3.0 g/day in Taiwan,
1.1–1.6 g/day in Japan, and 4 g/day in China [1,3]. In recent years, large-scale shifts in
lifestyle and eating habits across the globe have led to increased consumption of processed
food, elevating the risk of exceeding the ADI of MSG and similar chemicals. Many reports
have demonstrated the adverse effects of low dose MSG resulting from chronic consump-
tion [1,2,71,72]. MSG doses between 1.25 and 12 gr were used in human experimental
studies [73,74], dosages ranging from 0.04 to 100 g in animal studies [2,12,75,76], and
dosages between 0.75 and 3 mg/g egg in chicken embryo studies [41,70]. In this study, both
human daily MSG intake and previous chicken embryo studies were taken into account in
the adjustment of MSG doses (0.12 mg/g, 0.6 mg/g, and 1.2 mg/g eggs).
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Plasma glutamate concentration has been reported to increase significantly after MSG
supplementation in humans [77]. High oral intake of MSG in rats has been shown to result
in oxidative stress in multiple areas of the brain and in the retina [78,79]. This excitotoxicity
effect of glutamate was reported to trigger extreme glutamate receptor (GluR) activity [80].
Ganglion cell and retina IPL have been reported to be mostly affected by both in vivo and
in vitro MSG administration [55]. Van Rijn et al. [56] showed that the administration of
MSG to rats significantly reduced the density of ganglion cells in the retina in comparison
with controls. El-Gohari et al. [81] showed that different doses of MSG injection in rats
caused retinal degeneration as well as a decrease in retinal thickness and ganglion cell
count. Researchers have also reported that MSG causes detachment in the RPE and the
irregular presence of the photoreceptor layer in rats. Ohguro et al. [79] reported that retinal
layer thickness was thinner and the number of cells in GL, INL, and ONL decreased in rats
fed three different doses of MSG. Bellhorn et al. [50] showed that MSG given to newborn
rats on days 1 to 10 after birth caused degeneration of the inner retinal layers. In addition,
oral administration of MSG has been reported to cause degeneration in rabbit retina [82].
AlThanoon and Abd [83] reported that different doses of MSG injection to pregnant mice
caused degeneration and necrosis of the INL and ganglion cells as well as of the optic nerve
depending on the dose in mouse embryos on the 14th and 18th days of pregnancy.

Chicken embryos are a common model for investigation of embryotoxicity [84,85],
neurotoxicity [42,86,87], eye diseases [88], retinal development [89], and retinal patholo-
gies [90]. Therefore, chicken embryos are good models for investigation of the effects of
many food additives, flavour-enhancing additives, and environmental pollutants during
embryogenesis because embryonic development is fully described and the individual
developmental stages are clearly visible and easily accessible [91,92]. The chicken egg is a
closed system that has no interaction with its environment, except for the interchange of
gases. Jessl et al. [92] suggested that a single injection of different test solutions into the yolk
sac on day one of incubation results in chronic chemical exposure and may be sufficient
to influence the developing embryo. In this study, different doses of MSG (0.12 mg/g,
0.6 mg/g, and 1.2 mg/g eggs) were administered to egg yolks as a single injection, thus
creating chronic exposure.

Changes in corneal thickness with age were still unclear in humans and animals. While
some studies reported no significant change in corneal thickness over time [93,94], other
studies showed a decreasing trend of corneal thickness with age [95,96]. Inomata et al. [97]
reported that corneal thickness initially increased between 1 and 6 months, reached a maxi-
mum at 9 months, and then decreased between 12 and 14 months, while body size (weight)
increased with age. AlThanoon and Abd [83] reported that, in the eyes of 18-day-old MSG-
treated albino mice foetuses, there was deformation of the lens, thickening of the cornea’s
inner lining, necrosis of the cornea’s stroma, and necrosis of the optic nerve. Al-Qudsi and
Azzouz [98] showed that electromagnetic mobile radiation caused changes in neural retinal
thickness and congenital malformations in chick embryos at 7, 10, and 14 days of incubation.
In previous chick embryo retina culture studies, MSG was suggested to contribute to inner
retinal layer and ganglion cell damage [99,100]. Kujawa-Hadryś et al. [101] reported that
the thickness of the corneal epithelium increased markedly through the end of incubation
in chick embryos. Several studies have been conducted examining normal retinal structure
in poultry [102,103]. However, there is insufficient information about the effects of MSG on
the cornea and retina in chicken embryos.

In this study, it was observed that corneal epithelium and total corneal thickness
increased considerably from day 15 to day 21 of incubation. In the MSG groups, both
corneal epithelium and total corneal thickness significantly decreased depending on the
dose on days 15, 18, and 21 of incubation compared with controls, (p < 0.05, Figure 2,
Table 1). In addition, detachment in the corneal epithelium was noted in the MSG groups.
It was further noted that in the MSG groups, total retinal thickness decreased significantly
on the incubation days examined compared with control groups, and thickness of both
the ONL, INL, GL, and NFL layers of the retinal layers on the 15th day, and the PR,
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ONL, INL, GL, and NFL layers on days 18 and 21, were significantly reduced (p < 0.05,
Figures 3A–I, 6A–I and 8A–I). In these groups, degenerative changes such as vacuolar de-
generation and retinal pigment epithelial detachment were observed. It was also observed
that the number of ganglion cells decreased markedly in all MSG groups in comparison
with the control groups on all days tested (p < 0.05, Table 2). These findings were consistent
with rat, mouse, and chicken studies [79,81–83,97,99,100].

This study has certain limitations that should be noted. First, it is difficult to calculate
the rate of MSG uptake from the yolk sac of the developing embryo; however, it can be
argued that this rate is proportional to the rate of embryo development. Moreover, the
chicken embryo model has the advantage of allowing potentially hazardous chemicals to
be investigated directly on the embryo. On the other hand, the detachments seen in the
cornea and retina bring to mind artificial separations in the sections. However, the absence
of such detachment in the control groups was evaluated as the effect of MSG.

5. Conclusions

It was observed that different doses of in ovo MSG administration caused histometric
and histopathological changes in both the cornea and retina. Since the data obtained
from studies using chicken embryos can also be adapted to mammals, the findings of this
study suggest that animals and humans exposed to MSG during the prenatal period may
have increased susceptibility to certain eye diseases during their lifetime. Given these
results, our study adds a new perspective to the literature. Nowadays, while exposure
to and/or consumption of MSG in various ways is rapidly and unsafely increasing, it
may be advisable to minimize or even prohibit eating foods containing MSG, especially
during pregnancy.
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