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Abstract

:

Wearable devices, such as headsets and activity trackers, rely heavily on the Bluetooth and/or the Bluetooth Low Energy wireless communication standard to exchange data with smartphones or other peripherals. Since these devices collect personal health and activity data, ensuring the privacy and security of the transmitted data is crucial. Therefore, we present a dataset that captures complete Bluetooth communications—including advertising, connection, data exchange, and disconnection—in an RF isolated environment using software-defined radio. We were able to successfully decode the captured Bluetooth packets using existing tools. This dataset provides researchers with the ability to fully analyze Bluetooth traffic and gain insight into communication patterns and potential security vulnerabilities.



Dataset: https://pubfaili.edi.lv/wearsecdata



Dataset License: CC-BY-SA
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1. Summary


Bluetooth is a very popular communication standard that is used to exchange data between devices over short range. It is mostly used by various types of wearable devices, smartphones, and computer peripherals. There are many existing studies that outline both the privacy and security risks with this standard, most notably the possibility to fingerprint the devices’ radio frequency (RF) waveform, thus breaking Bluetooth’s integrated privacy mechanisms [1,2,3], and the use of many successful fuzzing tools [4], which has serious security implications. To perform this kind of cybersecurity research one needs access to Bluetooth traffic. Specifically, RF fingerprinting requires working with raw RF waveforms, so we cannot use off-the-shelf Bluetooth dongles because those will output already processed (demodulated, decoded, etc.) RF data. Because both Bluetooth Classic (BTC) and Bluetooth Low Energy (BLE) operate in the 2.4 GHz band, which is also used by several other wireless technologies, such as Wi-Fi and Zigbee, it is difficult to isolate RF signals from the one Bluetooth connection we are interested in. One approach would be to try to decode all traffic and distinguish packets sent by their broadcast address (BD_ADDR). One widely used low-cost approach involves using the Ubertooth One board by Great Scott Gadgets, but since it uses an embedded RF (radio frequency) transceiver with a maximum bandwidth of 1 MHz [5,6], it can effectively only receive one Bluetooth channel at a time and cannot sniff all the packets presented. Another problem with the “decode everything we receive” approach is that even if we decode the BD_ADDR, we cannot be sure that it originates from the Bluetooth device we are interested in testing and not from something else nearby, since according to the Bluetooth SIG standard, the BD_ADDR must be randomized. Another prominent tool is the ice9-bluetooth-sniffer [7], which uses software-defined radio (SDR) to record raw radio signals and decode the entire received bandwidth, thus not missing any packets, but it still does not solve the problem of distinguishing between multiple devices which are using randomized BD_ADDR. In order to analyze the RF waveforms of a particular Bluetooth connection, it is necessary to isolate the devices of interest from the rest of the RF spectrum.



Several publicly available datasets capture Bluetooth packets in isolated environments, such as described by E. Uzundurukan, Y.Dalveren, A. Kara in “A Database for the Radio Frequency Fingerprinting of Bluetooth Devices” [8], where the researchers collected data from 27 different smartphones using a high sample rate oscilloscope. The dataset is available for download as .txt files containing voltage readings. Another dataset by A. Siddik et.al., “Wideft: A Corpus Of Radio Frequency Signals For Wireless Device Fingerprint Research” [9], includes not only Bluetooth data but also encompasses WiFi and other devices. In the “Wideft” dataset, the data are pre-processed by extracting energy bursts and stored in 16-bit samples, reducing the overall dataset size by eliminating inter-packet noise by skipping noise between packets. Both of these datasets solely encompass advertising data from Bluetooth devices and do not aim to capture a whole data exchange. A. Jagannath et al. have published two physical layer Bluetooth datasets as part of RF fingerprinting research [2,3], which capture “real-world” wireless traffic, as published in IEEE DataPort [10,11]. However, these datasets were collected in non-isolated indoor laboratory settings with emissions from other nearby devices and lacking controlled inter-device communication. To our knowledge, our dataset is the only publicly available dataset that captures the entire physical layer of Bluetooth communication between two devices in an isolated environment with controlled communication, without any destructive processing of the raw recording data.



The aim of this work is to publish a physical layer recording dataset of different wearable devices connecting to an Android smartphone in an isolated environment, thus providing researchers with the ability to fully analyze Bluetooth traffic without any external RF interference. Each recording is performed in an anechoic chamber and a full description of the recording is provided in the metadata.



The dataset presented consists of 32 of the most popular Bluetooth wearable device RF recordings, described in Section 3.2, and also an additional recording without any devices to capture the baseline noise level in an anechoic chamber, and one recording with Bluetooth data from a smartphone used as the master device in the remaining recordings—the Samsung Galaxy S20 FE. Each recording ranges from approximately 10 to 30 s in duration, with a sample rate of 100 × 106 and a data type of numpy.complex64. Timestamps for each part of the communication are included in the metadata file. For our dataset, a sample of the most popular wearable devices and device types was selected. Each device has two recordings (experimental trials) and each recording consists of two scenarios: paired and unpaired. Each radio recording consists of four phases as follows:




	
Advertising, during which only the device under test (DUT) transmits;



	
Pairing, when the DUT initiates pairing with an Android smartphone;



	
Data exchange, involving tasks such as audio playback or sensor reading;



	
Disconnect, when the Bluetooth of the Android smartphone is deactivated.








In our metadata, “paired” and “unpaired” denote whether the DUT was previously paired with an Android smartphone.



The data acquisition process utilized an Ettus Research USRP X310 [12] equipped with a CBX-120 daughterboard [13]. The sample rate was set to 100 MHz, with each sample composed of in-phase (I) and quadrature (Q) samples combined in a complex float variable format (numpy.complex64). The collected data are subsequently channelized into smaller bandwidth files for further processing. Following channelization, we conduct waveform detection, demodulation, and decoding in accordance with the Bluetooth standard. The decoding results are stored in separate files, occupying significantly less disk space. This allows analysis of Bluetooth traffic without having to deal with the physical layer data.



Because the recorded dataset is too large for common file sharing options such as Zenodo, which offers up to 50 GB of storage per dataset [14], we opted to host the dataset ourselves and make it public using a Nextcloud client, accessible through https://pubfaili.edi.lv (accessed on 22 February 2024).



The rest of this document is structured as follows: Section 2 describes the dataset as such, Section 3 discusses the methods used to acquire the data as well as data validation and quality, and finally, Section 4 contains some practical notes on using the data.




2. Data Description


The folder structure of the dataset is shown in Figure 1 and is the same for each wearable DUT:



As mentioned above, each device has two recordings (experimental trials) each consisting of paired and unpaired scenarios. In the context of our dataset, unpaired denotes that the device under test (DUT) was not previously paired with the Android smartphone, whereas paired signifies that the DUT had been previously paired and can be observed under “Paired” in the smartphone settings. The inclusion of both scenarios is crucial as it triggers different security key exchange mechanisms within the Bluetooth protocol stack [15], which could provide valuable insights for cybersecurity research. We did not implement a paired/unpaired split when collecting data from smartwatches. Instead of using regular Bluetooth connections to the smartphone, smartwatches utilize their specific applications to discover and connect to nearby devices.



For further processing, the radio.data is channelized into multiple channels, and the results are stored in the process folder. Each process folder comprises the outputs of two stages of channelization. In the first stage, the radio.data is channelized into four 25 MHz channels. In the second stage, each 25 MHz channel is further divided into five 5 MHz channels, resulting in a total of twenty 5 MHz channels. This processing is described in detail in Section 4.



The data themselves are described by the following files:




	
radio.data - IQ data from SDR, with a bandwidth of 100 MHz



	
top.yaml - YAML-formatted file containing metadata



	
radio_25_n.chdata - Channelized versions of radio.data into four 25 MHz channels, where   n = { 0 , 1 , 2 , 3 }  



	
radio_05_n_m.chdata - Each channel from radio_25_n.chdata is further divided into five 5MHz channels,   m = { 0 , 1 , 2 , 3 , 4 }  



	
device_name_recording_k_scenario.json - Demodulated and decoded Bluetooth data for each radio recording, saved in JSON format. The filename includes the device name, recording index k (1 or 2), and the scenario (paired or unpaired).









3. Methods


To acquire this dataset, we initially defined the scope of the problem as follows: To our knowledge, there is no publicly available dataset of complete BLC and/or BLE communication between two devices recorded in an isolated environment. We captured all phases of Bluetooth communication: advertising, connection establishment, data exchange, and disconnection. This was done because each of these communication phases utilizes different types of data packets, including ID, POLL, FHS, etc. [16]. We wanted the dataset to have a diverse range of packet types for a comprehensive analysis.



To achieve this goal, we devised a data acquisition setup as described in Section 3.1, then selected the devices for data acquisition as described in Section 3.2, and used the data acquisition methodology for each of these devices as described in Section 3.3, resulting in the final published dataset, the data quality of which we validated as described in Section 3.4.



3.1. Data Acquisition Setup


All of the recordings were performed in an anechoic chamber. The Android smartphone was connected to the PC via an optically decoupled USB hub, while the USRP X310 SDR was connected to the same PC via an SFP+ optical transceiver and an optical cable to minimize external interference. For each experiment, everything remained static and only the DUT changed. The setup is shown in Figure 2. The PC outside the chamber controls the Samsung Galaxy S20 FE smartphone via a USB connection and stores data from SDR to disk using Gnuradio software (version 3.10) [17].




3.2. Device Selection


As the recording device, we used the SDR USRP X310 with the CBX-120 daughterboard due to its capability to capture all Bluetooth channels simultaneously. For the Bluetooth master device, we selected the Samsung Galaxy S20 FE, given its status as a relatively modern smartphone at the time of the dataset recording. We used our limited funds to maximize the user base covered by our device list. To compile our list of wearable Bluetooth devices, we initially identified the most popular device categories by examining current Google Trends over the past five years. According to our analysis, headphones emerged as the most popular category, followed closely by activity trackers (inclusive of smartwatches). We then selected the top-selling devices in these two categories on Amazon at the time. The resulting list of devices is detailed in Table 1. Some of the system-on-chip (SoC) chipsets listed there were identified through physical disassembly of the devices followed by direct examination of the chipset inscriptions under a microscope.




3.3. Acquisition Methodology


Each radio recording follows the following methodology:




	
Turn on DUT in advertising mode and position it within the anechoic chamber.



	
Start SDR in receive mode.



	
Enable Bluetooth on the Android device and establish a connection to the DUT using the Android Debug Bridge (ADB) [18].



	
Exchange data with the DUT; for headphones, initiate audio playback, while for smartwatches/trackers, interact with specific apps to trigger sensor readings.



	
Disable Bluetooth on the Android device.



	
Terminate SDR receiving.



	
Write metadata.








We start each recording with the DUT already in advertising mode and placed inside the chamber, as activating the DUT often necessitates physical access. Through the ADB interface, we manage the remaining interactions, allowing us to timestamp critical steps within the communication process with reasonable accuracy as follows: enabling Bluetooth on the smartphone, establishing a Bluetooth connection, initiating data exchange, terminating data exchange, and disconnecting. This approach captures the entire communication between devices similarly to how it would happen in a real life scenario. Recording metadata keys are described in Table 2.



Bluetooth is enabled on the smartphone at 1.2 to 1.5 s after start of recording, and until then, only the DUT transmits advertising packets. The length of different communication phases varies between unpaired and paired scenarios and between different devices because Bluetooth devices can take different amounts of time to establish a connection. The duration of Bluetooth connection establishment ranges from 8.5 to 20.0 s for unpaired scenarios and from 4.7 to 17.0 s for paired scenarios, but varies significantly from device to device. Consequently, the start and stop times of the data exchange and disconnection phases in the recording also vary. The actual data exchange between the Android device and the DUT is terminated after approximately 5 s. For devices other than headsets, the Bluetooth connection management is handled by device-specific Android apps, and in our current setup, we cannot automatically determine when data exchange starts and stops for these devices.




3.4. Data Quality


To validate the recorded dataset for Bluetooth traffic analysis, we conducted Bluetooth data decoding similar to what would occur on the RF chip of a Bluetooth device. The analysis of the captured data involved the following steps:




	
Each 100 MHz wide recording was processed into four 25 MHz wide sample files with frequency shifts −30, −10, +10, +30 MHz, and decimated four times applying a Chebyshev type I filter of 10th order.



	
Each 25 MHz wide sample file was processed into five 5 MHz wide sample files with frequency shifts −5, −2.5, 0, +2.5, +5 and decimated five times applying a Chebyshev type I filter of 10th order (each resulting sample file represents four Bluetooth Classic channels).



	
Radio signals were detected using amplitude peak detection. Detecting included anything that was longer than the smallest BTC packet length and had an amplitude above a hard-coded multiplier of the average noise level.



	
Based on the frequency with the highest amplitude, the specific Bluetooth Classic channel was extracted from the signal samples.



	
Performing Gaussian frequency shift keying (GFSK) demodulation with multiple possible symbol start time shifts, generating multiple candidate demodulation results.



	
Conducting correlation with the expected preamble, trailer, and the fixed bits of the access word (…001101 or 110010), and the result used to score the candidate demodulation alternatives.



	
Where applicable, the header forward error correction (FEC) was decoded, and its error rate was also used to adjust the candidate demodulation score.



	
The decoded bits of the highest-scoring demodulation candidate were recorded in a file of potential packets along with other metadata (sample start, length, channel, LAP, etc.).



	
Since the resulting bits are whitened, further processing was performed to decode packets, e.g., detection of FHS packets, page central response packets, validation of possible de-whitening by checking FEC calculation, etc. This allowed decoding of the packet type, upper address part (UAP), and further processing of decoded packets (e.g., recovering payload).








During our analysis, we discovered that signal detection could be conducted simultaneously across multiple nearby channels. With four channels, we observed no significant differences in results compared to processing individual channels, while also obtaining a performance gain. As there is a filter with roll-off on the sides, we chose a bandwidth of 5 MHz which included a 0.5 MHz “buffer zone” on the edges for filter roll-off. This allowed us to avoid the effects of too steep a filter roll-off. Theoretically, we could have downsampled directly from 100 MHz into 5 MHz wide files, but this processing was practically inconvenient due to constraints of processing power and host RAM, and the described two-step process for channel splitting enabled us to complete the processing faster.



The resulting list of decoded packets includes a varying level of metadata (described in Table 3) depending on the success of the decoding steps (e.g., successful detection of an FHS packet may affect the ability to correctly de-whiten the data). We did not implement further packet processing logic based on the packet type, such as phase shift keying (PSK) demodulation for packets with enhanced data rate (EDR) payload parts, but the length of amplitude-based detection of the signal should also include the full PSK payload in the selected packet length.



We were also able to validate that the recorded data can be decoded with the open source ice9-bluetooth-sniffer [7] (commit 2d504c7), but that required a modification of the squelch setting from the default −45 dB to −22.2 dB in its settings to improve the rate of packet detection. This resulted in over 1000 decoded packets for most of the recordings.





4. User Notes


This section describes how to interact with the dataset, including two Python scripts for basic usage. Metadata, example radio and decoded data, and usage examples are available on GitHub 1 (accessed on 28 March 2024). It is not necessary to download the entire dataset to analyze a single recording, but we assume that the downloaded parts follow the folder structure described in Section 2. The following example Python scripts are provided to demonstrate the structure and use of the data.



plot_data.py is used to analyze the waveforms we provided in the dataset. It provides a basic user interface for selecting the recording of interest and generating time and frequency plots. The program will automatically set the correct sample rate and data type for both channelized options and non-channelized data. Please make sure you have enough free memory, as this program loads the entire selected radio recording into RAM. Figure 3 shows the output of python3 plot_data.py Sony_WH-1000XM5/recording_1/paired/top.yaml. This example demonstrates code to locate, select, and ingest the raw recording data.



demodulated_data.py demonstrates the demodulation and decoding results. It searches the entire dataset for the decoded data JSON files and prompts the user to select one of them. While providing valuable insight into wireless traffic, it is important to note that we used our own methods to decode the data and the results may not fully represent all traffic present. For instance, PSK demodulation, commonly used by Bluetooth devices, is not performed in our processing and, thus, is not included in the results. An example of the output of this script is shown in Figure 4. We consider that this demodulation and decoding validates the content of the recordings, demonstrating that the packet data can be recovered from the raw radio data samples.



We consider that the dataset is suitable for the following types of research and experiments, enabling validation of algorithms on samples from a larger variety of relevant devices than might otherwise be available to researchers:




	
Device model fingerprinting based on both physical layer and protocol aspects;



	
Testing of algorithms for radio data analysis, packet detection and decoding;



	
Exploration of Bluetooth protocol implementation differences in various chipsets;



	
Vulnerability research on data encryption weaknesses based on observation of the pairing process.
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The following abbreviations are used in this manuscript:



	ADB
	Android Debug Bridge



	BD_ADDR
	Broadcast Address



	BLE
	Bluetooth Low Energy



	BTC
	Bluetooth Classic



	DUT
	Device Under Test



	EDR
	Enhanced Data Rate



	FEC
	Forward Error Correction



	GFSK
	Gaussian Frequency Shift Keying



	PSK
	Phase Shift Keying



	RF
	Radio Frequency



	SDR
	Software Defined Radio



	SoC
	System-on-Chip



	UAP
	Upper Address Part
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https://github.com/edi-riga/Wearable_device_dataset/tree/main.
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Figure 1. Example of a dataset folder structure for a single DUT. 
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Figure 2. Anechoic chamber with recording setup. Parts of the setup are marked in blue. The USRP X310 (1) serves as a recording device of the Bluetooth connection between the DUT (2) and the Samsung Galaxy S20 FE (3). (3) is connected to the PC via an optically decoupled USB hub (4) while (1) is connected to the same PC via an SFP+ optical transceiver and an optical cable. 
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Figure 3. Example output of plot_data.py program. 
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Figure 4. Example output of demodulated_data.py program. 






Figure 4. Example output of demodulated_data.py program.



[image: Data 09 00053 g004]







 





Table 1. Devices in the dataset.






Table 1. Devices in the dataset.





	Folder Name
	Class
	Bluetooth Version
	Chipset





	Amazfit_Band_5
	Activity Tracker
	5.0
	not disclosed



	Apple_AirPods_(3nd_generation)
	Headset
	5.0
	Apple H1



	Apple_AirPods_Pro_(2nd_generation)
	Headset
	5.3
	Apple H2



	Apple_Watch_SE_(2nd_Gen)
	Activity Tracker
	5.3
	Apple S5



	Apple_Watch_Series_8
	Activity Tracker
	5.3
	Apple S8



	Beats_Solo3_Wireless
	Headset
	4.0
	Apple W1



	Bose_QuietComfort_Earbuds_II
	Headset
	5.3
	Qualcomm QCC5171



	eSense
	Headset
	-
	not disclosed



	Fitbit_Charge_5
	Activity Tracker
	5.1
	not disclosed



	Fitbit_Versa_4
	Activity Tracker
	5.2
	not disclosed



	Garmin_Instinct_Crossover
	Activity Tracker
	5.0
	not disclosed



	Garmin_Venu_SQ
	Activity Tracker
	5.0
	Nordic Semiconductor nRF52810



	Garmin_Vivoactive_4
	Activity Tracker
	5.0
	not disclosed



	Google_Pixel_Buds_Pro
	Headset
	5.3
	Broadcom BCM43015A0WKUBG



	Google_Pixel_Watch
	Activity Tracker
	5.2
	Exynos 9110+Cortex M33



	Huawei_Band_3e
	Activity Tracker
	4.2
	Ambiq Micro Apollo3 Blue



	I7-TWS
	Headset
	-
	not disclosed



	JBL_TUNE510BT
	Headset
	5.0
	Realtek RTL8763B



	Unknown_BT_headphones_black
	Headset
	-
	not disclosed



	Mangoman
	Headset
	-
	not disclosed



	noise
	-
	-
	-



	Raycon_The_Everyday_Earbuds
	Headset
	5.0
	Airoha AB1562M



	Redmi_Buds_3
	Headset
	5.0
	not disclosed



	Samsung_Galaxy_Buds2_Pro
	Headset
	5.3
	BES BES2700YP



	Samsung_Galaxy_S20_FE
	Smartphone
	5.0
	not disclosed



	Samsung_Galaxy_Watch5
	Activity Tracker
	5.2
	Exynos W920



	Smart_Bracelet_LP715(G)
	Activity Tracker
	4.0
	not disclosed



	Smart_Bracelet_XMSH07HM
	Activity Tracker
	4.0
	not disclosed



	Sony_WF-1000XM4
	Headset
	5.2
	MediaTek MT2822SA



	Sony_WH-1000XM5
	Headset
	5.2
	MediaTek MT2822AA



	Xiaomi_Smart_Band_7
	Activity Tracker
	5.2
	Dialog DA14706



	ZABBOW_Scorpion
	Headset
	-
	not disclosed
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	Key
	Description





	recording_date
	The date the radio recording was made.



	recording_location
	Location where the radio recording was made.



	recording_device
	Parameters regarding the recording device.



	device_type
	Type of device involved, for example, SDR.



	model
	Model of device_type.



	daughterboard
	RF Frontend, USRP’s use term daughterboard.



	attenuator
	External attenuator (if) used.



	antenna
	Antenna used.



	uhd_version
	Driver version for SDR.



	sample_rate
	Sample rate used.



	center_frequency
	Center frequency, Hz.



	gain
	Internal gain value for the recording device.



	DC_correction
	Whether DC correction was used or not. In USRP UHD driver, this is “uhd.tune_request()”



	output_file
	Output recording file with reference to metadata location.



	wearable_device
	Parameters regarding the wearable device (DUT).



	device_type
	Device type: Smartwatch/smartband or headphones, or smartphone.



	BD_ADDR
	Wearable device Bluetooth address as shown in smartphone settings or master Bluetooth address.



	bluetooth_version
	Bluetooth version used.



	android_app
	Specific Android app used for data exchange, in this dataset used for smartwatches.



	android_app_version
	Version of android_app



	master_device
	Parameters regarding the master device, in this dataset Samsung Galaxy S20 FE.



	recording_duration_seconds
	Duration of recording in seconds.



	recording_timeline_description
	Events at which Android Debug Bridge triggered connection events in smartphone. Seconds.



	enabling_Bluetooth_on_smartphone
	Time in recording at which Bluetooth was enabled on smartphone. Seconds.



	Bluetooth_connection_established
	Time at which pairing with wearable device was complete. Seconds.



	start_data_exchange
	Time at which data exchange with Wearable device was triggered. Seconds.



	stop_data_exchange
	Time at which data exchange with Wearable device was stopped. Seconds.



	disconnected
	Time at which Android Debug Bridge triggered to turn off smartphone’s Bluetooth. Seconds.



	event_scenario
	Event as described in Section 3.2. Paired, unpaired or advertising.



	event_description
	Description of what was happening during recording in free form.



	file_format
	File format of output_file.



	channelized_data
	Parameters regarding the channelized data.



	channels_25
	Parameters regarding the data channelized into four 25 MHz channels.



	output_file_ch25
	File names of channelized data with reference to metadata location. 25 MHz channels.



	sample_rate_ch25
	Sample rate of output_file_ch25.



	center_frequency_ch25
	Center frequencies of output_file_ch25 in same order as output_file_ch25.



	channels_05
	Parameters regarding the data channelized into twenty 5 MHz channels.



	output_file_ch05
	Filenames of channelized data with reference to metadata location. 5 MHz channels.



	sample_rate_ch05
	Sample rate of output_file_ch05.



	center_frequency_ch05
	Center frequencies of output_file_ch05 in same order as output_file_ch05.
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	Key
	Description





	Packet
	Packet sequence number within the radio recording



	sample_file
	Path to the sample file containing the origin recording



	left
	Packet first sample in sample file for this packet



	right
	Packet final sample in sample file for this packet



	length
	right–left, length of the signal in samples



	signal_max
	Maximum amplitude of the detected signal



	signal_mean
	Signal mean amplitude



	payload_std
	Standard deviation of the signal amplitude. Calculated only if the overall length of the signal is sufficient for payload EDR payload



	index_25
	Which of the four 25 MHZ channelized recordings



	index_5
	Which of the five 5 MHZ channelized recordings



	local_freq
	Local frequency within the 5 MHz sample file



	demod_start
	Offset of performed GFSK demodulation start from the signal start



	bits
	Decoded bits (if available)



	packet_lt_addr
	Bluetooth logical transport address (LT_ADDR)



	packet_type
	Header TYPE field



	packet_flow
	Header FLOW field



	packet_arqn
	Header ARQN field



	packet_seqn
	Header SEQN field



	packet_hec
	Header HEC field



	packet_id
	Is the packet an ID packet?



	header_fec
	Ratio of header FEC 1/3 bits, which are equal (higher number—more likely decoding is correct)



	clock
	Starting sample in sample_file for demodulated packet (left + demod_start)



	lap
	LAP (lower address part)



	comment
	Additional comments (if any)



	header
	Packet header
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