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Abstract: Machine learning (ML) methods are commonly applied in the fields of extraterrestrial
physics, space science, and plasma physics. In a prior publication, an ML classification technique,
the Random Forest (RF) algorithm, was utilized to automatically identify and categorize erroneous
signals, including instrument errors, noisy signals, outlier data points, and the impact of solar
flares (SFs) on the ionosphere. This data communication includes the pre-processed dataset used
in the aforementioned research, along with a workflow that utilizes the PyCaret library and a post-
processing workflow. The code and data serve educational purposes in the interdisciplinary field of
ML and ionospheric physics science, as well as being useful to other researchers for diverse objectives.

Dataset: https://zenodo.org/records/10433194 (accessed on 26 December 2023)

Dataset License: CC-BY 4.0

Keywords: machine learning; open data; ionospheric anomaly classification; open-source software

1. Summary

Numerous machine learning (ML) algorithms and pre-processing techniques have
been made possible by rapid advancements in computer science, data science, and data
analysis. It can be noted that it takes a lot of time and effort to manually verify, review,
and exclude data from an ionospheric very-low-frequency (VLF) investigation during
intense occurrences [1,2]. Nevertheless, ML classification methods can be used to automate
this job. We evaluated the Random Forest (RF) algorithm [3] in our prior publication [4]
with the purpose of automatically classifying erroneous ionospheric VLF amplitude data
points during solar flare (SF) investigation/detection. These erroneous data points were
categorized as representing SF events, instrumentation errors, or noisy signals. Due to
its ease of use and simplicity (few hyperparameters to tune and a reduced likelihood of
overfitting the model due to averaging/voting [5] and the law of large numbers [3]), the
RF algorithm is considered a first choice for various ML tasks [6,7]. Consequently, it was
a suitable selection for the given research purpose. However, as stated in the research
paper [4], it is advantageous to extend the original dataset and test additional classification
algorithms in order to possibly increase the predictive power of the algorithms.

This data report fulfills two objectives: firstly, it will catalog and provide a link to
the data employed in this study, thereby making them accessible to a broader range
of researchers, professionals, and others, and secondly, it will include a workflow that
integrates the PyCaret library [8], enabling the comparison and testing of fifteen models in
total (data and code available at Supplementary material). The chapter methods, i.e., the
workflow description, will provide a comprehensive overview of the workflow utilized in
conjunction with the data. A synopsis of the pre-processing steps performed during the
construction of the original dataset is also available in [4].
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2. Data Description

The datasets that were originally obtained and labeled (erroneous values were filtered
out) for other research purposes in September and October of 2011 provided a favorable
opportunity to evaluate ML classification on this type of data. The original and labeled
samples were combined into a single data source, to which additional data (X-ray irradiance,
transmitter and receiver data, and local receiver time) were added (Figure 1). The target
variable was obtained from the labeled, i.e., filtered, dataset where each instance which
was filtered out of the original dataset was annotated as 1 (anomalous data class) and the
data that remained were annotated as 0 (normal data class). The feature extraction process
was performed by analyzing statistical features of the VLF amplitude and X-ray irradiance
signals. The statistical features utilized included rolling window statistics such as mean,
standard deviation, and median, with three different window sizes (5, 20, and 180 min).
Additionally, lagged signals and other measures such as rate of change, first- and second-
order difference, etc., were also employed. Due to the imbalanced nature of the given
ML task, random undersampling [9–11] was performed to balance the distribution of the
target labels. As a result, the final dataset was generated. To obtain a more comprehensive
explanation of the data pre-processing, refer to [4].
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Figure 1. Data pre-processing workflow (modified after [4]).

The dataset was divided into two separate sets: the training dataset and the test
dataset. Both of these sets have been pre-processed and are provided as links. The workflow
described below can be readily applied to these pre-processed versions of the dataset.

3. Methods (Workflow Description)

Prior to executing the code, the user must specify the input variables, which include
the training and test datasets, as well as the visualization range. The initial stage of the
workflow involves ML modeling, where the PyCaret library employs the training dataset
to conduct a comparison among 15 ML algorithms (Figure 2 and Table 1). After conducting
the comparison, the model with the best evaluation metrics and statistics is selected as
the overall best model. This model is then used for the hyperparameter tuning process to
further optimize the model. The last step involves employing the optimized model to make
predictions on the given test dataset. This process generates an output file that includes
the predictions made by the most effective and fine-tuned ML algorithm, along with the
features and target variables. The post-processing workflow can be summarized in four
steps: decoding the data from each transmitter and receiver, separating the individual
transmitter–receiver pairs due to the presence of 19 pairs in the test dataset, computing
per-class evaluation metrics for each pair, and finally visualizing the true and predicted
data labels using the specified input range at the start of the workflow.
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Figure 2. Workflow for ML modeling and post-processing.

The evaluation metrics employed for the workflow consist of the confusion matrix, as
well as the true positive (TP), true negative (TN), false positive (FP), and false negative (FN)
values for each class. Furthermore, the workflow presents accuracy, precision, and F1-score
values for each class as well. The overall metrics are also displayed as an output of the
workflow. However, due to the highly imbalanced ML task in question, greater emphasis
should be given to per-class evaluation metrics. Furthermore, a comprehensive overview
of all evaluation metrics can be found in [4]. However, for the purpose of this brief data
descriptor, we will provide a short definition of the F1-score. The F1-score is calculated as
the harmonic mean of the true positive (TP) rate, also known as recall, and the precision
parameter. When evaluating imbalanced ML tasks, the F1-score is typically preferred over
accuracy [12,13].

The ML workflow’s results are displayed in Figure 3b. All three panels represent the
signal obtained from the NAA-Walsenburg transmitter–receiver pair. The signal’s duration
in Figure 3 spans 600 min, beginning on 19 October 2011 at 14:37 UT and concluding on 20
October 2011 at 1:37 UT. In addition, the workflow also provides the evaluation metrics
for each transmitter–receiver pair, specifically the F1-score. In the given example shown in
Figure 3b, the anomalous data class has an F1-score of 0.65, while the normal data class has
a score of 0.96. This results in a total F1-score of 0.93.

A comparison of the outcomes produced by the workflow integrating the PyCaret
library and the transmitter–receiver pair utilized by [4] employing the RF algorithm reveals
a distinction. The PyCaret algorithm ascertains that the Extra Trees Classifier (ET) is
the optimal overall model for the given task. The comparison of the outputs clearly
illustrates that, at least for the instance depicted in Figure 3, the ET classifier is more
suitable. However, additional investigation is required to ascertain the specific conditions
that require a certain model.
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Table 1. Models in the PyCaret library. For more details please see [3,14–23].

# Model Name Python Function More Information at:

1 Logistic Regression lr [14]

2 Ridge Classifier ridge [14]

3 Linear Discriminant Analysis lda [15]

4 Random Forest Classifier rf [3]

5 Naive Bayes nb [14]

6 Gradient boosting Classifier gba [16]

7 Adaboost Classifier ada [17]

8 Extra Trees Classifier et [18]

9 Quadratic Discriminant Analysis qda [19]

10 Light Gradient Boosting Machine lightgbm [20]

11 K Neighbors Classifier knn [21]

12 Decision Tree Classifier dt [22]

13 Extreme Gradient Boosting xgboost [23]

14 Dummy Classifier dummy [15]

15 SVM Linear Kernel svm [14]
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Figure 3. (a) Visualization of actual class labels for the NAA_Walsenburg transmitter–receiver pair
from 19 October 2011 14:37 to 20 October 2011 01:37, obtained from [4]; (b) predictions made by the
Extra Trees Classifier from the PyCaret library for the same time period; (c) predictions made by the
Random Forest Classifier from the same time period, obtained from [4].

In addition to conducting additional research to identify the most suitable model for
different scenarios, it is crucial to undertake a comprehensive data acquisition endeavor to
further enhance the predictive capabilities of a model. Additional data collection would
allow the model to acquire observations from a wider array of events and varying degrees
of potential noise levels. For example, data from different time periods within one or a
couple of solar cycles can be utilized, etc. Acquiring this level of detailed data requires
the collaboration of a larger team of researchers to label and verify the data in a semi-
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manual manner. Following this undertaking, the model has the potential to be significantly
enhanced and additional solutions can be devised to cater to a larger research community,
for instance, the creation of standalone software with a user-friendly interface that can be
utilized by a diverse group of researchers for data VLF pre-processing.

4. User Notes

Researchers may benefit from this database and method/analysis. The code and data
serve educational purposes in the interdisciplinary field of ML and ionospheric physics
science, as well as being useful to other researchers for diverse objectives. The benefits of
these data are the fact that manual data labeling is a laborious undertaking that requires
the time of a few researchers. This dataset fulfills the function of being a publicly accessible,
annotated dataset that can be employed by researchers to experiment with various research
perspectives, thereby conserving both time and labor. The study of space weather (which in-
cludes VLF ionospheric research) is highly significant for the broader community (for more
information see [24]), as it offers a valuable understanding of the sun–earth connection [25].
This research can enhance our comprehension of space weather phenomena, which in turn
will have significant implications for navigation systems, telecommunications, and other
related fields.

Supplementary Materials: The following supporting information can be downloaded at https://
zenodo.org/records/10433194 (accessed on 26 December 2023).
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25. Kolarski, A.; Srećković, V.A.; Arnaut, F. Low Intensity Solar Flares’ Impact: Numerical Modeling. Contrib. Astron. Obs. Skaln.

Pleso. 2023, 53, 176–187. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-981-19-5170-1_8
https://www.pycaret.org
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1109/IRI.2018.00018
https://doi.org/10.1145/3490725.3490748
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.1109/ICDM.2002.1184018
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1080/01621459.1989.10478752
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1007/BF00116251
https://arxiv.org/abs/1603.02754v3
https://doi.org/10.1016/B978-0-12-811788-0.00001-9
https://doi.org/10.31577/caosp.2023.53.3.176

	Summary 
	Data Description 
	Methods (Workflow Description) 
	User Notes 
	References

