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Abstract: The importance of preventing failures in bearings has led to a large amount of research
being conducted to find methods for fault diagnostics and prognostics. Many of these solutions, such
as deep learning methods, require a significant amount of data to perform well. This is a reason why
publicly available data are important, and there currently exist several open datasets that contain
different conditions and faults. However, one challenge is that almost all of these data come from
a laboratory setting, where conditions might differ from those found in an industrial environment
where the methods are intended to be used. This also means that there may be characteristics of the
industrial data that are important to take into account. Therefore, this study describes a completely
new dataset for bearing faults from a pulp mill. The analysis of the data shows that the faults vary
significantly in terms of fault development, rotation speed, and the amplitude of the vibration signal.
It also suggests that methods built for this environment need to consider that no historical examples
of faults in the target domain exist and that external events can occur that are not related to any
condition of the bearing.
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1. Introduction

The prevalence of bearings in different industrial applications and the anticipation of
eventual failure [1] has led to a substantial amount of research being conducted that focuses
on diagnostic and prognostic methods for bearing faults. These range from physics-based
methods [2] to machine learning solutions. Recently, deep learning has become a valuable
tool that can learn complex features in data from sources such as vibrations [3–5]. The latter
includes methods based on manually extracted features [6] and raw vibration data [7]. In
addition, for scenarios where labels are lacking, few-shot [8] and transfer learning methods
are currently being studied [5,9,10]. Yet, these methods are highly dependent on data
for training and testing. Currently, there exist different datasets that include high-quality
data with a number of different fault scenarios, both artificially induced and naturally
occurring. Despite this, the most significant issue with the currently available data is that
few datasets contain data from a real industrial context. Given the lack of available data, it
is unclear to what extent methods built in a laboratory environment work in an industrial
environment [4,5]. In addition, there may be characteristics of the data in the industrial
environment that are important to consider when building methods for bearing faults,
which are currently unknown. Therefore, this study aims to describe a completely new
bearing-fault dataset from an industrial environment.

To achieve this, this study presents 10 different cases of different bearing faults, in-
cluding ball, inner, and outer faults, as well as 1 case where an external event affects the
vibration signal.
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2. Extended Background

Several datasets have been published containing bearing faults. This includes the IMS
dataset [11], the Paderborn University (PU) dataset [12,13], the Case Western Reserve Uni-
versity (CWRU) dataset [14], the Pronostia dataset [15], the Society for Machinery Failure
Prevention Technology (MFPT) dataset [16], the Southeast University (SEU) dataset [17,18],
the HUST dataset [19,20], and the time-varying dataset from Ottawa University [21]. As
can be seen in Table 1, these datasets contain faults that have either been artificially induced,
such as the CWRU and HUST datasets, or are naturally occurring such as the PU dataset.
In addition, there are differences in how the datasets have been constructed. The IMS
and Paderborn datasets have a run-to-failure setup, where the dataset for a single bearing
contains all the data for its lifespan, starting from normal behaviour to failure. This differs
from, for example, the CWRU and HUST datasets, which only contain data on faults and
normal behaviour. Furthermore, these datasets contain data on bearings with different
sizes, loads, and speeds. Overall, they cover a variety of different scenarios for different
types of applications.

Table 1. Overview of public datasets.

Dataset Environment Fault Type

IMS [11] Laboratory Natural
CWRU [14] Laboratory Artificial

Pronostia [15] Laboratory Natural
PU [12,13] Laboratory Artificial and natural

HUST [19,20] Laboratory Artificial
MPFT [16] Laboratory and three cases with industrial data Artificial and natural
SEU [17,18] Laboratory -
Ottawa [21] Laboratory Artificial

As all of the above-mentioned datasets were created in a controlled laboratory environ-
ment, high-quality data can be obtained that are also easily verifiable and arguable, making
them suitable for benchmark applications. This means, for example, that they provide
data with a high sampling rate and also that the faults have been clearly documented.
However, the major issue with only using laboratory-based data is that the data found in
an industrial environment may be different [4,5]. In this scenario, methods that perform
well on the currently available data may not perform well in reality. It is, therefore, of
great importance to make industrial data available not only to characterise the data but
also to enable the use of data from the environment in which the methods are intended to
be used. To achieve this, this paper will describe a new dataset for bearing faults from an
industrial environment.

3. Experiment
3.1. Setup

To identify different cases and describe key traits of real industrial data, historical
cases of bearing faults at a pulp mill factory were evaluated. The evaluation was based on
data between 2019 and the end of 2022, and cases including bearings that showed clear
signs of faults were selected. This was verified by both (when available) analyses of the
faulty bearing when changed and by manually analysing the data prior to the bearing
being changed.

Ultimately, 11 different cases were identified, which are summarised in Table 2. For
each case, we provide two datasets: one with a period of four months of normal data,
called the training dataset, and one with a period of four months prior to the bearing being
changed because of a defect, called the test dataset. An exception was made when data
from less than four months were available before the change; in such cases, all available
data were used. In addition, the last bearing (bearing 11) contained a fault that was not
related to a bearing but was included as an example of external events being present, as
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described in Section 4.3. The period prior to the change of the bearing either contained
both normal and faulty data or only faulty data, depending on the fault development. The
normal data were collected after the change of the bearing to ensure that no fault was
present in the bearing. For all datasets, when available, both the drive-side and free-side
measurements were collected.

Table 2. Overview of the different cases.

ID Bearing Sampling
Rate (Hz) Placement Placement

Side Fixed Speed
Average
Rotation

Speed (RPM)
Fault Type

1 SKF 22320 E 640 Wire roller DS No 1120.6 Inner ring
2 SKF 6310 5120 Engine DS Yes 1162.0 Outer ring
3 SKF 6310 512 Wire roller FS No 34.6 Inner ring
4 SKF NU328 E 8192 Pump FS No 1100.3 Inner ring
5 SKF 7312 BEAP 12,800 Pump DS No 2483.5 Ball
6 SKF NU328 E 6400 Pump FS No 1208.2 Inner ring
7 SKF 7221 BECBY 4096 Strainer Upper Yes 700 Inner ring
8 SKF 6228 5120 Engine DS No 1105.9 Outer ring
9 SKF 6310 5120 Engine DS Yes 1162.0 Outer ring

10 SKF NU316 ECP 5120 Engine DS No 189.3 Outer ring
11 SKF 6228 5120, 12,800 Engine FS No 189.3 Not bearing related

3.2. Data Acquisition

The raw vibration was collected using a CMSS 2200 accelerometer, and the rotation
speed of the shaft was collected using the inductive tachometer IFM IFS286. The data were
logged using an IMx-8 unit.

3.3. Dataset Design

All datasets were in .mat format and structured consistently, as described in Table 3.
Apart from the raw data, the datasets contained the fault frequencies of the bearing, the
date of each measurement, the sampling rate for each measurement, the rotation speed
of the shaft, and the label for each measurement. In some cases, such as for bearings 1
and 3, the sampling rate was low. However, in those scenarios, the measurement time
was high and the defect frequencies of the bearing were low, meaning that a significant
amount of rotations were still recorded in the measurements. Overall, the lowest number of
multiples of the inner ring (the component with the highest defect frequency) considering
each measurement and the sampling rate of all cases was around 38, and the average
was 50. The labels were set based on manual analyses of the data. This was achieved by
analysing the fault frequencies in relation to the enveloped frequency spectrum, which
was created using the Hilbert transform and Fast Fourier Transform (FFT). The FFT is a
simple method that has been used to detect faults in vibration data in previous studies
such as [12,22]. For all measurements, when the machine was turned off or when no shaft
speed was recorded, the label was set to −1. For normal conditions, it was set to 0, and for
a fault condition, it was set to the specific fault type, which was 1 for an inner-ring fault,
2 for a ball fault, and 3 for an outer-ring fault. In cases where signs of multiple faults were
observed, the most distinct fault class was selected. In scenarios where the shaft speed was
missing, the value was set to 0.
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Table 3. Data structure.

Field Data
Type

Description

id Integer The identification of the bearing.

assetDescription String Description of the asset that the bearing is part of.

faultOrigin String The placement of the fault, for example, DS.

faultType Integer Fault type for the dataset: 0 for no fault, 1 for an inner-ring fault, 2 for a ball
fault, and 3 for an outer-ring fault.

fromDate String Start date of the dataset.

toDate String End date of the dataset.

fixedSpeed Integer 1 if fixed speed and 0 if not fixed speed.

<placement> Object Contains data for a certain placement of a bearing. A dataset can have one or
two bearing placements. Values can be “DS”, “FS”, “upper”, “lower”.

<placement>.assetName String Bearing type, for example, SKFNU322E.

<placement>.faultFrequencies Array The shaft speed (in Hz) multiples for the fault frequencies FTF, BPF, BPFI,
and BPFO.

<placement>.unit String The unit for the vibration signal.

<placement>.rawData Array The raw vibration measurements.

<placement>.samplingRate Array The sampling rate for each measurement.

<placement>.RPM Array The shaft speed in RPM for each measurement.

<placement>.time Array The time for each measurement.

<placement>.label Array Label for each measurement: −1 for when the machine was turned off, 0 for
normal, 1 for inner fault, 2 for ball fault, and 3 for outer fault.

3.4. Limitations

In contrast to publicly available datasets built in laboratories, there were inconsisten-
cies in the sampling rate and sampling time. Unfortunately, this meant that in some cases,
the sampling rate was significantly lower than what was recommended by previous re-
search [22]. Furthermore, as it was impossible to know exactly when faults started showing
in the bearing without visually examining it, some labels were likely incorrect in terms
of the start and end dates. Setting labels based on manual analyses also introduced the
possibility of errors, meaning that the labels may have slight inaccuracies. Despite these
limitations, it was our ambition to publish the data as they are, with the motivation that
similar challenges are expected in other industrial cases.

4. Analysis of Data

Regarding the observations related to the data collected from the industrial envi-
ronment, some interesting aspects were identified. These included fault development,
variations in operating conditions, external events, and the sparsity of faults.

4.1. Fault Development

One aspect identified was the differences in the fault development time, as can be
observed in Figure 1. This was analysed using the same method as the labelling procedure,
that is, the enveloped frequency spectrum constructed by the Hilbert transform and FFT. In
most cases, the development was slow, meaning that no apparent changes in the damage
were seen during the last few months before the change of the bearing, such as the fault in
bearing 1. Figure 2a shows the data from the first reading of the test dataset, and Figure 2b
shows the last reading from the test dataset. As can be seen, there were no apparent
differences in the data.
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Figure 1. The fault development time for each bearing in the test dataset.

(a) (b)

Figure 2. (a) Measurements four months prior to bearing change for bearing 1. Symptoms of the
inner-ring fault are shown. (b) Last measurements before bearing change. The same symptoms of the
inner-ring fault are shown.

However, in other cases, such as bearing 8, the fault developed quickly and progressed
from no damage to severe damage in a matter of days before it was changed. This can
be observed in Figure 3. Figure 3a shows the measurements taken around 7 days before
the bearing was changed. As can be seen, no clear fault can be seen in the data. Figure 3b
illustrates the measurements taken around 6 days prior to the change, and the initial signs
of an outer fault can be observed. Lastly, Figure 3c shows the last measurements taken
before the change, and at that time, clear signs of an outer fault are visible. The significant
differences in the fault development time among the different cases highlight the challenge
of predicting the remaining useful life of bearings in an industrial environment.

(a) (b)

Figure 3. Cont.
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(c)

Figure 3. (a) Measurement around 6 days prior to bearing change for bearing 8. No symptoms are
shown. (b) The first symptom of outer ring fault around 5 days before bearing change. (c) Last
measurement before bearing change. Clear symptoms of an outer ring fault.

4.2. Variations in Operating Conditions

Another aspect identified by inspecting the different cases was the variations in
operating conditions. These conditions encompass the differences in the load and rotating
speed of the shaft, which have been considered in the currently available datasets [12,14,21],
as well as noise. Firstly, the rotation speed ranged from slow rotation to fast rotation, and
from fixed speed to varying speed, which can be seen in Figure 4. In terms of analysing
the variations in the noise and load, since the actual levels were unknown, we used the
root mean square (RMS) value of the normal data for the different cases as an indicator.
We used this measurement because it can provide an overview of the amplitude of the
vibration signal [23]. As shown in Figure 5, there were variations in the amplitude of the
vibration signal among the bearings, which can be attributed in part to the different loads
and noise levels.

Figure 4. The speed of the rotating axle for each bearing in the training data.

Figure 5. The root mean square (RMS) of the vibration measurements for each bearing in the
training data.
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4.3. External Events

External events were another parameter of interest identified in the data from the
industrial environment. These were events that caused the signal to change from its normal
appearance, without any bearing fault being present. This can, for example, be an event
related to another type of fault such as a shaft imbalance or vibrations caused by changes
made in the production process. An example is bearing 11, which is shown in Figure 6a,
where an imbalance caused the signal to significantly shift from its normal behaviour,
which is shown in Figure 6b. This is important because it means that methods built for
bearing-fault detection need to be able to handle faults that are present in the data but not
directly linked to a faulty bearing.

(a) (b)

Figure 6. (a) Example for bearing 11, where the signal significantly shifted from its normal behaviour
but is not related to the bearing. The upper figure shows the time signal and the lower figure shows
the envelope spectrum. (b) The normal behaviour of bearing 11. The upper figure shows the time
signal and the lower figure shows the envelope spectrum.

In addition, in several of the cases considered but not included in the published data,
missing speed data readings, as well as missing vibration data, were observed, which could
potentially affect the accuracy of the analysis and likely need to be managed in applications
intended for industrial environments.

4.4. Sparsity of Faults

The last aspect identified was the sparsity of faults. In this study, we were able to
access readings from a large number of bearings from the factory, and during the four-year
period, only a few had been changed due to defects (we are not allowed to disclose the
exact number). In all cases, there was an abundance of normal data but no historical data
on faults for each bearing were available. This highlights the importance of finding generic
solutions for bearing-fault detection and prognostics. These solutions should be capable
of achieving high accuracy on completely new data, without relying on prior knowledge
of fault scenarios from the target domain. Additionally, it means that evaluation methods
should be formulated so that they heavily penalise false positives in the normal data.

5. Comparison to Currently Available Datasets

The analysis of the described dataset confirms the findings of previous studies that
industrial data are heterogeneous [4,5]. In contrast to the current publicly available datasets
from the laboratory environment, where the same bearing position is used and only the
controlled parameters vary across setups, all cases in the described dataset originate from
different equipment in the factory, each with a different setup. This suggests that few, if
any, assumptions can be made about the data obtained from the industrial environment.
Because of the lack of previously published bearing datasets under these circumstances, it
is still unclear to what extent the variations in the conditions in an industrial environment
can be replicated in a laboratory environment. Considering this, as has been highlighted by,
for example [4,5], it is of great interest for future research to evaluate the extent to which
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methods can be developed to generalise knowledge from the laboratory environment,
where it is easy to obtain high-quality data, and use it in the industrial environment. It
is our hope that the described dataset can contribute to a better understanding of this
possibility and support advancements in this field.

6. Conclusions

The purpose of this study was to describe a new dataset obtained from an industrial
environment. To achieve this, 10 different bearings with faults and 1 scenario, where an
external event significantly altered the vibration signal from its normal state, were described.
This study found that the data from the industrial environment varied significantly in terms
of fault development, rotation speed, and the normal level of the amplitude of the vibration
signal. Furthermore, the analysis of the data showed that external events can occur in
an industrial environment, which makes the vibration signal differ from its normal state,
without being related to any bearing fault. Lastly, this study found that faults in this
environment were rare and that historical examples of faults in the target domain cannot
be expected when building fault-detection and prognostic methods.
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