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Abstract: Mortality shocks, such as pandemics, threaten the consolidated longevity improvements,
confirmed in the last decades for the majority of western countries. Indeed, just before the COVID-19
pandemic, mortality was falling for all ages, with a different behavior according to different ages and
countries. It is indubitable that the changes in the population longevity induced by shock events, even
transitory ones, affecting demographic projections, have financial implications in public spending as
well as in pension plans and life insurance. The Short Term Mortality Fluctuations (STMF) data series,
providing data of all-cause mortality fluctuations by week within each calendar year for 38 countries
worldwide, offers a powerful tool to timely analyze the effects of the mortality shock caused by
the COVID-19 pandemic on Italian mortality rates. This dataset, recently made available as a new
component of the Human Mortality Database, is described and techniques for the integration of its
data with the historical mortality time series are proposed. Then, to forecast mortality rates, the
well-known stochastic mortality model proposed by Lee and Carter in 1992 is first considered, to
be consistent with the internal processing of the Human Mortality Database, where exposures are
estimated by the Lee–Carter model; empirical results are discussed both on the estimation of the
model coefficients and on the forecast of the mortality rates. In detail, we show how the integration
of the yearly aggregated STMF data in the HMD database allows the Lee–Carter model to capture
the complex evolution of the Italian mortality rates, including the higher lethality for males and
older people, in the years that follow a large shock event such as the COVID-19 pandemic. Finally,
we discuss some key points concerning the improvement of existing models to take into account
mortality shocks and evaluate their impact on future mortality dynamics.

Keywords: stochastic mortality models; Human Mortality Database; mortality shocks; COVID-19

1. Introduction

According to the World Health Organization (WHO), a pandemic can start when
three conditions occur: the emergence of a disease is new to the population, the agent
infects humans causing serious disease, the agent spreads easily and sustainably among
humans [1]. Pandemics can threaten millions of lives, damage societies, and take down
economies. The full death toll due to the COVID-19 pandemic was approximately of
14.9 million (range from 13.3 million to 16.6 million) [2]. These estimates refer to the “excess
mortality” between January 2020 and 31 December 2021 which is assessed as the difference
between the number of deaths that have occurred and the number that would be expected
in the absence of the pandemic, relying on data from earlier years. Excess mortality includes
deaths due to the COVID-19 disease and the ones due to the pandemics impact on health
systems and society. Most of the excess deaths (84%) are concentrated in South-East Asia,
Europe, and the Americas.

The mortality shock due to a pandemic can seriously affect life insurance contracts, de-
pending on the insurance portfolio structure. As regards the effects of COVID-19 pandemic
on Italian insurance market, according to the Italian National Association of Insurance
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Companies (ANIA) [3], premiums from domestic and foreign business, direct and indirect,
gross of reinsurance, contracted by 3.9% in 2020, after two consecutive years of growth
(+3.1% in 2018 and +3.9% in 2019). The overall contraction reflects the trend of both the
life sector, whose premiums went down by 4.5% (+3.8% in 2019), and the non-life sector,
where premiums dropped by 2.0% after 4.2% growth the previous year. In the life sector
the technical account result remained positive at €3.4 billion, but down from €6.4 billion
the previous year, and the ratio to premiums slumped from 6.0% to 3.3%. In general,
increased mortality could cause losses for which the company may not be sufficiently
prepared. Indeed, a relevant issue is the obligation of insurers to comply with the Solvency
II Regulation, meaning that they must set aside a mortality risk capital to cover losses due
to a permanent 15% increase in mortality rates. Even if the consequences of a pandemic
should not be so extreme in terms of long-term changes of mortality rates, it is likely that
even if transitory mortality jumps of this size may occur, the financial consequences could
be non-negligible. Several contributions to the recent actuarial literature deal with the
impact of COVID-19 pandemic on life insurance domain [4–6]. The need for taking into
account the COVID-19 effects in modeling mortality is essential for insurance companies
regadring valuations, reserving decisions or solvency capital calculations. To this aim,
adjusting stochastic mortality models is strongly required. To be more specific, mortality
shocks, such as pandemics, threaten the consolidated longevity improvements, confirmed
in the last decades for the majority of western countries. Just before the COVID-19 pan-
demic, mortality was falling at all ages, with a different behavior according to different
ages and countries. In this context, the changes in the population longevity induced by
shock events, even transitory ones, affect demographic projections, and have financial
implications in public spending as well as in pension plans and life insurance. In the light
of these considerations, our aim is to analyze the effects of the mortality shock caused by
the COVID-19 pandemic on Italian mortality rates. We adopt an actuarial perspective and,
for this reason, we refer to the stochastic mortality models used in this domain. We believe
this study could be the basis for quantifying the potential impact of mortality shocks on the
main life insurance contracts.

The COVID-19 pandemic is indeed a remarkable case study, providing plenty of data
to: investigate whether a single shock had a notable impact on mortality rates; recalibrate
well-established mortality models; estimate how mortality jumps influence uncertainty
in their forecasts; discuss and evaluate their potential impact on insurance valuation
applications. The most used indicator for quantifying the effect of a pandemic is the excess
mortality, defined as the number of deaths observed during the pandemic above a baseline
of recent trends (among the huge literature, see the very recent studies by Refs. [7–9]
for COVID-19-related studies). Data on all cause mortality are considered by national
Statistic Offices as more reliable indicators with respect to data registered as pandemic
related mortality “because they are less sensitive to coding errors, competing risks, and the
potential for misclassification in designating the cause of deaths” [10]. Another useful
indicator for population health is life expectancy at birth, defined as the average life
length in years of a hypothetical cohort assumed to experience, from birth through death,
the mortality rates observed in a given period. Changes in life expectancy have been used
in the recent literature [10–12] to provide cross-national comparison of the population-level
COVID impact, because they are not influenced by variations in populations size and age
structure across countries. Other indicators, such as YLL, Years-of-Life-Lost, have also
been considered [10] because they can provide a finer estimate of premature mortality,
by weighting differently deaths occurring at younger and older ages. Their contribution
could be useful in further refining pandemic-related demographic studies.

Previous experience of mortality shocks due to pandemics, such as the ones observed
during the most severe seasonal flu epidemics, can furnish useful lessons about volatility
spikes in deaths. However, there are also significant differences. First, the severity of
the shock: as observed in recent studies on life expectancy changes after a pandemic [11],
the worst recent flu epidemics (2014–2015) produced a shock in most high-income countries,
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causing severe drops in life expectancy, whose largest value (observed in Italy) was about
half a year lost for both males and females. The current estimates for 2020 for a panel of
more than 20 countries is a loss in life expectancy of more than a year. Second, cross-age
impact: as many studies confirm (see Ref. [7] and references therein), COVID-19 death rates
are roughly proportional to all-cause mortality, while in past epidemics spikes in deaths
tended to be smaller for younger ages and were more significant in older population. Third,
long-range consequences: lockdowns and similar measures lead to indirect consequences
of the pandemics, such as delays in other medical diagnoses and therapies, recession of the
economy, increase in self-isolation, alcohol and drug consumption, all resulting in long-
term reduction of life expectancy. On the other side, durable changes in social behavior,
such as masks wearing and avoiding overcrowded environments, just to mention a few,
could lead to reduced mortality in certain population groups. Even if researchers are still
unable to quantify the impact of these indirect effects on mortality changes, long-term
modifications of the mortality curve should be considered in the next years.

The aim of this paper is to investigate the impact of the mortality shock due to
the COVID-19 pandemic on Italian mortality rates. The reference dataset is the Human
Mortality Database (HMD, [13]) as combined with the Short Term Mortality Fluctuations
(STMF) data series, released by the HMD team in 2020. The STMF is a new component of
the HMD providing data of all-cause mortality fluctuations by week within each calendar
year. After merging these two datasets, we model mortality by means of the well-known
stochastic model proposed by Lee and Carter in 1992. In the present work we choose to
simply rely on the Lee–Carter model for consistency with the internal processing of the
Human Mortality Dataset: although alternative models have been proposed to improve
some drawbacks of this simple model (see [14], for a review), they are not designed to
include shock effects. Instead, we suggest some generalizations of the Lee–Carter model,
proposed in the recent literature [15], that are specifically aimed at modeling mortality
shocks in view of the improvements they can bring. Empirical results are discussed both
on the estimation of the model coefficients and on the forecast of the mortality rates.

2. Materials and Methods
2.1. Demographic Data

The Human Mortality Database (HMD) is one of the most used and cited data resources
in demography. It was launched in May 2002 to provide detailed and highly reliable
mortality and population estimates to those interested in human longevity: researchers,
students, journalists, and policy analysts. The HMD follows open data principles; financial
and logistical support are provided by sponsoring institutions, such as the Department of
Demography at the University of California, Berkeley (UCB), the Max Planck Institute for
Demographic Research (MPIDR), and the French Institute for Demographic Studies (INED).
Nowadays, HMD contains original calculations of death rates and life tables for 41 countries
and areas and an additional 8 sub-populations, as well as the raw data (death counts, census
counts, birth counts, and population estimates from various sources) used in constructing
those tables. Due to data quality requirements, the database is limited to populations
where death registration and census data are virtually complete, so that the countries and
areas included are relatively wealthy and highly industrialized. A companion project
(Human Lifetable Database, HLD) includes life tables constructed by other institutions and
mortality estimates for some countries (both developed and developing ones) that could
not be included in the HMD.

The complete data series includes collected and estimated data. Period data are
indexed by calendar year, whereas cohort data (if available) are indexed by year of birth.
All files are organized by sex, age, and time. The collected data comprise: live birth counts
(annual, by sex); death counts (annual, at the finest level of age detail available, as reported
below, by sex), in the following denoted by Dtime(age); population size on 1 January (annual
estimates either obtained from another source or from census data plus birth and death
counts), in the following denoted by Ptime(age). Population size is given for both one-year
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and five-year age groups (specifically: ages 0, 1–4, 5–9, 10–14, . . . , 105–109, with an open
age interval for 110+).

The estimated data comprise: population exposed to risk of death (during a given
age-time interval, based on annual population estimates), denoted by Etime(age); death
rates (the death count for a given age-time interval divided by an estimate of the exposure-
to-risk in the same interval); life tables (life expectancies and other indicators of mortality
and longevity). Deaths, exposure-to-risk, death rates, and life tables are given in several
formats of age and time: 1 × 1 (by age and year); 1 × 5 (by age and 5-year time interval);
5 × 1 (by 5-year age group and year); and coarser grouping such as 5 × 5, 1 × 10, 5 × 10. At
the finest level of detail, available data include, separately for male and female population,
the exposures Et(x), estimated as the population of age x at 30 June, year t, and the death
counts Dt(x), expressing deaths in year t of persons of age x, from which one can obtain
the central mortality rate at age x in year t as mxt = Dt(x)/Et(x).

The Short-term Mortality Fluctuations (STMF) data series [16,17] are a new component
of the Human Mortality Database (HMD). These series are established to provide data for
scientific analysis of all-cause mortality fluctuations by week within each calendar year.
An interactive graphical interface, the STMF online visualization tool, publicly available
at https://mpidr.shinyapps.io/stmortality/ (accessed on 9 June 2023), is also provided
to quickly obtain an overview of the excess weekly mortality in a specific country and
year. The decision to add this new resource to the HMD was triggered by the COVID-19
pandemic. An additional motivation for this HMD extension was the increasing importance
of short-term or seasonal mortality fluctuations that are driven by temporary hazards such
as influenza epidemics, temperature extremes, as well as man-made or natural disasters.

The relative importance of short-term excess mortality increases in the context of
a general mortality decline. It is also important also these particular problems tend to
disproportionally affect vulnerable population groups such as the elderly.

It is worth remarking the main characteristics of STMF data:

• They only cover a subset (38 out of the 48) of countries included in the HMD; moreover,
the length of the country-specific data series varies: the longest time series (Finland)
starts in 1990, the shorter ones (Chile, Greece, and Germany) in 2016. Most of the
country series (23 out of the 38) begin in 2000. The series are neither smoothed nor
adjusted for data quality problems such as death undercounts. Deaths are gener-
ally collected by date of occurrence, apart from UK data (England, Scotland, Wales,
Northern Ireland), which are collected by date of registration;

• Weekly death rates are obtained from collected weekly death counts (generally reg-
istered by sex and age) and estimated annual population exposures; For the more
recent years, when annual data are not yet available, the exposures are estimated after
extrapolating annual death rates by fitting a Lee–Carter model to the HMD data; in
this case, a relatively short reference period is chosen to appreciate the most recent
changes in mortality;

• The original data for each country are split or grouped in standard age groups in order
to be consistent across countries; however, raw data at country level with finer age
grouping (5 years) are often available; for example, as reported below, Italian raw data
contain death counts for all-cause mortality cross-classified by week, year, sex, 5-years
age interval.

Italian raw data contain weekly death counts Dw,sex
y (x, x + a) for each year y from

2011 to 2022 (plus the first 4 weeks of 2023 at the present time). Data are sex-specific (male,
female, and total population) and reported for age groups 0, 1–4, 5–9, 10–14, . . . , 95–99, 100+
Weekly rates are obtained from collected weekly death counts and estimated (or forecasted)
annual population exposures. As an example, we obtain the weekly mortality rate for male
population in the age range (x, x + a) for week w and year y as

mw,males
y (x, x + a) =

Dw,males
y (x, x + a)

Emales
y (x, x + a)/52

.

https://mpidr.shinyapps.io/stmortality/
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2.2. Data Processing

As thoroughly discussed in [18], excess mortality estimates are quite sensitive to
processing choices, such as the chosen mortality index (death counts or rates), the reference
period, and the time unit of the death series. These sources of variation can produce
significant differences in the estimates of excess mortality provided by different authors,
as seen for the COVID-19 pandemic. Inconsistencies in such estimates, also in case of cross-
country comparisons, can affect policy decisions and reduce the efficiency of measures.
Based on these considerations, researchers should be very precise in describing all the
steps of their data processing, to allow a fair use of their results. This is the reason why we
describe here in detail the procedure we adopted for processing mortality data, starting
from the merging of the two considered dataset. STMF Italian data are weekly death counts
for males/females, grouped in 5-years age groups up to age 100+, while Italian data in
the HMD dataset also include 5-years age grouped data from 0 to 110+ in the time period
1872–2019. Then we extracted from HMD the Italian death counts, rates, and exposures and
grouped data for the older ages (100+); we also aggregated STMF weekly deaths for each
age group to obtain estimates of the yearly death counts for 2020, 2021, and 2022. These
counts, appended to the HMD data, provided us with a complete series of yearly death
counts. To obtain the yearly death rates for 2020 to 2022, we also needed to estimate the
corresponding exposures. Following similar studies [9], we extrapolated them linearly for
each age and sex from the last five exposures (2015 to 2019) in HMD data; since year 2015
presents a peak value in the observed exposures, this choice for the time window is the most
appropriate to guarantee coherence with the observed slightly decreasing trend in the last
years. However, to assess the accuracy of such an extrapolation, we compared the estimated
exposures to the ones we derived from Eurostat [19] data; specifically, we retrieved the
death counts for each age and sex for the years 2020 to 2022 along with the corresponding
population values and processed them to obtain an independent estimate for the exposures.
Figure 1 provides a graphical comparison of these estimates, confirming a very good
agreement between them and so assessing the reliability of the extrapolation procedure.

Figure 1. Exposures of the male population for all age groups, for the time period 2020–2022:
comparison between values extrapolated from the STMF dataset and values retrieved from the
Eurostat data.

Figure 2 shows the yearly death rates for the years 2011–2022, separately for the male
and female populations, as retrieved from the combined dataset HMD + STMF. Rates
for the more recent years, plotted in violet, are obtained from the aggregation of STMF
data; while affected by a higher roughness, they carry valuable information on the sensible
increase in death rates: for several age groups, and more evidently in older ages, the violet
curves are not the lowest ones, as expected in the framework of decreasing mortality that
characterized Italy in the recent past. On the contrary, they confirm a sharp increase in
mortality rates, clearly visible in the right part of each plot.
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Figure 2. Logarithms of the death rates of all age groups, separately for male and female population,
for the time period 2011–2022, as retrieved from the integrated Human Mortality Database and
Short-Term Mortality Fluctuations data; years are plotted using a rainbow palette so the earliest years
are red while the most recent years are plotted in violet.

2.3. Basic Mortality Model

Lee and Carter [20] proposed the following principal component model to forecast
demographic data

log mxt = ax + bxkt + εxt, x = 1, . . . h; t = t1, . . . tn

where mxt = Dxt/Ext is the observed mortality rate at age x in year t; its logarithm is
modeled as an average age profile of the rate over the years (ax) modified by the combined
effects of time t at each age (bx) and mortality changes over time (kt); the residual term εxt
represents the age and time specific trends not fully captured by the model. In the original
version, parameters were estimated by a two-stage process: after estimating the mean as

âx =
1

tn − t1

tn

∑
t=t1

log mxt;

a Singular Value Decomposition of

log mxt − âx =
min(n,m)

∑
i=1

siui
xvi

t

leads to the estimates
k̂SVD

t = s1v1
t ; b̂SVD

x = u1
x;

additional constraints guarantee the identifiability of the model:

∑
x

b̂x = 1 and ∑
t

k̂t = 0.

Alternative frameworks have been proposed over the years in order to improve some
drawbacks of the Lee–Carter model. We already compared, in a previous work [14],
the original model with several modified models for mortality rates, including generalized
nonlinear models where the error is assumed as Binomial or Poisson distributed and where
two or more terms are retained in the truncated SVD approximation. Other extensions
introduce cohort (year of birth) parameters to account for the significant impact of such
effects, while functional demographic models such as the regularized SVD extend the
principal components approach by adopting a functional data paradigm. Our results in the
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cited work showed that functional models slightly improve on the basic Lee–Carter perfor-
mance and that cohort effect should be considered, even in a post-processing correction.
However, in the present work, we choose to simply rely on the Lee–Carter model to be
consistent with the internal processing of the Human Mortality Dataset, where exposures
are estimated, when needed, by Lee–Carter. As far as forecasts are concerned, in the basic
model by Lee and Carter they are obtained by modeling the time series for the period effect
kt as a random walk with drift; some generalizations also consider ARIMA models for kt to
generate mortality forecasts.

2.4. Models Including Mortality Jumps

In the last years, some authors [15,21,22] have proposed refinements of the Lee–Carter
model to include mortality jumps: short-term jump effects are represented by adding
a multiplicative term Nt Jx,t to the mortality rate, where Nt is a jump count (Bernoulli)
variable and Jx,t describes the effect of a jump in mortality on year t on a group aged x.
The model can be written as

log mxt = ax + bxkt + Nt Jx,t + εxt

and different assumptions on correlation between age groups lead to different specifications
of the jump vector Jt, which is generally modeled by a multivariate Gaussian variable. In
such a modeling choice, kt is assumed to be free of jumps and follows a random walk with
trend as in the basic Lee–Carter model. Estimation of the model parameters is quite cum-
bersome; it is generally performed via an iterative maximization of the likelihood function.

3. Results

To estimate the coefficients of the Lee–Carter model on the HMD data, the choice
of the reference period is quite relevant: a longer time series can guarantee a smoother
fit, but this choice can also result in underestimation of recent trends, such as the more
pronounced longevity improvements observed in many countries. On the other side, very
short time series could excessively increase the weight of specific past shocks (such as
the peaks corresponding to the severe influenza seasons of 2013 and 2015) on the model
estimation. The more relevant and recent literature reflects both approaches: while some
authors used long series, starting from 1988 [8] or 1991 [9], others considered shorter
ones, starting from 2005 [10] or even 2015 [12]. Then, to temper the requirements of
smoothness of the estimate and major relevance of recent years, we decided to consider
Italian mortality data from HMD for the time period 2000–2019 (the last available year); Lee–
Carter estimates of the model coefficients have been obtained in R software environment,
package demography [23], and are shown in Figure 3. In the following we denote this
model by LC19. These model coefficients should be compared to the ones obtained by
estimating a Lee–Carter model on the full dataset, comprising HMD data along with the
yearly aggregated STMF data for the years 2020 to 2022. This model will be denoted by
LC22; its coefficients are shown in Figure 4.
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Figure 3. Estimated coefficients ax, bx and kt for males, females, and the whole population by the
model LC19, using data from the Human Mortality Database in the time period 2000–2019.

Figure 4. Estimated coefficients ax, bx and kt for males, females, and the whole population by the
model LC22, using data from the Human Mortality Database and Short-Term Mortality Fluctuations
in the time period 2000–2022.

As expected, the coefficient ax, describing the general mortality trend across ages
(shown in the left panel of both Figures 3 and 4), is essentially unaltered by the additional
information over the last three years; the pandemic years start showing their effects on
mortality rates only in the first order correction bx (shown in the central panel of the same
figures), where modifications on all the three curves appear. While for the male population
these modifications affect the older ages, starting at about age 60, the female population
is affected also at young ages. The changes in both curves are far more pronounced for
the older ages (aged 80 and more). However, the most significant changes concern the
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period effect kt. Indeed, as proven in Ref. [9], the main effect of a mortality shock in year
t is a jump in the period effect kt for that year, while the other model parameters are less
affected. A visual comparison of the right panels of Figures 3 and 4 confirms that the
inclusion of data from the STMF dataset allows to appreciate quite a large upward jump in
the period effect kt for year 2020 and an initial bounce back for year 2021, confirmed in 2022.
Forecast death rates are strongly affected by these differences in calibrated parameters,
especially when the shock year is the last one in the reference period for forecasts, due to
the very nature of the adopted model (random walk with trend or ARIMA). Just to show
an example, the following Figures 5 and 6 report the forecasts for the period effect kt in
the next three years based on the two considered models, LC19 and LC22, respectively.
While the former, having no information on the pandemic shock, provides a forecast of the
continuously decreasing period effect in the years from 2020 to 2022, the latter, relying on
information on both the shock year 2020 and the less severe 2021 and 2022, shows in the
forecast value for kt in the following years a partial recovering from the shock event. These
values, on the other side, are accompanied by wider confidence intervals, because of the
higher fluctuations affecting the more recent years. However, it should be noted that the
Lee–Carter model shows all of its limitations in presence of such a severe shock: a more
sophisticated model, able to separate the smooth component of the period effect from the
jump term, would be more effective in capturing the actual trend in mortality rates. It is
also worth noting that the curves in Figures 5 and 6, while showing comparable behavior,
differ in scale. This is a consequence of the estimation procedure, which retrieves the values
for bx and kt up to a scale factor (the scaling singular value in the SVD decomposition).

Figure 5. Forecast of the period effect kt for years 2020 to 2022 (point forecast plus 95% confidence
interval) for males, females, and the whole population by the model LC19 (data from the Human
Mortality Database, time period 2000–2019).
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Figure 6. Forecast of the period effect kt for years 2023 to 2025 (point forecast plus 95% confidence
interval) for males, females, and the whole population by the model LC22 (data from the Human
Mortality Database and Short-Term Mortality Fluctuations, time period 2000–2022).

4. Conclusions

After a very long period of improvements in life expectancy in almost all countries
(approximately since the end of World War II), the COVID-19 pandemic led to significant
shocks in the mortality rates dynamics, starting from March 2020. These shocks result in a
general increase of mortality rates, with significant differences in terms of timing and sever-
ity in different countries. However, even restricting the analysis to a single nation, as we
did for Italy in this study, the impacts of the pandemic on mortality rates have been highly
heterogeneous across sexes and age groups, since the observed lethality of COVID-19 was
higher for males and older people; investigating such a situation requires more timely data
as well as improved mortality models to be able to capture the complex dynamics following
a large shock event such as the COVID-19 pandemic. In this perspective, the availability of
STMF data and their integration in the HMD dataset to represent the recent years trend
allowed us to correctly reproduce the large increase in mortality rates that occurred in 2020
and the partial bounce back in the following two years.

In conclusion, these first empirical results confirm that STMF data are a new and
valuable resource to timely appreciate changes in mortality that occur as consequences of
shock events, but they also highlight some drawbacks of these data to be further considered.
First, due to their age coarseness and their roughness, they require suitable refining and
smoothing procedures in preprocessing. Moreover, being a new tool, they need further
validation; their harmonization with other datasets (HMD, but also Eurostat) is not yet
complete. Apart from these caveats, we have proved that mortality data from the combined
dataset (HMD + STMF) allow to capture a jump in mortality rates, mainly due to the
period effect kt; this jump is driven by older ages rates deterioration, but it can lead to
overestimation of mortality, especially at younger ages. This is because forecasts based
on a shock event in the last time period (as captured by STMF data) can be excessively
pessimistic. Again, a more accurate model, explicitly including jump terms, could be very
useful to correctly describe mortality dynamics; further studies investigating this approach
would bring a very valuable contribution to the field.



Data 2023, 8, 107 11 of 12

5. Perspectives for Future Research

Assessing how much a mortality model changes in response to new calibration data,
and specifically in response to a mortality shock, is a key point in applications. Indeed, two
different question arise: how to recalibrate a given mortality model in case of past shock
events? Additionally, how to modify the model to allow for further occurrence of shocks?
To adjust an existing model for an observed jump in mortality, there are several possibilities:
data referring to shock years can be included as regular data points or they can be treated as
outliers, so to remove or at least mitigate their influence on model estimates and forecasts.
Again, more general ARIMA models can be considered to predict the period effect time
series more robustly. To account for possible future shocks, deeper modifications should be
considered, for example by introducing in the modeling of period effects regime switching
or jump processes, or even mixture models borrowed from extreme value theory. All these
options should be assessed and their estimates and forecasts compared in the context of
specific applications as more data become available in the next years.

Another key issue concerns the effects of mortality shocks on life insurance products.
Mortality shocks can seriously affect life insurance domain, depending on the portfolio
structure. As regards longevity benefits, they are paid if the insured is alive at a certain
fixed age. The continuing trend of increasing life expectancy in the past decade has led
insurance companies to front and manage the so-called “longevity risk”. It is the potential
risk attached to the increasing life expectancy of policyholders, which can result in higher
than expected payouts for insurance companies. Further increase in mortality would be
profitable to the insurer for these policies. On the other hand, death benefits are paid as a
lump sum to beneficiary if the insured dies. Referring to these policies, increased mortality
could cause losses to the insurer as the provisions and rates have been calculated according
to a lower mortality, leading to a difficulty in covering the claims. The total impact is either
loss or profit, depending on the portfolio structure and it could imply that insurers may
not fulfill the solvency requirements and therefore would need new capital to continue
their business.

Basing on these considerations, the perspective of future work includes estimating the
impact of COVID-19 pandemic on the actuarial present values of life insurance contracts
with survival benefits, with death benefits and mixed life insurance policies providing both
survival and death benefits. In particular, we could compare the results obtained by means
of each considered LC model (LC19 and LC22). In order to focus on mortality shocks, at a
first stage, a constant discount factor could be fixed. As regards the prediction uncertainty,
the interval bounds of forecasted mortality rates could be inserted in the valuation formulae.
Some authors [9] propose this approach by estimating the present values of 30-year annuity
for a person aged 65 and a 30-year life insurance contract for a person aged 35 at the
beginning of 2021 and found, as expected, a drop in annuity values and an increase in
life insurance policies (about 29% for Italian males), along with a significant increase in
prediction uncertainty. In our opinion, the main issues for this approach concern the length
of the prediction interval and the sensitivity of the forecast to the distance from the shock
year, which could lead to unreliable results. A reliable estimation procedure would require
further recalibrations in the next few years, as more and more new data will be published,
to assess the adjustment of the mortality curve towards its pre-pandemic trend.
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