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Abstract: Accurately predicting the structural deformation trend of tunnels during operation is
significant to improve the scientificity of tunnel safety maintenance. With the development of data
science, structural deformation prediction methods based on time-series data have attracted attention.
Auto Regressive Integrated Moving Average model (ARIMA) is a classical statistical analysis model,
which is suitable for processing non-stationary time-series data. Long- and Short-Term Memory
(LSTM) is a special cyclic neural network that can learn long-term dependent information in time
series. Both are widely used in the field of temporal prediction. In view of the lack of time-series
prediction in the tunnel deformation field, the body of this paper uses historical data of the Xinjian
Road and the Dalian Road tunnel in Shanghai to propose a new way of modeling based on single
points and road sections. ARIMA and LSTM models are applied in comprehensive experiments, and
the results show that: (1) Both LSTM and ARIMA models have great performance for settlement and
convergence deformation. (2) The overall robustness of ARIMA is better than that of LSTM, and it is
more adaptable to the datasets. (3) The model prediction performance is closely related to the data
quality. ARIMA has more stable performance under the lack of data volume, while LSTM has better
performance with high-quality data and higher upper limit.

Keywords: tunnel; structural deformation; ARIMA; LSTM; prediction

1. Introduction

The shield method is a vital construction method for urban tunnel construction. It is
characterized by numerous benefits, such as higher safety standards, faster construction
speed, minimal environmental disturbance, and limited disturbance to ground buildings
and surrounding soil environments [1]. However, during the long-term operation period
of shield method tunnels, multiple factors, which include natural and human triggers,
will lead to various problems, such as leakages, cracks, breakages, misalignment, and
corrosion [2]. Figure 1 is a photo of tunnel leakage. Tunnel problems have a direct rela-
tionship with the structural deformation of shield tunnels, such as longitudinal uneven
settlement and transverse convergence deformation [3]. Without continuous monitoring
and timely maintenance, once the deformation exceeds a certain limit, it will cause severe
safety accidents in the tunnels. To this end, regular testing of tunnel structural deformation
during the operation period is necessary, as clearly stated in the Technical Specifications for
the Evaluation of Road Tunnel Maintenance Operation in Shanghai [4]. It is essential to
anticipate the development trend of tunnel structure deformation, predict risks beforehand,
and take early maintenance and repair measures to prevent and mitigate tunnel structural
problems, thus ensuring the health and safety of shield tunnels.
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Figure 1. Photo of tunnel leakage.

Based on the monitored data and historical information during the operation period
of the Xinjian Road and Dalian Road cross-river tunnels in Shanghai, this paper uses
ARIMA and LSTM from the perspectives of single point and road section to predict
the longitudinal uneven settlement and transverse convergence deformation of tunnel
structures and compare the prediction performance of the two methods. The paper explores
a more reasonable and scientific structural deformation prediction method during tunnel
operation, and provides corresponding suggestions. The following is divided into six
parts, including literature review, experiment data, model design, experiment introduction,
results and analysis, and summary and prospect.

2. Literature Review

At present, researchers mainly have three types of prediction methods for the deforma-
tion trend of tunnel structures during the operation period: numerical calculation models,
related factor models, and time-series prediction models.

2.1. Numerical Calculation Models

The numerical calculation model applied to the prediction of deformation trends in
tunnel structures usually combines the principle of the soil consolidation compression
and deformation mechanism to simulate the variation of tunnel deformation values over
time [5–7]. For example, for a river crossing tunnel, Liu et al. [8] combined the static
finite element calculation model and empirical fitting formula to calculate and predict
the deformation value, with the number of actions of traffic load and basic parameters of
soil layer as important parameters. The methods based on probability statistics have also
been applied by some scholars in the field of tunnel deformation [9,10]. Ruan et al. [11]
proposed a random variable probability fitting method to determine the early warning
value of structural safety of under-water shield tunnels and applied this method to a
tunnel structural health monitoring system. Zhang et al. [12] analyzed the deformation
behavior of tunnel surrounding rock from a probability perspective by measuring the
distribution of data and established a numerical model to predict the deformation trend of
the surrounding rock.

However, numerical calculation models rely heavily on the physical parameters and
accuracy within the model, making it highly idealized. At the same time, the model
parameters are difficult to determine and have poor practicality in various scenarios. If the
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parameters of the model are missing or have insufficient accuracy, it will have an impact
on the judgment of deformation trends.

2.2. Correlated Factors Models

The correlated factor model does not specifically decompose complex tunnel mech-
anisms, but rather selects appropriate mathematical models, screens appropriate factors,
and fits the deformation trend of tunnel structures to achieve the purpose of prediction.
The current popular machine learning models [13–16] all belong to the method of using
correlation factors for model fitting. Hao et al. [17] used a BP neural network to select
seven factors that affect convergence deformation and input them into the neural network
to predict the convergence deformation of the Harbin Baojian Road soft soil tunnel. Huang
et al. [18] used five environmental factors measured at different times at a settlement
monitoring point during the operation period of the Yanshuigou Tunnel as input values for
the BP neural network and trained the model with the settlement values at that monitoring
point as output.

The limitation of the correlated factor model is that it requires higher data accuracy,
and it is difficult to collect numerical values for different factors. The selection of input
factors for different models will affect the final model performance and prediction results.
The screening of related factors often has a certain degree of subjectivity, making it difficult
to determine the input factors for the optimal model. It is also difficult to comprehensively
consider multiple factors at the same time. The establishment of factors only targets the
current tunnel, making it difficult for the model to predict the deformation of other tunnels.

2.3. Time-Series Prediction Models

During the operation period, the deformation monitored data of the shield tunnel are
collected at a fixed time interval. There is a certain correlation between the deformation
data itself, which contains the deformation development law. The time-series prediction
model is a rolling prediction. Compared to numerical calculation models and correlated
factor models, it only predicts based on temporal data. Rolling prediction requires low
data requirements. Under relatively stable external factors, better prediction results will be
achieved. Therefore, researchers [19–21] began to attempt to establish a prediction model
based on the time series to predict the trend of tunnel structural deformation. He et al. [22]
used the regression method to analyze the relationship between tunnel convergence value
and time for the 55 phase transverse convergence deformation data of a section of highway
tunnel, and the results show that the tunnel convergence value and time are nonlinear
logarithmic. Xie et al. [23] used the ARMA time-series model to model and analyze the
measured data of 30 monitoring points of a subway tunnel in Nanjing during an operation
period, so as to achieve short-term deformation prediction. Under the feasible conditions
of time-series prediction models, it can be found that existing research often predicts based
on short-term time spans, while the operating period is a long-term and slow process. To
make long-term predictions, the impact of prediction errors and long-term dependence
must be considered.

In fact, some more popular time-series prediction methods have already achieved
good results in other fields. The ARIMA model is one of the classic time-series prediction
and analysis methods, which can effectively handle non-stationary sequences and can
therefore be used for long-term prediction [24]. Meanwhile, with the vigorous development
of artificial intelligence and machine learning, the Long- and Short-Term Memory network
(LSTM), which is improved on the basis of recurrent neural networks, can capture memory
dependencies over long time spans and is also a popular method in the field of time-series
prediction [25]. Therefore, this article selects these two methods to predict the deformation
trend of tunnel structures during the operation period and compares their performance,
exploring new ways to predict tunnel deformation.
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3. Experiment Data

According to the Technical Specifications for the Evaluation of Road tunnel Mainte-
nance Operation in Shanghai [4], the monitoring of shield tunnel structural deformation
during operation includes both tunnel settlement and transverse convergence deformation,
which is typically conducted through special testing methods for data collection. Figure 2
is a photo of the measuring instruments used for deformation data collection. Figure 3
shows a schematic diagram of the layout of the monitoring points for tunnel cross sections.
Settlement monitoring points are arranged in a longitudinal line shape on the top of the
tunnel. In some special areas, such as the connection between the working well and the
shield section, monitoring points may be added to shorten the distance between them. The
monitoring object for transverse convergence deformation is the transverse diameter of the
tunnel cross section. Two monitoring points are arranged at intervals on the deformation
monitoring section to measure the length of the diameter. The collection cycle for both
types of data is generally once every quarter, with a possibility of an increase in monitoring
frequency for special cases.

Figure 2. Photo of the measuring instruments used for deformation data collection.

Figure 3. Schematic diagram of tunnel cross-section monitoring points layout.

This paper is based on the longitudinal settlement monitored data from 2010 to 2020
for the Xinjian Road tunnel and transverse convergence deformation monitored data from
2011 to 2020 for the Dalian Road tunnel. The two tunnels are divided into east and west
lines for operation, with the core sections including the shield sections and rectangular
sections. Figure 4 shows a schematic diagram of the monitoring points layout for the
Xinjian Road tunnel. The east line, EXJ001A–EXJ039A, EXJ130A–EXJ141A, and the west
line, WXJ001A–WXJ018A, WXJ101A–WXJ129A belong to the rectangular section, while
the east line, EXJ040A–EXJ129A, and west line, WXJ019A–WXJ100A, belong to the shield
section. Figure 5 shows a schematic diagram of the monitoring points layout for the Dalian
Road tunnel. The east line, EDM1–EDM2, EDM9–EDM10, and west line, WDM1–WDM2,
WDM9–WDM10, belong to the rectangular section, while the east line, EDM3–EDM8, and
west line, WDM3–WDM8, belong to the shield section.
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Figure 4. Layout of monitoring points on the east and west lines of the Xinjian Road tunnel.

Figure 5. Layout of monitoring points on the east and west lines of the Dalian Road tunnel.

Table 1 presents the basic information on the structural deformation data for the two
tunnels. Both sets of data were monitored 45 times and contain no missing or abnormal values.

Table 1. Experiment tunnel datasets.

Tunnel Name Opening Time Measurement
Time Line Points Number Data Volume Content

Xinjian Road
Mar. 2010 Jan. 2010–

Jun. 2020 West 118 5310 Settlement

Mar. 2010 Jan. 2010–
Jun. 2020 East 124 5580 Settlement

Dalian Road
Sep. 2003 Dec. 2011–

Nov. 2020 West 10 370 Convergence

Sep. 2003 Dec. 2011–
Nov. 2020 East 10 370 Convergence

The original data used in this experiment are the elevation values of settlement mea-
surement points and transverse length values, in meters. Given that the structural deforma-
tion of the tunnel mainly focuses on the cumulative changes in settlement and transverse
deformation, it is essential to preprocess the raw data. To demonstrate, we select the first
five data of point WXJ022A of the Xinjian Road tunnel. The conversion method is: the
elevation measured at the monitoring point at a certain time minus the elevation of the
point at the initial measurement time, and then multiplied by 1000 to convert the unit into
millimeters. The specific data form is shown in Table 2.

Table 2. Monitored data of WXJ022A of the Xinjian Road tunnel (partial).

Measurement Time Elevation (m) Cumulative Settlement (mm)

1 Jan. 2010 −18.90434 0.00000
1 Apr. 2010 −18.90570 −1.36000
1 Jul. 2010 −18.90791 −3.57000
1 Oct. 2010 −18.90728 −2.94000
1 Jan. 2011 −18.90575 −1.41000

The data on five timestamps of all the monitoring points of the tunnel are selected, and
the overall cumulative settlement change of the tunnel is plotted, as shown in Figure 6 for
the west line of the Xinjian Road tunnel. The overall cumulative convergence deformation
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change of the tunnel is plotted, as shown in Figure 7 for the east line of the Dalian Road
tunnel, for example. The accumulated deformation of both the shield and rectangular
sections of the tunnel increases gradually with time, and the overall trend of the tunnel
is upward due to the buoyancy effect. The settlement or convergence of the same section
near the monitoring points behaves similarly, and the changes differ significantly at the
connections of different sections.

Figure 6. Cumulative settlement changes of the west line of the Xinjian Road tunnel.

Figure 7. Cumulative convergence changes of the east line of the Dalian Road tunnel.

4. Model Design
4.1. Research Idea

Due to the clear time characteristics of deformation data collected from the tunnel, this
paper defines the deformation of tunnel structures during operation as a time-series predic-
tion problem, which uses historical deformation data to predict future tunnel deformation.
Within the same tunnel structure, neighboring monitoring points may exhibit similarities in
long-term deformation. However, most research focuses on individual monitoring points,
without considering the correlation between monitoring points along different sections of
the tunnel. This may limit the predictive capability of the model. Therefore, this paper
models deformation at the level of the single monitoring point and the entire section of the
tunnel, comparing their predictive performance. Commonly used models in the field of
time-series prediction include grey models, linear regression models, and neural network
models. Given the seasonal, irregular, and long-term trends exhibited in the data, and the
single-input and multi-output structure, we select the traditional statistical method ARIMA
and the deep learning method LSTM for comparison experiments.

After defining the research approach and experimenting with the methods, we further
refine the experimental content. Firstly, we construct and process appropriate model inputs
from the perspectives of individual monitoring points and sections of the tunnel. From the
perspective of individual monitoring points, we follow the traditional prediction approach,
using time as the only variable, and construct samples from time-series data using a fixed-
length sliding time window to meet the requirements of supervised learning. Secondly,
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we apply the ARIMA and LSTM models to each monitoring point, output the predicted
values, and calculate model indicators by comparing them with real values. From the
perspective of tunnel sections, we divide the core sections of the east and west tunnels
into shield sections and rectangle sections, with the east section facing Pudong and the
west section facing Puxi. As monitoring points within the same section of the tunnel are
closely related, their time-series data changes showed similar patterns. By constructing
samples from all monitoring points data within the same section of the tunnel, we are
able to increase sample size and enhance input features. Applying the ARIMA and LSTM
models to the entire section of the tunnel, we output the predicted average value for that
section and calculate model indicators by comparing them with real values. Finally, we
conduct multidimensional comparisons of the experimental results to enrich the results.

4.2. Model Selection

The ARIMA algorithm is a classical time-series prediction statistical method widely
used in various fields. The Long- Short-Term Memory network LSTM is one of the most
outstanding deep neural network algorithms in the prediction of time-series data. Therefore,
this paper chooses these two models as the main body of the experiment.

4.2.1. ARIMA Model

The ARIMA model consists of three parts: Auto-Regressive model (AR), Moving
Average model (MA), and difference method. Among them, AR is used to describe the
relationship between the current value and the historical value, and the general p-order AR
model is expressed as:

Xt = α1Xt−1 + α2Xt−2 + . . . + αpXt−p + ut (1)

where X represents sequence data at different t stages, α represents parameters, and ut
represents random perturbation items. If ut is a white noise sequence, it is called a pure
AR(p) process. If ut is not a white noise sequence, it is usually considered to be a moving
average of order q, just as:

ut = εt + β1εt−1 + . . . + βqεt−q (2)

where εt represents a white noise sequence. When Xt = ut, the MA model is obtained.
For the non-stationary time series, the d-order difference is first carried out to convert

it into a stationary time series. Secondly, the Auto Correlation coefficient (ACF) and Partial
Auto Correlation coefficient (PACF) are obtained for the stationary time series, along with
the auto correlation graph and partial auto correlation from the analysis of the graph; the
optimal order, p, q, is obtained. the ARIMA model is obtained from the d, p, q obtained
above.

Xt = α1Xt−1 + α2Xt−2 + . . . + αpXt−p + εt + β1εt−1 + . . . + βqεt−q (3)

This paper conducts two types of experiments on datasets using ARIMA models. The
modeling process includes preprocessing deformation data for each monitoring point and
conducting tests for sequence stationarity and white noise. The order of differencing for
each model is set to 1, and the optimal p and q values are determined based on the Bayesian
Information Criterion (BIC), which meets the input requirements of ARIMA models. The
dataset is then divided into training and testing sets. In order to demonstrate the multi-
perspective predictive performance of the model better, this experiment separately models
and predicts the input data from the perspectives of single monitoring points and sections of
the tunnel. The input of the single point model is the time-series sample of each monitoring
point and the input of the section model is the sample of all monitoring points within each
section, with the output being a single value. The model is then trained, and the structure
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and parameters are adjusted according to the prediction performance on the testing set.
Finally, the model will be evaluated. The model process is shown in Figure 8.

Figure 8. ARIMA modeling process.

4.2.2. LSTM Model

LSTM is a cyclic neural network suitable for long time-series data, which can reduce
the problem of gradient vanishing and gradient explosion. Due to its time memory unit,
LSTM can learn long short -term dependent information in time series, so it has a better
performance in predicting long-term and time-series data with interval and delay. Figure 9
shows the structure diagram of the model elements of LSTM.

Figure 9. LSTM structure diagram.

The inputs of the LSTM model are: xt (input value at t), ht−1 (output value at t− 1),
and Ct−1 (gate control unit state at t− 1); The outputs are ht (output value at t) and Ct (gate
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control unit status at t). The following is the expression formula for forgetting gate, input
gate, and output gate:

ft = σ(W f ht−1 + W f xt + b f ),
it = σ(Wiht−1 + Wixt + bi),
ot = σ(Woht−1 + Woxt + bo)

(4)

Among them, ft, it,ot are the outputs of the forgetting gate, input gate, and output
gate; W f , Wi,Wo are the weight matrices of forgetting gate, input gate, and output gate; b f ,
bi,bo are the bias terms for forgetting gate, input gate, and output gate; σ is the activation
function. By combining the output gate and unit status, the final output of LSTM can be
determined using the following formula:

C̃t = tanh(Wcht−1 + Wcxt + bc),
Ct = ftCt−1 + itC̃,
ht = ot tanh(Ct)

(5)

Based on LSTM, this paper needs to conduct experiments on two types of datasets.
The modeling process is as follows. Firstly, preprocess the deformation monitored data for
each monitoring point, and then divide the dataset into a training set and a test set. In order
to better reflect the multi-angle prediction effect of the model, this experiment models and
predicts the input data from the perspectives of a single point and a road section, where the
input data for the single point model is the time-series sample for each point, and the input
data for the road section model is the sample for all points on each road section. Secondly,
determine the model structure and parameters. The number of neurons in the input layer
is determined by the predicted input steps, and the number of neurons in the output layer
is determined by the predicted output steps, with a single step output. Once the model
structure is determined, set the initial parameters and iterations for model training. Adjust
the model structure and parameters based on the prediction effect of the test set. Finally,
evaluate the model. The model process is shown in Figure 10.

Figure 10. LSTM modeling process.
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5. Experiment Introduction
5.1. Experiment Design

In this paper, there are four groups of experiments:

• Experiment 1: Settlement Prediction Based on Single Point;
• Experiment 2: Convergence Prediction Based on Single Point;
• Experiment 3: Settlement Prediction Based on Road Section;
• Experiment 4: Convergence Prediction Based on Road Section.

Each of these uses ARIMA and LSTM for prediction comparison; there are a total of
eight models, and each model is given a number to distinguish it. Each model has multiple
inputs and a single output. The experimental design and parameter settings are shown in
Table 3 below. Based on longitudinal settlement and transverse convergence data, ARIMA
and LSTM will be comprehensively compared and analyzed from the perspective of single
monitoring points or road sections.

Table 3. Experiment scheme.

Experiment Model Input Size Train-Test
Proportion Parameters

Experiment 1 ARIMA_S_S 15 5:1 p = 1, d = 1, q = 1
LSTM_S_S 15 5:1 Iter = 1500, lr = 0.0001, batch size = 100

Experiment 2 ARIMA_C_S 12 4:1 p = 1, d = 1, q = 0
LSTM_C_S 12 4:1 Iter = 1500, lr = 0.0001, batch size = 100

Experiment 3 ARIMA_S_R 15 5:1 p = 1, d = 1, q = 1
LSTM_S_R 15 5:1 Iter = 2000, lr = 0.0001, batch size = 100

Experiment 4 ARIMA_C_R 12 4:1 p = 1, d = 1, q = 0
LSTM_C_R 12 4:1 Iter = 2000, lr = 0.0001, batch size = 100

5.2. Evaluation Indicators

This paper evaluates the prediction model from three dimensions: accuracy, fitting
degree, and explainability. Two types of indicators ,MAE and MSE, belong to accuracy
evaluation. MSE can reflect the influence of prediction anomalies, while MAE has a certain
robustness to prediction anomalies. R2 analyzes the fitting degree of the model, and
Explained Variance is used for explainable analysis in the model, which is the degree to
which the input variables of the model combine to affect the output.

Assume that for the time-series forecasting model, there are n samples, each sample
is (xi, yi), and the predicted value is ŷi , i ∈ 1, 2, . . . n. ȳ is the mean value of {yi}n

i=1 . The
following are the meanings and formula definitions of each evaluation indicator.

5.2.1. MSE

MSE indicates the sum of squares of the differences between the predicted and true
values. In general, the smaller the value of MSE, the better the model fits the data.

MSE(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2 (6)

5.2.2. MAE

MAE indicates the absolute value of the difference between the predicted value and
the true value. In general, the smaller the value of MAE, the better the model fits the data.

MAE(y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi| (7)
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5.2.3. R2 (R-Squared)

R2 (R-squared), also known as the coefficient of resolvability, reflects the degree to
which the independent variable explains the changes in the dependent variable. The closer
R2 approaches 1, the better the model fits the data; the closer it approaches 0, the worse the
model fits the data.

R2(y, ŷ) = 1−

n
∑

i=0
(yi − ŷi)

2

n
∑

i=0
(yi − ȳi)

2
(8)

5.2.4. EV (Explained Variance)

EV is usually used to evaluate the explanation degree of a model for the fluctuations
of the dataset. Its value is less than or equal to 1. Similar to R2, the closer the EV value
approaches 1, the more the model can completely explain the fluctuations of the dataset.
On the other hand, the smaller the value, the worse the model’s ability to explain the
fluctuations of the dataset.

ExplainedVariance(y, ŷ) = 1− Var{y− ŷ}
Var{y} (9)

6. Results and Analysis
6.1. Comparison of Experiments Based on Single Point
6.1.1. Based on Settlement Data

In Experiment 1, the ARIMA model and LSTM model are respectively established
for the settlement data of each monitoring point on the east and west lines of the Xinjian
Road from the perspective of a single point. The predicted values of each monitoring
point are output, compared with the true values, and the evaluation indicators MAE, MSE,
R2, and EV are calculated. Table 4 shows the average number of evaluation indicators,
better test points, and performance ratio of all test points on the east and west lines of
the Xinjian Road in Experiment 1. The number of perfect points refers to the number of
monitoring points with an MAE less than 2, MSE less than 5, and R2 and EV greater than
0.75. The perfect proportion refers to the proportion of perfect monitoring points to the
total monitoring points.

Table 4. Statistics of model indicators in Experiment 1.

Model Indicator Mean Perfect Number Perfect
Proportion

ARIMA_S_S

MAE 1.8758 195 71.69%
R2 0.8155 210 76.00%
EV 0.8516 239 87.87%

MSE 4.3531 231 84.93%

LSTM_S_S

MAE 2.1159 176 64.71%
R2 0.7653 178 65.44%
EV 0.8408 233 85.66%

MSE 5.5306 184 67.65%

Figure 11 depicts the distribution of the values of the four indicators for all monitoring
points under the two models. It can be seen that both ARIMA and LSTM show relatively
excellent prediction performance, with a lower mean and median for MAE and MSE,
indicating a smaller prediction error. R2 and EV are both very close to 1, indicating a
higher degree of model fitting. However, a comprehensive comparison reveals that ARIMA
performs better than LSTM overall, showing a fairly high stability. ARIMA is smaller than
LSTM in both MAE and MSE, while R2 and EV are both higher than LSTM. It can also be
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found in the box plot that ARIMA has a more uniform distribution of values with smaller
standard deviation and fewer extreme values. This performance may be related to the
overall more stable variation of the tunnel data. In contrast, the prediction performance of
LSTM is relatively unstable, with a large standard deviation, and it is prone to outliers and
extreme values. Although individual monitoring points perform better than ARIMA, the
robustness is not strong.

Figure 11. Value distribution of indicators in Experiment 1.

6.1.2. Based on Convergence Data

Experiment 2 also applies ARIMA and LSTM models to the Dalian Road transverse
deformation dataset based on the single monitoring point perspective. Table 5 shows the
output results of evaluation indicators for all monitoring sections on the east–west line
of Dalian Road. Both LSTM and ARIMA models not only have stable prediction effect in
settlement, but also have better performance in convergence, and the perfect proportion of
both models in MAE and MSE are over 90%. The prediction error is further reduced.

Table 5. Statistics of model indicators in Experiment 2.

Model Indicator Mean Perfect Number Perfect
Proportion

ARIMA_C_S

MAE 1.1312 19 95.00%
R2 0.7720 17 85.00%
EV 0.8271 18 90.00%

MSE 2.0984 19 95.00%

LSTM_C_S

MAE 1.2181 18 90.00%
R2 0.7589 15 75.00%
EV 0.7791 16 80.00%

MSE 2.5140 18 90.00%

For comparison, the median and the best performance of the results of Dalian Road
are used as the benchmarks to construct Figure 12 for each evaluation indicator. From the
two indicators, R2 and EV, the robustness of LSTM is weak; its median is numerically lower
than that of ARIMA. The prediction performance of different monitoring points varies
widely, but the best performance in some monitoring sections is better than those of the
ARIMA model.
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Figure 12. Comparison of Dalian Road model indicators in Experiment 2.

6.2. Comparison of Experiments Based on Road Sections
6.2.1. Based on Settlement Data

Experiment 3 divides the east and west tunnel sections of the Xinjian Road into west
rectangular section, east rectangular section, west shield section, and east shield section
according to the location and structure from the perspective of sub-sections. The experiment
applies ARIMA and LSTM to all monitoring points within the same section to output
the respective predicted values, compares them with the true values, and calculates the
indicators. The indicators for each section are averaged to obtain the predicted performance
of the section, and the results are shown in Table 6.

Table 6. Statistics of model indicators in Experiment 3.

Model Indicator West East MeanW-Rec E-Rec W-Shield E-Shield W-Rec E-Rec W-Shield E-Shield

ARIMA_S_R

MAE 1.3260 1.4496 1.2740 1.5335 1.2330 1.2085 1.2103 1.5131 1.3435
R2 0.8286 0.8161 0.8380 0.8316 0.8420 0.8368 0.8467 0.8286 0.8335
EV 0.8692 0.8528 0.8879 0.8939 0.8780 0.8608 0.9095 0.8621 0.8767

MSE 2.6975 3.1676 2.1113 2.0770 1.9440 1.8977 2.0543 1.2375 2.1483

LSTM_S_R

MAE 1.0760 1.1975 1.5348 1.4557 1.4298 1.6883 1.3567 1.2835 1.3777
R2 0.8334 0.8293 0.8244 0.8231 0.8219 0.8133 0.8395 0.8218 0.8258
EV 0.8915 0.8663 0.8561 0.8558 0.8547 0.8417 0.8953 0.8593 0.8650

MSE 1.5069 1.8163 2.7026 2.9684 2.6644 3.4322 1.6870 2.9542 2.4665

From the comprehensive comparison of the western rectangular section, it can be
seen that the relative growth rate of LSTM is higher than that of ARIMA. The average of
R2 in all sections of the western and eastern lines is more than 0.8, which means that the
performance of LSTM on the section model has been greatly improved. For visual display
and comparison, R2 at different sections of the east and west lines of the Xinjian Road
tunnel is selected for visualization to observe the performance of the model in different
lines and sections. Figures 13 and 14 show the R2 evaluation visualization of the model
at the monitoring points of the west line and the east line of the Xinjian Road. Through
observation and analysis, there are some differences in the performance of the models in
different lines and different sections of the same tunnel. As for the Xinjian Road tunnel, the
performance of the two models in the west line is better than that in the east line, but at the
same time, the performance of the monitoring points where R2 is located at the junction of
the road section is poor. It is considered that the differential settlement at the junction may
have an impact on the data quality due to different construction methods, soil structures,
and other reasons, thus affecting the performance of the model. Although LSTM fluctuates
greatly on different road sections, its R2 best case occurs more frequently than ARIMA.
If the data quality is enhanced, it may bring better results. ARIMA, on the other hand,
remains stable and efficient and has strong generalization ability.
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Figure 13. R2 of the west line road section of Xinjian Road tunnel.

Figure 14. R2 of the east line road section of Xinjian Road tunnel.

6.2.2. Based on Convergence Data

In Experiment 4, ARIMA and LSTM models are also applied to the Dalian Road
convergence dataset based on the road section angle. Table 7 is the statistical table of
the indicators of the fourth model. Similar to the settlement prediction experiment of
the Xinjian Road, in general, the indicators of the two models have been improved to
different degrees.

Table 7. Statistics of model indicators in Experiment 4.

Model Indicator West East MeanW-Rec E-Rec W-Shield E-Shield W-Rec E-Rec W-Shield E-Shield

ARIMA_C_R

MAE 0.9151 0.899 1.2166 1.1332 0.9757 1.0405 0.9462 0.9380 1.0080
R2 0.8916 0.9032 0.8469 0.8646 0.8702 0.8791 0.8801 0.8827 0.8773
EV 0.9159 0.9001 0.8749 0.8858 0.8982 0.8877 0.9019 0.9088 0.8966

MSE 1.3875 1.1751 1.5079 1.2672 1.3716 1.4154 1.3716 1.3520 1.3560

LSTM_C_R

MAE 0.9404 0.9302 1.3692 1.0778 0.9016 1.1582 0.9482 0.9830 1.0386
R2 0.8837 0.8791 0.8357 0.8539 0.8920 0.8470 0.8853 0.8708 0.8684
EV 0.9034 0.8985 0.8410 0.8781 0.9035 0.8663 0.8907 0.8908 0.8840

MSE 1.2399 1.1694 1.9688 1.6916 1.1968 1.9792 1.4760 1.7334 1.5568

As far as the R2 visualization of the convergence of Dalian Road in Figures 15 and 16 is
concerned, LSTM and ARIMA have similar performance in many sections of the east–west
line due to the small number of sections. The reason may be that the geological environment
or water level characteristics of the same section of the east line and the west line are similar.
The impact on tunnel deformation is also similar. Therefore, the points in the same road
section show consistent performance in the east and west line models.
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Figure 15. R2 of west line road section of the Dalian Road tunnel.

Figure 16. R2 of east line road section of the Dalian Road tunnel.

Through sectional comparison and analysis, the prediction of settlement and con-
vergence of the same model has many common points in the tunnel section, such as the
difference of R2 fitting in different sections and routes and the similarity of adjacent moni-
toring points. In addition, from the perspective of the overall fitting trend, ARIMA and
LSTM tend to have similar performance in deformation prediction. This may be due to the
fact that the information contained in the time-series data as a single variable cannot fully
reflect the development law of deformation, leading to the similarity of the model after
training, which needs to be supplemented and improved in future research.

6.3. Comparison of Experimental Results between Models
6.3.1. ARIMA

ARIMA single monitoring points were selected based on the same type of data to
group and compare with the road model, and the results are shown in Table 8. It can
be seen that for the settlement data, the average values of the indicators MAE and MSE
of the ARIMA sub-section model have decreased significantly, with MAE decreasing by
28.38% and MSE decreasing by 50.65%, and the average values of R2 and EV have increased
slightly, with R2 increasing by 2.21% and EV increasing by 2.95%. For the transverse
convergence data, the average values of MAE and MSE of the model also decrease, with
MAE decreasing by 10.90% and MSE decreasing by 35.38%, which is lower than the
settlement data. However, R2 has increased by 13.64% and EV has increased by 8.4%,
which is larger than the settlement data. This indicates that the model makes it easier to fit
deformation trends after enhancing the transverse convergence data samples.
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Table 8. Comparison of the mean value of ARIMA model indicators.

Data Model MAE R2 EV MSE

Settlement ARIMA_S_S 1.8758 0.8155 0.8516 4.3531
ARIMA_S_R 1.3435 0.8335 0.8767 2.1483

Convergence ARIMA_C_S 1.1312 0.7720 0.8271 2.0984
ARIMA_C_R 1.0080 0.8773 0.8966 1.3560

6.3.2. LSTM

Observing the performance of LSTM in the road section and single monitoring point,
the results of comparison are shown in Table 9. It can also be seen that the prediction
performance of LSTM in the road section model is better than that of the single point model.
Based on the settlement data, the average MAE value of the whole tunnel has decreased by
34.89%, the average R2 value has increased by 7.91%, the average EV value has increased
by 2.88%, and the average MSE value has decreased by 55.40%. Based on the transverse
convergence data, the average MAE of the whole tunnel has decreased by 14.74%, the
average R2 has increased by 14.43%, the average EV has increased by 13.46%, and the
average MSE has decreased by 38.07%.

Table 9. Comparison of the mean value of LSTM model indicators.

Data Model MAE R2 EV MSE

Settlement LSTM_S_S 2.1159 0.7653 0.8408 5.5306
LSTM_S_R 1.3777 0.8258 0.8650 2.4665

Convergence LSTM_C_S 1.2181 0.7589 0.7791 2.5140
LSTM_C_R 1.0386 0.8684 0.8840 1.5568

In a comprehensive comparison, ARIMA’s indicators change more smoothly and
LSTM’s overall indicators change more significantly than ARIMA’s. The mean value of
MAE and MSE decreases less than ARIMA’s, and the mean value of R2 and EV increases
more than ARIMA’s. This shows that the prediction performance of LSTM has been greatly
improved, compared with ARIMA in the road section model. The results may be due to
the sufficient number of samples after segmentation, which improves the dataset quality.
The learning of neural network is more sufficient than the traditional time-series model.
LSTM can learn more information, and the model indicators improve faster.

7. Summary and Prospect

Focusing on predicting trends in structural deformation during the operation period of
shield tunnels, this paper takes longitudinal uneven settlement deformation and transverse
convergence deformation as experimental objects. Based on readily available time-series
data, a comprehensive comparison and analysis of ARIMA and LSTM in data prediction
performance is conducted from the point of view of single monitoring points and road
sections. The experiments show that the ARIMA and LSTM models constructed in this
paper both have good generalization performance and fitting ability, and can effectively
and accurately predict deformation in most tunnel monitoring points. Overall, ARIMA
has better stability and universality for small sample datasets, while the upper limit of
LSTM is strong but slightly unstable. With higher quality data, model performance may be
greatly improved.

The experiments also have practical implications for engineering. For important
monitoring points in tunnels, the ARIMA or LSTM model with better performance corre-
sponding to each point can be selected to predict deformation for a period of time in the
future; record the predicted value; and establish a preventive alarm mechanism focusing
on monitoring points that may have uplift, large settlement amplitude, obvious settlement
difference with surrounding monitoring points, or that exceed the settlement warning
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value in the future. Strengthening monitoring and management of the road sections where
points are located or carrying out preventive maintenance can prevent future problems.

In future research, we need to further optimize and improve the dataset and exper-
imental models used in the article. The following are the directions for improvement
considered in this article:

1. At present, the model adopts a rolling prediction method, which is based on tempo-
ral information for deformation prediction. Although long-term dependencies on
temporal data can be learned using ARIMA or LSTM, this dependency relationship
is still not presented in the form of parameters. The interpretability of the model
is not clear enough. The future improvement direction can be based on probability
statistical methods to make long-term probability predictions of tunnel deformation,
indicating whether the extension of the operation period has increased the probability
of deformation occurrence.

2. The premise for establishing the model in this article is that the tunnel is in a long-term
stable operating environment, but this assumption is not very appropriate. Although
it is difficult to comprehensively consider the factors that affect tunnel deformation, it
is beneficial to improve the accuracy of model prediction. In the future improvement
direction, we will add the screening of factors, using popular methods such as random
forest or XGBoost, and then include the factors with higher importance into the model.

3. At present, this article only conducts experiments on two tunnel datasets, the Xinjian
Road and Dalian Road Tunnels. The universality and generalization ability of the
model still need to be further verified through other datasets.
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