
Citation: Botero-Valencia, J.;

Martinez-Perez, A.; Hernández-

García, R.; Castano-Londono, L.

Exploring Spatial Patterns in Sensor

Data for Humidity, Temperature, and

RSSI Measurements. Data 2023, 8, 82.

https://doi.org/10.3390/data8050082

Academic Editors: Hugo Morais,

Rui Castro and Cindy Guzman

Received: 13 April 2023

Revised: 28 April 2023

Accepted: 28 April 2023

Published: 29 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

data

Data Descriptor

Exploring Spatial Patterns in Sensor Data for Humidity,
Temperature, and RSSI Measurements
Juan Botero-Valencia 1 , Adrian Martinez-Perez 2 , Ruber Hernández-García 3,4,∗

and Luis Castano-Londono 5

1 Grupo Sistemas de Control y Robótica, Faculty of Engineering, Instituto Tecnológico Metropolitano—ITM,
Calle 73 No. 76A-354, Medellin 050034, Colombia; juanbotero@itm.edu.co

2 Grupo Materiales Avanzados y Energía, Faculty of Engineering, Instituto Tecnológico Metropolitano—ITM,
Calle 73 No. 76A-354, Medellin 050034, Colombia; adrianmartinez@itm.edu.co

3 Research Center for Advanced Studies of Maule (CIEAM), Universidad Católica del Maule,
Avenida San Miguel 3605, Talca 3480094, Chile

4 Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule,
Avenida San Miguel 3605, Talca 3480094, Chile

5 Faculty of Engineering, Universidad de Antioquia, Calle 70 No. 52-21, Medellin 050010, Colombia;
luis.castanol@udea.edu.co

* Correspondence: rhernandez@ucm.cl

Abstract: The Internet of Things (IoT) is one of the fastest-growing research areas in recent years
and is strongly linked to the development of smart cities, smart homes, and factories. IoT can be
defined as connecting devices, sensors, and physical objects that can collect and transmit data across
a network, enabling increased automation and better decision-making. In several IoT applications,
humidity and temperature are some of the most used variables for adjusting system configurations
and understanding their performance because they are related to various physical processes, human
comfort, manufacturing processes, and 3D printing, among other things. In addition, one of the
biggest problems associated with IoT is the excessive production of data, so it is necessary to develop
methodologies to optimize the process of collecting information. This work presents a new dataset
comprising almost 55 million values of temperature, relative humidity, and RSSI (Received Signal
Strength Indicator) collected in two indoor spaces for longer than 3915 h at 10 s intervals. For each
experiment, we captured the information from 13 previously calibrated sensors suspended from
the ceiling at the same height and with a known relative position. The proposed dataset aims to
contribute a benchmark for evaluating indoor temperature and humidity-controlled systems. The
collected data allow the validation and improvement of the acquisition process for IoT applications.

Dataset: 10.17605/OSF.IO/ZBN8W

Dataset License: CC BY 4.0

Keywords: temperature; relative humidity; RSSI; Internet of Things (IoT); indoor climate

1. Introduction

The Internet of Things (IoT) is one of the fastest-growing research areas for the develop-
ment of smart cities, smart homes, and factories. IoT can be defined as connecting devices,
sensors, and physical objects that can collect and transmit data across a network, enabling
increased automation and better decision-making. In several applications, monitoring hu-
midity and temperature is an essential component for adjusting system configurations and
understanding their performance. Both physical parameters are closely related and affect
many properties of environments and materials. Humidity measurements are critical for
preventing corrosion, condensation, mold, deformation, or other product damage. On the
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other hand, temperature monitoring is relevant in storage and testing processes. Some
potential consequences of not monitoring humidity and temperature are product damage,
inventory loss, unexpected expenses, and equipment failure, among others. Therefore,
a wide variety of industries precisely measure these variables, such as healthcare and
pharmaceutical [1–4], electronic manufacturing [5], agriculture [6,7], food production [8,9],
climate change [10,11], and in the case of enclosed spaces, particularly for the 3D printing
process of concrete [12,13], among others. For example, in the pharmaceutical and food
industries, there is a high risk of negatively impacting the medication efficacy or biological
properties of foodstuffs. Furthermore, improper levels of these variables increase the failure
likelihood of equipment in IT environments.

In this context, measurements of these variables in indoor spaces (i.e., buildings, rooms,
or warehouses) have acquired great importance in recent years [12,14,15]. For indoor mea-
suring, a correct sampling set-up is crucial to ensure the accuracy of the monitoring system.
For instance, measuring points must be representative to avoid over/under-estimations
across the space. In addition, repeated measures over time allow for determining variations
in conditions and reduce uncertainty due to short-term instrument instability. Hence,
the modernization of control systems and sensors has enabled the development of this
research area [16,17]. The data collected via these systems have various applications,
including physical space analysis [18], biodynamics [19], and virtual sensors [20].

The research areas mentioned above become more relevant for comfort studies in
inhabited spaces [12,15,21] and microclimate analysis in warehouses [22,23]. Particularly in
indoor areas with a continuous flow of people (e.g., shopping centers, offices, or residential
buildings), space conditions can be adjusted depending on the temperature and humidity
to optimize environmental comfort. For example, air-conditioning systems, windows,
or doors can be automatically controlled to ensure optimal values of these variables. More-
over, there are some places where microclimate variations strongly impact the quality
of products, such as the food industry [8], pharmaceutical manufacturing [4], or storage
of museum pieces [23]. In these cases, a heterogeneous distribution of temperature or
humidity can impact the storage cold chain or the conservation of museum collections. Due
to the importance of these application areas, the present study is focused on the analysis of
indoor microclimates for IoT applications. IoT device characteristics related to cost, power
consumption, weight, dimensions, and connectivity facilitate the deployment of sensor
networks for distributed indoor temperature and humidity monitoring. Among other
things, IoT applications include 24/7 monitoring of production facilities, pharmaceutical
and long-term food storage, data centers, and healthcare environments.

For research purposes, some state-of-the-art (SOTA) works have proposed different
data processing algorithms on real-time wireless sensor networks (WSNs). To the best of our
knowledge, SOTA approaches are mainly based on classical processing techniques [24,25],
machine learning-based models [26–28], and hybrid algorithms [29–31]. Among these
studies, one of the most representative databases is the Intel Berkeley Research Lab dataset
(IBRL) [32]. IBRL contains unlabelled data collected via 54 Mica2Dot sensors over 37 days
within an interval of 31 s. The dataset comprises 2.3 million timestamped registers of tem-
perature, humidity, light, and voltage values. In addition, the authors of [33] introduced
the Indoor Temperature and Relative Humidity dataset of controlled and uncontrolled en-
vironments. The data were collected for two months at the De La Salle Museum of Natural
Sciences and the Laboratory of Control Systems and Robotics, including 4,164,267 values of
timestamp, indoor temperature, and relative humidity. The dataset aims to perform studies
on processing algorithms at the edge to mitigate drawbacks in real indoor applications.
However, neither dataset considers the location of the sensors, which could be useful
information for developing methodologies to optimize the process of collecting data. Thus,
it can be stated that there is still a lack of public databases that allow a more exhaustive
analysis of the performance of the proposed techniques in this area.

The present work introduces a new and the largest dataset comprising almost 55 mil-
lion records of temperature, relative humidity, and RSSI (Received Signal Strength Indicator)
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collected in indoor spaces. The data were collected for nine months (June 2022 to February
2023), over approximately 3915 h at 10 s intervals in two separate indoor places at the
Instituto Tecnológico Metropolitano, Medellin, Colombia. We deployed a WSN comprised
of thirteen temperature and humidity sensors (Xiaomi Mijia model LYWSDCGQ/01ZM)
for data acquisition using a LoPy4 development board. The sensors were previously cali-
brated and located at the same height suspended from the ceiling, with a known relative
position. The proposed dataset aims to contribute a benchmark for evaluating indoor
temperature and humidity-controlled systems. The collected data allows the validation
and improvement of the acquisition process of IoT applications. The purpose of acquiring
this dataset is to allow the development of algorithms to optimize sampling, propose
the development of interpolation models, and estimate the influence of humidity or tem-
perature on RSSI. In general terms, our proposal improves how the acquisition of these
fundamental variables for human comfort and the development of processes such as 3D
printing is done. In addition, it is known that environmental conditions can affect the
performance of sensor networks. In particular, temperature could adversely affect the
performance of radio transceivers [34]. RSSI information is used in some works to study
the effect of environmental conditions on the performance of sensor networks [35–37] or
developing algorithms for the estimation of location [38–40]. Considering that the location
of the sensors is known, this database can be useful for both types of studies.

The structure of the paper is as follows. Section 2 presents the acquisition devices,
collection area, and acquisition process. Section 3 describes the structure of the proposed
dataset and analyzes the obtained data. Finally, Section 4 gives the conclusions and outlines
future works.

2. Materials and Methods

In the following, we present the characteristics of the acquisition devices for deploying
the WSN. Moreover, we describe the collection areas and the acquisition process.

2.1. Acquisition Devices

Thirteen temperature and humidity sensors Xiaomi Mijia model LYWSDCGQ/01ZM
were used for data acquisition using Bluetooth Low Energy (BLE), and a LoPy4 develop-
ment board was utilized as a single BLE gateway to collect all sensors’ data. Each sensor
reports the measurements, and the LoPy4 reads the values. Figure 1 depicts the devices
used for the deployed WSN.

(a)
(b)

Figure 1. Devices used for the deployed WSN: (a) Xiaomi Mijia Sensor and (b) LoPy4 dev board.

The specifications of the temperature and humidity sensors are shown in Table 1. The
sensors were calibrated in a Metrology Laboratory of the ITM accredited by the National
Accreditation Body of Colombia (Organismo Nacional de Acreditación de Colombia—
ONAC). The sensor calibration was performed using a Fluke 2626-H sensor as a reference
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measurement instrument. The environmental conditions under which the calibration was
performed are between 19.30 ◦C and 20.50 ◦C for the temperature and between 56.4%RH
and 60.5%RH for the relative humidity. The calibration range for temperature is from 15◦

to 40◦ and for relative humidity from 30%RH to 70%RH. The specifications of the LoPy4
development board are shown in Table 2.

Table 1. Temperature and humidity sensor Xiaomi Mijia model LYWSDCGQ/01ZM specifications.

Specification Value

Temperature range −9.9 ◦C–60 ◦C
Temperature accuracy 0.1 ◦C

Humidity range 0–99.9%RH
humidity accuracy 0.1%RH

Rated power 0.18 mW
Power supply Batteries (AAA) × 1

Battery life 1 year

Table 2. LoPy4 development board specificactions.

Specification Value

Microcontroller ESP32
RAM 520 KB + 4 MB

External flash 8 MB
Bluetooth BLE 4.2 and 2.0

Working voltage 3.3 V to 5 V

2.2. Description of Areas

For data collection, two (2) spaces were selected at the Instituto Tecnológico Metropoli-
tano (ITM) in the Robledo headquarters, located at Calle 73 No. 76A-354 and Fraternidad,
located at Calle 54A No. 30-01, both in Medellín, Antioquia, Colombia. These spaces are
used by the line of Advanced Computing, Digital Design, and Manufacturing Processes
(CADD) of the MATYER research group.

The Modeling laboratory (called LAB1) is located in block F, room 202 of the Rob-
ledo headquarters, and is used to carry out simulation studies and the work associated
with CADD. The internal dimensions of the room are 7.81 m × 7.82 m and 2.96 m high,
as shown in Figure 2a. The 7.82 m side is oriented south–north. On the eastern side,
there are two (2) glass windows measuring 2.45 m × 1.80 m and an access door measuring
1.00 m × 2.30 m. The air conditioning equipment is a Comfortfresh model TUB-36CRA-N1
with a 36,000 BTU/h floor–roof fan coil unit located on the south side of the laboratory.
The sensor distribution is shown in Figure 2a, and the coordinates are given in Table 3.
The vertical installation distance is 0.70 m, measured from the ceiling. In the laboratory,
there are two (2) HP XW 6600 workstations, three (3) HP Z600 workstations, eight (8)
HP Elite Desks, four (4) Dell Precision T7600, and one (1) Acer Veriton X 4986. There are
sixteen (16) luminaires on the ceiling evenly distributed; each one has two (2) 18W LED
T8 tubes. Usually, there are five (5) people on site, but in some moments of meetings or
training, the number of people may increase to 20.

The simulation, modeling, and prototyping laboratory (called LAB2) is located in the
integrated research park of ITM-Fraternidad headquarters. It is used to research simulation
and computational processing, among other things. The internal dimensions of the room
are 6.60 m × 12.60 m and 4.40 m high, as depicted in Figure 2b. The 12.60 m side is oriented
south–north. On the west side, there are five (5) glass windows measuring 1.00 m × 0.50 m,
and two (2) access doors of 1.50 m × 2.30 m on the 6.60 m sides. The air conditioning is
supplied by two (2) circular grilles of 0.305 m (12 in) diameter, which are connected to
a York® brand air handling unit, model YSM-B104V1600CFL0A, with a nominal cooling
capacity of 56,000 BTU/h and air supply of 2048 cubic feet per minute (CFM). Figure 2b
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shows the sensor distribution, and Table 3 gives their coordinates. The vertical distance
of installation measured from the ceiling is 0.60 m. In the space, there are four (4) HP
Z600 workstations, four (4) Dell Precision T7600, a domestic refrigerator Challenger model
CR074, a proportional hydraulics bench, and a turbine test bench with 10 hp and 2 hp
motors. There are ten (10) evenly distributed ceiling lights, each with two (2) 25W T6
fluorescent tubes. Usually, three (3) people stay inside, but for specific academic activities,
there can be up to 15 people.

(a)

(b)
Figure 2. Distribution of the sensors for the deployed WSN in (a) LAB1 and (b) LAB2.

Table 3. Coordinates of used sensors and gateway in both laboratories, considering a common origin.

LAB1 LAB2

Sensor X Y X Y

1 7.21 0.60 5.70 7.54
2 3.88 5.88 5.70 10.17
3 5.85 5.88 3.30 11.60
4 0.60 0.60 3.30 9.12
5 1.92 1.94 3.30 6.34
6 3.88 3.91 3.30 3.86
7 1.92 3.91 3.30 1.38
8 5.85 3.91 5.70 4.91
9 7.21 7.22 5.70 2.43

10 1.92 5.88 0.90 2.43
11 0.60 7.22 0.90 10.17
12 5.85 1.94 0.90 4.91
13 3.88 1.94 0.90 7.54

Gateway 1.63 7.73 0.00 5.93

2.3. Dataset Organization

The dataset is available through the Open Science Framework (OSF) at the following
link: osf.io/zbn8w, accessed on 12 April 2023. It consists of 35 files totaling 448.6 MB, orga-
nized into seven folders according to the location and date of data acquisition. The file with
.mat extension contains the date and time information, as well as the data for temperature,

https://osf.io/zbn8w
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humidity, and RSSI of the thirteen sensors. The files with .xlsx contain the data of the
thirteen sensors according to the variable associated with the filename. The date and time
values found in the time file are common for the three variables measured, so this infor-
mation is not included in the files of these variables to avoid redundant data. The dataset
organization is presented in Table 4, in which the place, the date, the elapsed time, the size
in terms of the amount of data, the filenames, and the corresponding link in OSF can be
identified. The Sample06 folder contains the data from the thirteen sensors located close
to each other, to be taken as reference data. Finally, in Table 4, the row referenced as EXT
corresponds to the temperature and humidity data sampled by an external weather station
in a central location of the city, with a 4 min interval and in a time interval that covers all
the samplings presented in this article. It should be noted that these data were not totaled,
but they can be very useful for analysis of the data presented and correlating them with the
external climate.

Table 4. Description of the dataset organization.

Place Start
Date

End
Date

Elapsed
Time Size File Link

Sample00.mat https://osf.io/ra73v
Humidity00.xlsx https://osf.io/prke9
RSSI00.xlsx https://osf.io/vbphj
Temperature00.xlsx https://osf.io/ywv52

LAB1 06/08/2022
10:44:00

07/19/2022
11:59:00 985:15:00 354,695

Time00.xlsx https://osf.io/3ygax

Sample01.mat https://osf.io/te24d
Humidity01.xlsx https://osf.io/qycu8
RSSI01.xlsx https://osf.io/f4ce6
Temperature01.xlsx https://osf.io/vzqr5

LAB1 07/27/2022
11:05:21

09/19/2022
12:00:40 1296:55:19 466,892

Time01.xlsx https://osf.io/x4p27

Sample02.mat https://osf.io/qg2ku
Humidity02.xlsx https://osf.io/3efmz
RSSI02.xlsx https://osf.io/qvabh
Temperature02.xlsx https://osf.io/a632n

LAB2 10/24/2022
11:00:00

10/26/2022
19:00:00 56:00:00 20,161

Time02.xlsx https://osf.io/sed6z

Sample03.mat https://osf.io/ub8k4
Humidity03.xlsx https://osf.io/m8e4q
RSSI03.xlsx https://osf.io/vrjs7
Temperature03.xlsx https://osf.io/t8wng

LAB2 11/03/2022
12:05:00

11/27/2022
05:00:00 568:55:00 204,811

Time03.xlsx https://osf.io/hgrbu

Sample04.mat https://osf.io/s9byf
Humidity04.xlsx https://osf.io/r8qys
RSSI04.xlsx https://osf.io/7dbf6
Temperature04.xlsx https://osf.io/w2vkf

LAB2 11/27/2022
18:30:00

11/30/2022
11:20:00 64:50:00 23,341

Time04.xlsx https://osf.io/f92eq

Sample05.mat https://osf.io/cax4m
Humidity05.xlsx https://osf.io/2pc78
RSSI05.xlsx https://osf.io/w3x47
Temperature05.xlsx https://osf.io/h7qkn

LAB2 12/06/2022
15:15:00

01/11/2023
06:46:00 855:31:00 307,987

Time05.xlsx https://osf.io/undy7

Sample06.mat https://osf.io/76zpb
Humidity06.xlsx https://osf.io/5zrmt
RSSI06.xlsx https://osf.io/bm6ek
Temperature06.xlsx https://osf.io/5xz24

REF 02/16/2023
15:38:06

02/20/2023
07:31:57 87:53:51 31,644

Time06.xlsx https://osf.io/8n3bh

Sample07.mat https://osf.io/mz3nd
Humidity07.xlsx https://osf.io/dnj4z
Temperature07.xlsx https://osf.io/fq4h9EXT 06/08/2022

00:00:00
02/20/2023

23:56:00 6191:56:00 92,880

Time07.xlsx https://osf.io/v6jxu

Total 3915:20:10 1,409,531

https://osf.io/ra73v
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https://osf.io/vbphj
https://osf.io/ywv52
https://osf.io/3ygax
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https://osf.io/f4ce6
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https://osf.io/3efmz
https://osf.io/qvabh
https://osf.io/a632n
https://osf.io/sed6z
https://osf.io/ub8k4
https://osf.io/m8e4q
https://osf.io/vrjs7
https://osf.io/t8wng
https://osf.io/hgrbu
https://osf.io/s9byf
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2.4. Value of the Data

The data obtained in this study were acquired under real operating conditions. Since
events occur in the acquisition process that interferes with the continuous acquisition of
data, the database is cleaned to provide consistent data for the available periods, avoiding
the need to organize or pre-process the data for use. The dataset has a large number
of records that allow the development of different types of studies. Estimating indoor
temperature and humidity distribution, considering the position of the sensors provides
the possibility to study the environmental working conditions in an inhabited environment.
In addition, it is possible to include time values to analyze these dynamics over a given
period. On the other hand, RSSI data can be used to implement and evaluate position
estimation algorithms, taking the known values of the sensor and gateway positions as
a reference. For this type of use, the temperature and humidity values could be used
to make corrections or improve the positioning algorithms considering the correlation
between the measured variables. Furthermore, the data can be studied to establish the
effect of temperature, humidity, and position on the performance of the sensor network by
analyzing the variation of RSSI as a function of these variables. In this sense, the database
can be used by IoT researchers to conduct studies to understand the behavior of sensor
networks for monitoring indoor variables.

3. Data Samples

Although, as mentioned above, the sensors were calibrated and certified, an experi-
ment was performed in which the sensors were placed in a confined space in its storage
box for approximately 87 h. The purpose is that these were close and had the same effect
as the environment. The room is air-conditioned (AC) and was used to observe the effect
on the measurements under this controlled condition and to determine the correlation
between the sensors. Figure 3a,b show the temperature behavior on two different days,
in the first case when the temperature varies naturally and in the second where the air
conditioning was operated; correspondingly, Figure 3c,d show the same behavior but for
humidity on the same days. Figure 3b,d show sudden changes due to the operation of the
air conditioning system. These data are included in the repository and may be used by
users to make further adjustments to measures if necessary or valid.

Table 5 shows the correlation coefficient matrix for this experiment, showing that in all
cases, the correlation coefficient is greater than 98%, even higher than 99% in 70% of cases.

Table 5. Coordinates of used sensors and gateway in both laboratories, considering a common origin.

Sensor T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12 T13

T01 100.00 98.97 98.20 99.10 99.49 99.30 98.74 99.20 99.35 99.51 98.11 99.30 99.49
T02 98.97 100.00 99.29 99.38 99.15 99.41 99.40 99.48 99.37 98.86 98.73 99.41 98.88
T03 98.20 99.29 100.00 99.15 98.46 98.97 99.43 99.05 98.89 98.10 99.09 98.94 98.18
T04 99.10 99.38 99.15 100.00 99.18 99.45 99.30 99.41 99.30 99.07 99.03 99.41 99.12
T05 99.49 99.15 98.46 99.18 100.00 99.37 98.96 99.32 99.46 99.46 98.23 99.38 99.43
T06 99.30 99.41 98.97 99.45 99.37 100.00 99.21 99.50 99.43 99.25 98.65 99.51 99.25
T07 98.74 99.40 99.43 99.30 98.96 99.21 100.00 99.26 99.25 98.68 99.10 99.19 98.73
T08 99.20 99.48 99.05 99.41 99.32 99.50 99.26 100.00 99.44 99.12 98.54 99.51 99.11
T09 99.35 99.37 98.89 99.30 99.46 99.43 99.25 99.44 100.00 99.29 98.52 99.45 99.27
T10 99.51 98.86 98.10 99.07 99.46 99.25 98.68 99.12 99.29 100.00 98.15 99.23 99.51
T11 98.11 98.73 99.09 99.03 98.23 98.65 99.10 98.54 98.52 98.15 100.00 98.53 98.30
T12 99.30 99.41 98.94 99.41 99.38 99.51 99.19 99.51 99.45 99.23 98.53 100.00 99.23
T13 99.49 98.88 98.18 99.12 99.43 99.25 98.73 99.11 99.27 99.51 98.30 99.23 100.00

In order to demonstrate the practicality of the presented data acquisition, a spatial
linear interpolation technique was applied, taking into account the known x-y coordinates
of each sensor and their consistent height in both experiments. An illustration of this
technique can be found in Figure 4, for the LAB1 space, where a specific day was selected,
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and interpolation was conducted to compare the temperature, humidity, and RSSI at the
time instants of the lowest and highest temperature difference. The outcomes revealed
that the area with the most significant temperature variation could be pinpointed and that
this region displayed an inverse relationship with the humidity change, as anticipated.
The color scale was maintained for both scenarios to facilitate interpretation.

Figure 5 shows the results of the same experiment, but now for space LAB2. In this case,
it can be observed that the temperature and humidity have two focal points (Figure 5b,d)
because, in this space, there are two air conditioning outlets. In the case of RSSI, the relation-
ship between the actual location of the gateway and the interpolation of the measurements
can be observed, where it can be seen that the lower left part of the area where the gateway
is located coincides with the sector where the signal is strongest in the graph. The distance
represented in x-y is in centimeters, and the temperature and humidity respect the original
value acquired with the sensors.

(a) (b)

(c) (d)
Figure 3. Comparative data of temperature and humidity with and without air-conditioned system.
(a) Temperature without AC; (b) Temperature with AC; (c) Humidity without AC; (d) Humidity
with AC.
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(a) (b)

(c) (d)

(e) (f)
Figure 4. Spatial data interpolation for the collected variables in LAB1 at the time of lowest (left
column) and highest (right column) temperature difference. (a) Temperature interpolation; (b) Tem-
perature interpolation; (c) Humidity interpolation; (d) Humidity interpolation; (e) RSSI interpolation;
(f) RSSI interpolation.
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(a) (b)

(c) (d)

(e) (f)
Figure 5. Spatial data interpolation for the collected variables in LAB2 at the time of lowest (left
column) and highest (right column) temperature difference. (a) Temperature interpolation; (b) Tem-
perature interpolation; (c) Humidity interpolation; (d) Humidity interpolation; (e) RSSI interpolation;
(f) RSSI interpolation.
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4. Conclusions

This paper introduced a new and the largest dataset comprising almost 55 million
values of temperature, relative humidity, and RSSI collected over nine months in two
separate indoor spaces at the Instituto Tecnológico Metropolitano in Medellín, Colombia.
The data collection was performed for nine months (from June 2022 to February 2023),
over approximately 3915 h at 10 s intervals. Data are not available for the whole 9-month
period of the survey because the database is cleaned to provide consistent data for the avail-
able periods, avoiding the need to organize or pre-process the data for use. Thirteen Xiaomi
Mijia model LYWSDCGQ/01ZM temperature and humidity sensors and a LoPy4 gateway
are used for the data acquisition. The sensors are distributed uniformly in each location and
placed at a known distance from the ceiling without contact with any surface. The Xiaomi
Mijia sensors underwent calibration at an ITM Metrology Laboratory that holds accredita-
tion from the National Accreditation Body of Colombia (ONAC). The calibration of these
sensors involved using a Fluke 2626-H sensor as the reference measurement equipment.
This procedure is crucial in guaranteeing the dependability of the collected data.

The collected dataset has some relevant real-world applications in a wide variety of
industries that require precise measurement of these variables. Our proposal provides the
respective spatial coordinates of the sensors, which allows the interpolation of each mea-
sured variable according to the spatial distribution of the sensors. The spatial coordinates
are helpful in applying interpolation techniques to estimate variables at other locations
within the monitored space. This type of data representation allows for identifying areas
with atypical behavior. In the case of air conditioning systems, it allows the analysis of
space conditions by observing the gradient that results in space. This information can be
useful in the study of thermo-hygrometric modeling in indoor enclosed spaces with air
conditioning systems, such as manufacturing plants, warehouses, and data centers. In
addition, since RSSI information can be used for position estimation and the location of the
sensors is known, this database can be used for the evaluation of RSSI-based localization
algorithms or the performance of the sensor network as a function of spatial distribution
and environmental conditions. In addition, the proposed methodology can be used for
IoT applications, including 24/7 monitoring of production facilities, pharmaceutical and
long-term food storage, data centers, and healthcare environments.
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