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Abstract: Buildings are among the most significant urban infrastructure that directly affects citizens’
livelihood. Knowledge about their rooftops is essential not only for implementing different Levels
of Detail (LoD) in 3D city models but also for performing urban analyses related to usage potential
(solar, green, social), construction assessment, maintenance, etc. At the same time, the more detailed
information we have about the urban environment, the more adequate urban digital twins we can
create. This paper proposes an approach for dataset preparation using an orthophoto with a resolution
of 10 cm. The goal is to obtain roof images into separate GeoTIFFs categorised by type (flat, pitched,
complex) in a way suitable for feeding rooftop classification models. Although the dataset is initially
elaborated for rooftop classification, it can be applied to developing other deep-learning models
related to roof recognition, segmentation, and usage potential estimation. The dataset consists of
3617 roofs covering the Lozenets district of Sofia, Bulgaria. During its preparation, the local-specific
context is considered.

Keywords: building rooftop classification; roof dataset preparation; orthophoto processing

1. Introduction

Nowadays, the digital twin is a dominating technology in the smart city landscape. It
represents its physical counterpart in the real world via data (static, dynamic and real-time),
models, analyses and simulations, context awareness, interaction, and connectivity. The
digital twin enables deep insights into the city operations and prediction of the future
behaviour of the city in a way that is actionable for the stakeholders and citizens. It allows
for better-informed and transparent decisions with the help of data from across the urban
space. The digital twin collects a variety of heterogeneous datasets from different sources,
including those related to buildings, infrastructure, vegetation, terrain and other elements,
and also links additional data from urban dynamics, such as urban traffic, air pollution,
and pedestrian movement, onto them [1]. It becomes a data hub that can be used beyond
creating 3D information models, e.g., lifecycle management of single urban objects and
assets, simulation of what-if scenarios, and real-time monitoring and analysis at different
city scales [2].

A key challenge currently standing in the way of the wide adoption of digital twins
is data availability and accessibility. Publicly available data remain an obstacle towards
the uptake and application of digital twins on a large scale that is applied to broad urban
use cases [3]. For example, in many countries, including Bulgaria, data that is crucial for
building 3D city models, such as cadastral, orthophoto, or LiDAR, is either not acquired
or is owned by private companies. Many local governments around the world are still
beginning their digital transformation journey. On the other hand, countries such as the
Netherlands [4], Finland [5], and Estonia [6] are offered completely free, publicly available
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LiDAR data for the entire country. This contributes significantly to the research of various
aspects of the development of city digital twins.

Remote sensing plays a vital role in urban data collection, including satellite imagery,
unmanned aerial vehicle (UAV) images, and light detection and ranging (LiDAR) data. The
multi-resolution remote sensing data and deep learning models jointly bridge the gap in
urban feature extraction and change detection. The new generations of high-resolution
satellite constellations successfully incorporate a high level of detail and broad coverage [3].
In addition, integrating remote sensing and GIS provides a strong instrument for urban
planning assessment and environment simulation [7]. However, regardless of the collection
technique, any dataset needs to be preprocessed to properly feed the Artificial Intelligence
(AI) models.

The 3D city models are an integral part of the digital twins. Level of Detail (LoD) is a
paradigm in 3D city modelling that defines the degree of abstraction of real-world objects.
It is designated to optimise the granularity of object geometries according to the user’s
needs and computational and economic aspects [8]. Modelling the rooftops is essential, not
only for better visual perception, but also because of the potential of the roof surfaces to
address various city problems. This includes solar [8], green roofs [9], social space [10], or a
combination of them. Developing such potentials could have a huge positive impact on the
city environment. However, complex analyses need to be performed to assess the effect
and the level of necessity. For example, solar irradiation is assessed based on the rooftop’s
direction, tilt, and area. In this case, a detailed rooftop structure is required to evaluate the
useful space for photovoltaic placement, while the detailed facade structure is unnecessary.
At the same time, openings on the roofs, such as windows, should be considered since they
reduce the roof area on which solar panels can be placed. Thus, the windows and other
openings should be distinguished based on their location on the building surface [8].

As mentioned, AI, and deep learning models in particular, play a significant role in
rooftop analysis as a part of 3D city modelling. However, the precision of such analytical
models depends on their learning from the training data [11]. The classification and feature
extraction algorithms are fast, cost-effective, and can produce a result with high precision.
On the other hand, they require a significant amount of representative, properly labelled
data to build accurate models [12].

The data preparation approach presented in this study aims to provide a reliable and
accurate image dataset suitable for the recognition and classification of rooftops and further
photogrammetric reconstruction. It will provide input for deep learning models to extract
roof geometry and other features using only orthophoto or satellite images. The quality and
availability of cadastre data can vary greatly depending on the update frequency and LoD.
In some cities, the cadastre contains attribute information for the roof type of the buildings,
but this is different in the Bulgarian context. The cadastre data of Sofia city cannot be used
to obtain roof categories due to limited support of building features and usage restrictions.
Thus, the proposed dataset will provide opportunities to enrich the 3D city model of Sofia
city and achieve a higher LoD [13].

The dataset is elaborated based on an orthophoto with a resolution of 10 cm. It consists
of 3617 GeoTIFFs, which fall into three main classes: flat, pitched, and complex. The dataset
has been successfully applied to develop a deep-learning model for rooftop classification.

The rest of the paper is organised as follows. Section 2 presents the local context
and related work. Section 3 describes the study area and acquisition of the input dataset.
Section 4 presents the methods used for dataset preparation. Section 5 shows the results
and discusses the challenges and lessons learned. Section 6 concludes the paper and gives
directions for future work.

2. Background and Related Work

Remote sensing methods have gained popularity for rooftop analysis in various
applications, including assessing solar potential, identifying roof structures, and analysing
rooftop vegetation, damage, and rainwater potential. However, datasets used for these
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studies vary significantly depending on the local context related to roof materials, colours,
conditions, structures, noise, and abstract geometries. Additionally, the global diversity of
roof types is vast and dependent on local context, culture, and climate.

According to CityGML standard, roofs can be classified into various types: flat, mono-
pitch, skip pent, gabled, hipped, half-hipped, mansard, pavilion, cone, copula, shed, arch,
pyramidal broach, and combinations of roof forms [14]. Pitched roofs, such as gable and
hip, are the most common types of roofs found in datasets and research studies.

Historically, roofs have been pitched in Bulgaria, with hip or gable roofs being the
most common types. However, with the construction of high-rise buildings, flat roofs
have become more prevalent. The so-called complex roofs are a distinctive feature of
Bulgarian architecture and are broadly categorised as flat, pitched, and mixed. Therefore,
classifying, recognising, and differentiating pitched, complex, or flat roofs is essential for
future research to expand the variety of classifications and categorisations.

While several research papers have focused on roof detection, segmentation, and
annotation, publicly accessible datasets with diverse typologies of rooftops are scarce. We
found and explored four roof datasets, each with unique characteristics and applications,
focusing on better understanding the types of roof samples included.

The first dataset is generated using aerial images downloaded via the Google Maps
API, with the main goal of analysing the photovoltaic potential of roofs while also assessing
their superstructure annotations [15,16]. The dataset contains around 1880 samples, with
over 90% of the roofs being pitched low-rise buildings. The roofs come in various colours,
from grey to brownish and orange (see Figure 1).
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Figure 1. Sample dataset with mostly pitched roofs.

The second dataset analyses urban objects, including trees, roads, and buildings, and
classifies roof types into gable, hip, and flat categories [17,18]. Initially, the dataset consisted
of 200 samples. After data augmentation, 4800 samples for the corresponding roof types
were generated and added. Using data augmentation techniques, the initial dataset was
increased to provide a significant amount of training data for a CNN model. The dataset
includes both pitched and flat roofs, with the flat roofs being simple and clear, while the
pitched roofs represent roofs in good condition with homogeneous colours and textures
(see Figure 2).
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Figure 2. Sample dataset with simple and clear flat roofs and pitched roofs in good condition with
homogeneous colours and textures.

The third dataset focuses on constructing 3D polygon roof meshes using a graph
structure to encode roof typology. The dataset includes 2539 aerial images containing
planar roofs, with all roofs pitched [19,20]. The dataset consists of so-called complex
pitched roofs with many edges and ridges, which are still a regular type. The roofs are clear,
well-maintained, and homogeneous (see Figure 3). This dataset has two main applications:
an interactive roof editing framework that can be used for roof design or reconstruction
using aerial images and a generative model that can generate new roof meshes from scratch.
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regular type.

Finally, there are some large satellite datasets with thousands and millions of samples
that consist of tiles of a specific area containing everything from fields, buildings, roads,
forests, water bodies, etc. The resolution is usually high, the area is large, and some
integrated categories exist. However, these datasets do not consist of roof samples as
separate images. One example is the Aerial Imagery for Roof Segmentations (AIRS) dataset,
which contains over 220,000 buildings with a resolution of 7.5 cm [21,22]. It is used for roof
segmentation using various deep-learning methods for semantic segmentation. Although
there are hundreds of thousands of buildings, most are of the same type as the reference
from the third dataset: suburban family houses with pitched roofs (see Figure 4). The



Data 2023, 8, 80 5 of 19

dataset includes some areas in the business centre or industrial logistic zones with mainly
flat roofs, as most have easily recognisable contours and shapes.
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Furthermore, many annotators have been used to scan and improve building outlines
to provide reliable ground truths for roof segmentation and experimentation. Researchers
further refine the false annotations and misalignments. An example of a similar large
dataset is the Functional Map of the World, considered the largest satellite dataset, con-
sisting of more than one million images worldwide. The dataset provides bounding box
annotations for 63 categories, including a “false detection” category. It also provides
publicly available data, code, and pre-trained models.

While the methods used in our study have been previously reported in the literature,
we apply them to a more complex problem-solving scenario. The complexity of the
roofs in Bulgaria, particularly in Sofia, contrasts with those in many other countries and
cities. This complexity arises from several factors. Firstly, most of the building stock in
Bulgaria is quite old and often left unmaintained for several years, impacting the condition
of roofs. Secondly, a lack of regulations or systematic approaches to renovation results
in frequent personal interventions that only cover part of a building’s roof, leading to
non-homogeneous surfaces in terms of geometry, material, condition, colour, and texture.
Additionally, the lack of specific regulations and planning laws for building reconstruction
and intervention led to installing various rooftop objects, resulting in a noisy roof landscape.
In addition, the absence of an overall vision for the development of Sofia city affects the
architecture and shape of new buildings constructed after the 1990s. The result is a complex
and irregular mixture of gable, hip, flat roofs, terraces, and roofs on several levels.

Therefore, the primary contribution of our study is not related to the novelty of the
methods applied but rather to elaborating a dataset of more complex and diverse rooftops.
This dataset provides an opportunity to test, train, categorise, and classify more complex
roofs that can be used to improve the existing deep learning/AI models for building roof
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detection, classification, and feature extraction. Thus, our dataset tackles new challenges
and contributes to the existing research.

3. Input Data

The study area covers the Lozenets district (9.2 sq. km) of Sofia Municipality (see
Figure 5). The city has around 1.25 mil inhabitants [23], and around 50,000 citizens live in
the Lozenets district [24].
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The district is an interesting case from a spatial and urban point of view since it spreads
from the old city centre to the skirts of Vitosha mountain, where the new neighbourhoods
have been developed. It combines various typologies of buildings from the beginning of
the 20th century through the socialist era with high-rise monolith residential buildings and
new, modern buildings with reinforced modern construction design that is expressed in
complex and diverse forms.

Furthermore, the district is quite multifunctional, accommodating several primary
schools as well as high schools, universities’ buildings, kindergartens, old and new business
buildings, big and small hotels, and one of the largest shopping centres in Sofia (see
Figure 6). This variety of building typologies and functions reflects upon the buildings’
construction and their rooftops’ structure. This impacts the approach for data preparation
and further roof classification, making it much more complicated.

One can say the old buildings dated before the 1960s–1970s are mostly low or medium-
rise with gable or hipped roofs. The new buildings from the 1980s–1990s are mostly high-
rise with flat roofs, and the new buildings of the 21st century have a complex character
with a mix of many different elements, roof structures, and levels.

The orthophoto used for preparing the dataset is provided in TIFF format. It was ob-
tained in 2020 through aerial photography with an ultra-wide range digital camera (UltraCam
Eagle Mark 3, Vexcel, Denver, CO, USA). The orthophoto has the following characteristics:

• Height of flight above the terrain: 2850–3200 m;
• Longitudinal overlap: 60%;
• Transverse overlap: 30%;
• Aerial imaged area—1961 sq. km, of which 1342 sq. km is the territory of the Metropoli-

tan Municipality Sofia. For this project, the study area of the Lozenets district is
9.2 sq. km;

• Resolution: 10 cm/pix for the urban area;
• Bands: RGB;
• Number of tiles (georeferenced JPG files): 39.
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4. Methods

Two versions of the proposed approach are chronologically applied to the preparation
of two separate datasets that differ quantitatively and qualitatively. The initial version in-
volved testing a small area and experimenting with various parameters, while the improved
version was developed using the knowledge and results gained from the initial version to
optimize and modify the approach for a larger area. Therefore, the two versions are not
directly comparable, but instead are complementary, and follow a common sequence of
steps. Thus, different challenges have been met, lessons learned, and knowledge gained.
The entire process could be split into eight steps using different tools (see Table 1). Some
steps are common for both versions of the approach but may have different parameters.

Table 1. Main steps of the approach for elaboration of the dataset.

Steps Initial Version Improved Version Tools

Step 1: preprocessing raw data YES YES QGIS
Step 2: automatic image recognition YES YES QGIS (Mapflow plugin)
Step 3: manual adjustments YES QGIS
Step 4: automatic simplification YES QGIS
Step 5: creating a buffer YES YES QGIS
Step 6: creating a bounding box YES QGIS
Step 7: clipping YES YES QGIS + Python
Step 8: annotation YES YES Manual (folders)

Figure 7 shows a sequence diagram of the approach, including tools and operations
applied and the outputs obtained for both versions.
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4.1. Step 1: Preprocessing Input Data

The input data includes 39 separate tiles (full and partial):

• 11 full tiles (size 8001 × 5001 px);
• 28 partial tiles (only part of the content in the tile is a raster image belonging to the

study area).

Each tile is stored as a separate image in JPG format. Figure 8 presents the orthophoto
clipped by the boundary of the Lozenets district (Figure 8a), the distribution of the full and
partial tiles (Figure 8b), and the entire tile-grid (Figure 8c).

Data 2023, 8, x FOR PEER REVIEW 9 of 20 
 

 

4.1. Step 1: Preprocessing Input Data 
The input data includes 39 separate tiles (full and partial): 

• 11 full tiles (size 8001 × 5001 px); 
• 28 partial tiles (only part of the content in the tile is a raster image belonging to the 

study area). 
Each tile is stored as a separate image in JPG format. Figure 8 presents the orthophoto 

clipped by the boundary of the Lozenets district (Figure 8a), the distribution of the full 
and partial tiles (Figure 8b), and the entire tile-grid (Figure 8c). 

   
(a) (b) (c) 

Figure 8. Orthophoto tiles. (a) Orthophoto clipped by the boundary of the Lozenets district; (b) the 
distribution of the full and partial tiles; (c) the entire tile-grid. 

For the implementation of the first initial version, only one tile (image) was selected 
(see Figure 9a), while the improved version considers the entire Lozenets district so that 
all tiles were used (see Figure 9b). In both versions, the dataset (all 39 georeferenced JPG 
images) was first set to the appropriate projection and coordinate system, which is BGS 
2005 (EPSG code 7801) for the region of Bulgaria, and afterwards exported in GeoTIFF 
format. In the improved version, where all 39 tiles are used, a merge process was per-
formed to operate with only one GeoTIFF file. However, due to the quite large size of the 
exported file (5.88 GB), compression was performed without the quality being affected. 

Figure 8. Orthophoto tiles. (a) Orthophoto clipped by the boundary of the Lozenets district;
(b) the distribution of the full and partial tiles; (c) the entire tile-grid.

For the implementation of the first initial version, only one tile (image) was selected
(see Figure 9a), while the improved version considers the entire Lozenets district so that
all tiles were used (see Figure 9b). In both versions, the dataset (all 39 georeferenced JPG
images) was first set to the appropriate projection and coordinate system, which is BGS
2005 (EPSG code 7801) for the region of Bulgaria, and afterwards exported in GeoTIFF
format. In the improved version, where all 39 tiles are used, a merge process was performed
to operate with only one GeoTIFF file. However, due to the quite large size of the exported
file (5.88 GB), compression was performed without the quality being affected.

4.2. Step 2: Automatic Image Recognition

The input dataset is a single raster image. That is why methods and tools for recognis-
ing buildings and roofs from an orthophoto were researched, rather than relying on the
building’s footprints from the cadastre or OpenStreetMap.

For this step, a plugin in QGIS named Mapflow was used [25]. The tool automatically
generates vector roof outlines (polygons). The output seems quite accurate at first glance
(Figure 10a). However, some errors are identified, varying from a very small difference in
the outline to completely wrong-outlined objects, merged buildings, or rotated outlines
(Figure 10b).
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As a result, from this step, 350 polygons (vector roof samples) have been generated
from the initial version of the approach and 3834—from the second one. Figure 8 shows
the distribution of the buildings in the Lozenets district (Figure 11a) and all 3824 buildings
recognised by Mapflow (Figure 11b).



Data 2023, 8, 80 11 of 19

Data 2023, 8, x FOR PEER REVIEW 11 of 20 
 

 

the distribution of the buildings in the Lozenets district (Figure 11a) and all 3824 buildings 
recognised by Mapflow (Figure 11b). 

  
(a) Orthophoto of the Lozenets district (b) Recognised building 

Figure 11. Result from the improved version, where 3834 objects are recognized as buildings. (a) 
Orthophoto of the Lozenets district; (b) Distribution of the recognized building by Mapflow. 

4.3. Step 3: Manual Adjustments 
Since Mapflow did not produce completely accurate results, a manual adjustment in 

QGIS environment was performed to create a high-quality dataset.  
This step was not been implemented in the improved version of the approach due to 

the much larger number of rooftops. However, it was applied in the initial version, where 
all 350 polygons were manually adjusted to the original roof outlines based on the expert 
assessment. The accuracy of the roof’s outlines of the first dataset was significantly in-
creased, close to 100%. The yellow outlines are automatically generated, and the purple 
ones are manually corrected (see Figure 12). 
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4.3. Step 3: Manual Adjustments

Since Mapflow did not produce completely accurate results, a manual adjustment in
QGIS environment was performed to create a high-quality dataset.

This step was not been implemented in the improved version of the approach due
to the much larger number of rooftops. However, it was applied in the initial version,
where all 350 polygons were manually adjusted to the original roof outlines based on the
expert assessment. The accuracy of the roof’s outlines of the first dataset was significantly
increased, close to 100%. The yellow outlines are automatically generated, and the purple
ones are manually corrected (see Figure 12).
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4.4. Step 4: Automatic Simplification

This step was implemented to improve the approach since manual adjustments are
inappropriate when there are many samples. Some curly lines are improved, and some
more angled shapes are generalised (see Figure 10), but the number of rooftops has also
been reduced from 3834 to 3617 due to some merging. However, this operation does
not significantly affect the accuracy of the final dataset. Figure 13a shows the generated
buildings before simplification in magenta, while Figure 13b presents the new outlines
of the buildings after simplification in dark grey. The initial outlines are retained for
comparison.
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4.5. Step 5: Creating a Buffer

In both versions of the approach, a buffer around the roof outlines is automatically
generated using a function called Buffer in QGIS. The goal is to minimise the error when
recognising the roofs, guaranteeing that the entire roof will always be captured during
clipping. The initial version used a 3 m buffer. During the improvement, it was estimated
that a 2 m buffer would be sufficient even though the outlines were not corrected manually
(see Figure 14). Note, the larger buffers cover larger areas, yet the risk of clipping through
the roof is lower. On the other hand, capturing a much larger area around the roof can lead
to the inclusion of additional urban objects that are not part of the roof outline or belong to
the roofs of other buildings.
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4.6. Step 6: Creating a Bounding Box

Initially, a bounding box around the buffer polygon was created and used as a clipping
outline. The QGIS function “Bounding boxes” was applied. The bounding boxes are a
well-known image annotation type, which, in this case, could also fix the errors from the
automatically generated outlines. However, similarly to the larger buffer polygon, the
bounding box creates an output image which is beyond the roof outline of the particular
building and includes additional urban objects such as parts of trees, streets, other objects,
and even parts of neighbouring building’s roofs (see Figure 15).
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Possibilities for the enhancement of the approach were identified. For example, step
6, creating a bounding box, is omitted since it was considered that only an even smaller
buffer outline would work very well in the next clipping and annotation steps. The bounding
box operation was discovered to be not that important since it captures a much bigger area
around the building and therefore creates a separate roof image with much more noisy data.

4.7. Step 7: Clipping

All roofs have been clipped and exported as separate GeoTiff images. The clipping
has been performed by Python script run in QGIS python console. Initially, the clipping
was made based on the bounding boxes with a 3 m buffer, generating 350 GeoTIFF files
(Figure 16). In this dataset, an image has been clipped by the green bounding box from
Figure 15. The improved version of the approach performs clipping based on a 2 m buffer
of the roof outline without a bounding box, generating 3617 GeoTIFF files. In this case, an
image has been clipped by the orange outlines of the buffer from Figure 11. Afterwards,
the images are exported in rectangular frames (virtual bounding boxes), where the space
between the buffer and the frame (bounding box) is filled with black pixels as a mask
(Figure 17).
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4.8. Step 8: Annotation

The annotation process has been performed completely manually in both versions of
the approach.

Our main objective is to create a dataset considering the local context that can be used
for the training of deep learning/AI models that enable the enrichment of the cadastre
data. However, the classification of roof types for the initial samples must be performed
manually. Once the images are cropped and classified manually, the vector information can
be augmented with additional attributes for roof type. This will allow for more accurate
and automated classification in the future.

Initially, three main roof categories are chosen, namely flat, pitched, and complex. A
fourth category called “bugs” is introduced in the final dataset. This is because the manual
adjustment during the initial implementation of the approach created a more qualitative
dataset without errors. Furthermore, the study area covered is part of the old centre with
dense building development. It has mainly old buildings with simple pitched roofs, and a
few new buildings with complex rooftops.

The pitched roofs category includes all sloped roofs, such as hip and gable types, and
their variations. The roofs fall in this category regardless of how many planes they consist
of as long as they are sloped. Figure 18 shows examples of pitched roofs obtained from the
improved version of the approach.
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The flat roofs category includes all flat roofs or some with an exceedingly small slope.
However, buildings with flat roofs on several levels are included in this category (Figure 19).
This is a case where overlapping with the complex roof category could appear.
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Figure 19. Examples of flat roofs, obtained from the improved version of the approach.

The complex roofs category includes all roofs which combine pitched and flat geometry.
Other criteria to put a roof in this category come from roofs with various levels and terraces,
roofs with complex shapes with many slops, roofs with an oval or sphere form, etc. A
complex roof is also considered when several buildings with different types of roofs and
various shapes share walls and look like a single roof area/building. (Figure 20).
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Figure 20. Examples of complex roofs, obtained from the improved version of the approach.

The bugs category includes all images which do not represent buildings, such as
construction sites, unclear images, very small parts of roofs, or shapes that are simply
impossible to recognise with the human eye (Figure 21).
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Figure 21. Examples of roofs in the bugs category, obtained from the improved version of the approach.

Table 2 and Figure 22 show the distribution of the roof types by number and percentage,
respectively, for both versions. Although the dataset initially consisted of only 350 samples,
we observed a serious disbalance between the different roof categories, obtaining very
few flat roofs: 25 (7%). This was mainly because the study area was part of the old centre,
where the buildings have mainly gable or hip roofs. On the other hand, the improved
version produced 3617 samples, provides a balance between the different roof categories,
and increased the samples with flat roofs to 842 (23%).

Table 2. Distribution of the roofs by category.

Roof Types/Versions
Initial Version Improved Version

Number % Number %

Flat roofs 25 7 844 23
Pitched roofs 280 80 1640 45
Complex roofs (mix of pitched, flat, terraces etc.) 45 13 676 19
Bugs (blurry, construction sites, unclear, others) 0 0 459 13
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5. Results and Discussion

As was mentioned earlier, lessons learned from the initial implementation of the
approach were applied to its improvement. As a result, a more precise dataset was obtained.
The final dataset consists of 3617 GeoTIFF images, clipped by a buffer of 2 m around the
roof outline with a mask around it, stored in four different folders by roof type. Figure 23
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shows a representative sample, including 60 roof images. One may not consider using this
particular roof type categorisation, where the roof images are distributed in completely
different categories or not at all, for various purposes. In addition to the classification,
however, the dataset can be used for extracting planar roof structures, roof segmentation,
roof elements etc.
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Similar implementation steps have been applied during both implementations and
have been used to feed a deep-learning model for rooftop classification. The experiments
with the first dataset show that it is better to perform clipping only based on a buffer than
creating a bounding box. The simplification step applied during the improvements was
found to not be essential, as for the purpose of the classification model, the buffer was
sufficient to minimise the possible errors.

Regarding the recognition of the roofs and the clipping, it is sufficient to create a
buffer of a minimum of 2 m or an optimal 3 m and perform clipping based on its outline.
Furthermore, the initial version of the approach showed that, from a quality and testing
perspective, 350 roof samples is acceptable, but in terms of quantity and reasonable distri-
bution of the various types of roofs, they are insufficient. We enhanced the approach by
including steps that do not require manual work (other than annotation). Thus, more roof
samples are provided, and a much better distribution of the roof types is achieved, leading
to satisfactory accuracy in the final dataset.

One of the biggest challenges has been the definition of criteria and rules that are
sufficient to distinguish the different types of roofs. Due to the rich variety of roof types
and the presence of subjectivity, overlapping between different categories appears often.
This affects the accuracy of the classification model itself. Therefore, more clear differential
rules need to be created. For roof classification, it is important to consider the specific
context of the country/city and to create categories and rules that are as strong as possible.
This includes defining new categories, splitting some categories, or slightly changing the
existing categories. A possible solution is to rely on roof categories defined by existing
standards, such as CityGML. However, the specific context characteristics are still an issue
that should be strongly considered.

The bugs category has the potential for additional useful applications. For example, we
found that many of the images in this category correspond to construction sites (see Figure 24).
They can be arranged in a separate category focusing on recognising construction sites.
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6. Conclusions

This paper demonstrates the process of elaborating a dataset for roof classification and
segmentation using as a raster image an input. Tools and technics for automatic recognition
of buildings as well as geometric operations such as buffering, bounding boxing, and
clipping, have been applied to elaborate a roof dataset with more than 3,000 unique roofs
(GeoTIFFs). A manual annotation has been performed, separating all roof images into three
main roof categories (flat, pitched, and complex) plus an additional bugs category.

Other applications of the dataset are as follows:

• roof recognition model, distinguishing roofs from other urban objects such as streets,
trees, cars, etc.;

• roof segmentation model;
• recognition and classification of roof elements (chimneys, skylights, dormer, terrace,

antennas, solar panels, etc.);
• recognition and classification of roof materials (tiles, metal, asphalt, wood, vinyl,

concrete, etc.);
• roof solar potential analysis (the characteristics of the roof in relation to the require-

ments for installation of solar panels).

Currently, we are working on implementing a deep learning model based on a convo-
lutional neural network for rooftop classification using the proposed dataset. The future
work also considers preparing datasets using another type of input data, such as point
clouds obtained from laser scanning. Furthermore, the development of more precise rules
for categorising roofs is planned. Mapping the roof categories to the CityGML standard
could be an additional improvement.
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