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Abstract: Currently, several devices (such as laser scanners, Kinect, time of flight cameras, medical
imaging equipment (CT, MRI, intraoral scanners)), and technologies (e.g., photogrammetry) are
capable of generating 3D point clouds. Each point cloud type has its unique structure or characteristics,
but they have a common point: they may be loaded with errors. Before further data processing,
these unwanted portions of the data must be removed with filtering and outlier detection. There
are several algorithms for detecting outliers, but their performances decrease when the size of the
point cloud increases. The industry has a high demand for efficient algorithms to deal with large
point clouds. The most commonly used algorithm is the radius outlier filter (ROL or ROR), which
has several improvements (e.g., statistical outlier removal, SOR). Unfortunately, this algorithm is also
limited since it is slow on a large number of points. This paper introduces a novel algorithm, based
on the idea of the ROL filter, that finds outliers in huge point clouds while its time complexity is not
exponential. As a result of the linear complexity, the algorithm can handle extra large point clouds,
and the effectiveness of this is demonstrated in several tests.

Keywords: radius outlier filter; point cloud; LiDAR; noise filtering

1. Introduction

The need for digitally representing real-world objects in 3D emerges more and more
intensively; thus, the number of data acquisition methods increases, resulting in increased
attention toward processing point clouds. The different point cloud types have similarities
and differences as well. One of their relevant common points is the possibility of having
noise raised due to the weak points of data collection methods. The noise may come
from the atmosphere or the thermal noise and can occur even in the whole domain, while
its amplitude is lower than one percent. An outlier is an observation that appears to be
inconsistent with the remainder of that data set [1]—in the case of a point cloud, a scanned
point lies at an abnormal distance from the others. Outliers come from measurement errors
such as deposition or having an unwanted object (such as a snowflake, a bird, or a leaf),
which may cause reflection, inappropriate distance, and angle of incidence.

This paper focuses on laser scanning, where scans have different characteristics de-
pending on the device used to obtain the data. For example, object scanning provides a
contiguous surface; in the ALS (Airborne Laser Scanning), the Z coordinate refers to the
elevation, TLS (Terrain Laser Scanner) generated point clouds result in fragmented surfaces,
mobile laser scans produce large data sets, while sensors collecting data for autonomous
driving (AD) generate point cloud streams (for example, snowfall is often a problem with
TLS, especially in autonomous driving [2,3]). Point cloud types have their typical size
(Table 1) too, but as mentioned previously, we usually need to exclude some points from
further processing for different reasons.

If a point cloud suffers from noise, then a filtering algorithm can be applied to remove
the noisy points that would result in an image of poorer quality. A large number of filtering
algorithms have been developed recently to obtain more accurate point clouds, and their
enhancement is still of high interest [4,5]. Besides the various filtering algorithms, detecting
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the outlier points (located further from their neighbor than a given distance) is also often
used to exclude points from further processing. Depending on several factors, only some
of these algorithms work correctly on all point cloud types. We can find good reviews
and comparisons about the point cloud filtering algorithms in the scientific literature.
Han et al. classify the algorithms by the applied mathematical methods and do not make
differences between the outlier and noise filtering [6]. Ben-Gal makes classifications for
the outlier filters, focused on the statistical-based methods [7]. Hodge and Austin [8]
and also Cateni et al. [9] make comparisons on the mathematical principle of the outlier
filtering methods.

Table 1. Main types of points clouds.

Type Point Number (Ordinary) Stream

Object scan 10 k–10 M No
ALS 1 M–1000 M No
One scan TLS 1 M–40 M No
Unified TLS 1 M–1000 M No
Mobil scan TLS 10 M–9999 M No
Depht sensor 10 k–500 k Yes
AD sensor 1 k–100 k Yes

The mentioned classifications put focus on the applied mathematical methods. How-
ever, when we work with point clouds, we have other expectations, such as efficiency,
reasonable resource requirements, and specificity. For example, if we have an algorithm in
which the computing time is growing exponentially with the increasing point number, then
we cannot apply it to a large scan. In practice, the most frequently used outlier-detecting
algorithms are the Radius Outlier Filter (ROL) and the Statistical Outlier Removal (SOR),
which is an adaptive version of the ROL filter. The ROL filter is easy to apply, robust, fast,
and obtains good results [2]. Unfortunately, the ROL/SOR algorithm needs to improve
since it uses Nearest Neighbor (NN) search, which is an expensive operation. Moreover, in
brute force implementation, its cost grows logarithmically with the number of points, while
the spatially indexed implementations require extra steps to make the index. This paper in-
troduces a novel method to detect outliers, so the next section discusses algorithms used in
this field; then, the new algorithm is introduced, followed by a comparison and discussion.

2. Related Works

The most commonly used and simple algorithm for detecting outliers is the Radius
Outlier Filter (ROL). It counts the neighbors of a point in a given distance, and if the number
of points is smaller than a given threshold value, then it is considered an outlier. Most
implementations use KD-Tree for the NN point search. The Statistical Outlier Removal filter
(SOR) is an adaptive variant of the ROL filter and provides an exact method for defining
the threshold value by calculating the average point density.

Several researchers made attempts to enhance the ROL filter. Yoon et al. developed a
version that uses a variable radius to handle the low-resolution LIDAR point cloud [10].
Duan et al. [11] improved the accuracy of the ROL filter with Principle Component Analysis
(PCA). Cui et al. [12] improved the ROL with an ingenious solution by replacing the
Euclidean distance-based circle with a “social circle” (the social circle theory originated
from social networks).

Other scholars aimed to accelerate the ROL or SOR filter. Balta et al. [13] developed
an algorithm, especially for a large ALS that uses a voxel subsampling before applying
the ROL or SOR filtering to decrease the time of the NN search. Another variant of the
ROL filter does not use the time-consuming NN search. The diameter-based DeepSet
algorithm [14] creates an N × N distance matrix to determine the outliers. However, a
small TLS scan with 1 million points needs at least 1000 GB of memory to store the matrix,
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which is unacceptable. Computing the Local Outlier Factor (LOF) works similarly to ROL
and is used to identify density-based local outliers in a multidimensional dataset [15]. It
examines the points in a given distance r and uses KD-Tree to locate neighbors. Its main
strength is the capability to find the outliers between different density clusters.

The outlier filters often have many common points with the surface recognition
procedures, which aim to correct the deviation from a hypothetic surface. These algorithms
frequently apply computationally intensive methods like PCA, normals computing, and
Voronoi diagrams. To reduce the computational requirements, some algorithms use local
approximation (for example, the Locally Optimal Projection, LOP [16]), which defines a set
of projected points Q, such that it minimizes the sum of weighted distances to points of the
original point set. For this, we have to calculate the distance between the points located
in the area of interest (the nearby points of the point), so we have to generate a spatial
index (KD-tree) for the nearest-neighbor searching. It uses the CPU intensively but gives a
highly acceptable result on object scans. However, we cannot use it on terrain (TLS) or ALS
(airborne) scans because it will be confused due to the segmented surfaces.

Ning et al. [17] use local density analysis to remove the isolated outliers and PCA for
the non-isolated outliers. This algorithm executes NN search based on KD-Tree to calculate
the local density and works well on object scans, but we can use it even on TLS scans.

Narváez [18] proposed a robust principal component analysis to denoise the scans. It
searches the nearby points with KD-Tree, and estimates a tangential plane with PCA; after
this, it adjusts the points with the deviation from this plane. It works well on contiguous
surfaces. A similar algorithm [19] computes a hyperplane with PCA in the local neighbor-
hood (uses KD-Tree for the NN search) and determines the Mahalanobis distance to filter
the outliers.

The “Guided 3D point cloud filtering” [20] is a denoising technique, but it removes
the outliers, too. The filter searches nearby points in a given r distance for every original
one. The found points are used to calculate a hypothetic sphere whose center replaces the
original one.

2.1. Open Source Libraries

There are five open source libraries offering implementations for point cloud filtering
algorithms. Since we work with large point clouds where local outliers should be removed,
we overviewed these libraries to find the competitors of our proposed algorithm that will
be implemented in Python.

• Open3D—The Open3D is a dynamically expanding library (available in C++ and
Python); it supports the work with point clouds, meshes, and others. It uses SOR for
point cloud filtering that will be used for comparison.

• PDAL—The Point Data Abstraction Library is a C++ library for translating and ma-
nipulating point cloud data. It has SOR and ROL algorithms for filtering that will be
used for testing our algorithm.

• PCL—The Point Cloud Library (PCL) is a standalone, large-scale, open project for
2D/3D image and point cloud processing. It uses SOR and ROL algorithms for filtering
that will be involved into the testing.

• Scikit—This Python module has general purpose algorithms for outlier filtering. With
its KDTree module, we can implement a ROL or SOR filter.

• PyOD—This Python library has several outlier filters and anomaly detection algo-
rithms. Some of them cannot detect outliers or handle massive data, so we have to
make a pre-filtering for finding the one we will use in the final test.

2.2. Review of Open-Source Methods from PyOD

Python is a very popular, high-level, general-purpose programming language. PyOD,
with its more than 40 detection algorithms, is a well-known Python library for detecting
outlying objects in multivariate data [21]. Its more than 8 million downloads prove its
extreme popularity, which is promoted by various dedicated posts and tutorials managed
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by the machine learning community. We made a test to check which methods of the toolkit
can be used to filter 3D scans then we compared those with the ROL filter. Since we have to
find outliers in really large point clouds, we excluded some algorithms of the library from
the further investigations:

• PCA: only the well-known Principal Component Analysis;
• MAD: only for 1D data;
• HBOS: computes histogram based scores to find outliers. Local outliers cannot be

found with it, or more points will be considered outlier than it should [22];
• AutoEncoder, AOM, LSCP, VAE, XGBOD: worked only with the training dataset.

We made a pre-test on a computer (AMD Ryzen 2700x, 32 GB memory) with a small
cloud consisting of 1 million points (see Table 2). As can be seen, not all of the remaining
algorithms performed well; some resulted in errors or ran time over. In the case of successful
tests, the running times range in a large interval too.

Table 2. PyOD result on 1 million points.

Algorithm Result Time (sec) Message

KNN Ok 7.33466
ABOD Ok 127.911386
CBLOF Ok 14.250818

CLF Timeout

COF Filter error 0

Unable to allocate
7.28 TiB for an
array with shape
(1000000, 1000000)

and data type
float64

COPOD Ok 5.370849
FeatureBagging Ok 234.37242

IForest Ok 36.992853
LMDD Timeout
LODA Ok 4.209417
LOF Ok 13.103415

LOCI Filter error 0

Unable to allocate
3.64 TiB for an
array with shape
(499999, 500000)
and data type

float64
MCD Ok 104.382464

MO_GAAL Timeout
OCSVM Timeout

ROD Ok 104.028356

SOS Filter error 0

Unable to allocate
7.28 TiB for an
array with shape
(1000000, 1000000)

and data type
float64

After the pre-test, we dropped the failed algorithms and those whose running time
exceeded two minutes and selected the first five fastest algorithms. Thus, we continued the
testing with 5 algorithms (KNN, CBLOF, COPOD, LODA, LOF) using scans with 8.5 M,
28 M, and 79 M points. Unfortunately, LOF ran out of time when processing 8.5 M points.
As Table 3 shows, all the remaining selected algorithms could process the point clouds,
although with very different times. Nevertheless, CBLOF failed in processing 79 M points,
but time requirements of the other algorithms are listed in Table 3. According to the data
in the three tables, it seems that the required time increases faster than the point number
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in the cloud. We found that this library cannot offer better algorithms than ROL/SOR for
detecting outliers in point clouds; thus no algorithm was selected for the final comparison.

Table 3. Time requirements of the selected PyOD algorithms on different-sized point clouds in seconds.

Algorithm 8.5 M 28 M 79 M

KNN 37.253 170.907 553.210
CBLOF 72.685 318.555
COPOD 59.933 123.351 787.690
LODA 28.717 83.931 245.370

2.3. Time Complexity of ROL Filters

The ROL algorithm works on a given point set P ∈ Rn×3 and has two parameters,
D and K. A Pi(xi, yi, zi) point is an outlier, if there is no K number of points ( Pj(xj, yj, zj))
where √

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 < D, j = 1, . . . , n, j 6= i. (1)

The time required to execute an algorithm is an important property and is affected by
many factors. The used components of the algorithm can have a significant impact on the
time. ROL, SOR, and LOF are the most commonly used methods to detect outliers based on
the nearest neighbor search. Since all of them are based primarily on the nearest neighbor
search, we can similarly determine their minimal computing requirements. First, we have
to create a KD-Tree spatial index. The cost of creating a balanced KD-Tree is O(k ∗ n ∗ log n),
while finding one neighbor is O(log n).

After building the index, we must find k neighbors for every point. In the simplest
case it costs n ∗O((log n) ∗ k).

Since the radius outlier calculation does not increase linearly with the number of
points, several solutions try to reduce the number of points. One possible way is dimension
reduction, where outlier filtering is performed by clustering 2D views [11]. Alternatively,
the number of points is reduced using the intensity values [23].

After introducing our novel algorithm, we will test some filters from the open-source
packages to evaluate the performance of the filters on different point clouds compared
to the proposed one. To obtain an overall picture of the effectiveness of the algorithm,
we need to run several types of tests: point clouds with a large number of points, noisy
datasets, and point clouds with artificially generated outliers.

3. Principle of the Proposed Algorithm Called Octree Density Outlier Filter

The idea of our algorithm is based on the ROL filter, which is the most commonly used
algorithm for removing outliers from point clouds. The original algorithm heavily uses the
nearest neighbor search, which results in a non-advantageous computational complexity:
its running time exponentially grows with the number of points. As it was shown, we have
to work with huge point clouds too, where the performance of the ROL is not acceptable.
Also, the principle of the cell-based [24] outlier filter inspired us when we developed our
algorithm.

Our objective was that the novel algorithm has to meet two requirements: having
similar parameterization and output as the ROL filter has and not having a procedure that
causes exponentially growing computations with the increasing number of points. The
algorithm was developed with speed and memory efficiency in mind to handle extra large
point clouds. One crucial goal is to avoid using floating-point arithmetic since it is much
slower for all processor types than the using integer arithmetic, and linear time complexity
should be pursued. The new algorithm uses an octree since the time required to build the
octree is O(n). When computing the filter, we can determine all the necessary indicators in
one step, so the time required for filtering is O(n).
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The advantage of the algorithm described here is that it is linear and does not require
a complete tree structure, only two arrays in memory: the octree code array and the pointer
array. For computations, the octree code means that you do not have to search the array
of pointers because it jumps to pre-known positions. The octree codes are 64-bit integers
and the pointers are 16-bit integers; the size of the octree array is [n], while the size of the
pointer array is [23∗octreedepht, 2].

The proposed algorithm has three parameters: depth (D), own cell factor (OC), and
neighbor cell factor (NC). The diagonal neighbors (DN) have a different weight than straight
neighbors (SN), which means that NC is computed as the sum of DN divided by 30 and SN
divided by 10 (see Figure 1). The OC value is determined by the number of points in its
corresponding octree cell. One point is an outlier if the calculated OC is greater than the
given OC or the calculated NC is greater than the given NC.

Figure 1. Types of neighboring cells for the calculation of the neighborhood indicator. The types OC,
SN, DN are weighted differently in the calculation.

In the first step, we calculate octree codes for every point in D depth and store them
in array OCCODE. In the next step, we create an array (OCSPACE, that represents the octree
space in D depth and will store the number of points in the octree cubes—the shape of this
array is [2D∗3, 2]. Next, we run a quicksort on array OCCODE and determine the points for
the unique octree code values in the array OCC (the length m of the OCC array is, on average,
0.5 percent of the length of the original point cloud array), and the number of the unique
values in the OCCcount array. The structure of the arrays is

OOC : [occode1, occode2, . . .]; OCCCount : [number Of Points1, number Of Points2, . . .]. (2)

Now, we iterate over the OCC array i: = 0 to m (m = length of OCC), fill the correspond-
ing OCSPACE(OCC[i,0]) array item with OCC[i,1] (the number of points), and increase
the neighbor (+X axis) OCSPACE[:,1] item with OCC[i,1]/10, and increase the −X axis
OCSPACE[:,1] item with OCC[i,1]/10 and perform it in the Y and Z axis. We perform
similarly on the twelve edge neighbors (+X, +Y, Z ; −X +Y Z; +X −Y Z;. . . ), but we store
the result in OCSPACE[:,1]. With these values, we can calculate the SNC (SN count) and the
DNC (DN count) values.
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With these values, we can calculate the WEIGHT of the given cell. After the loop, we
iterate over the original P array. First, we must look for the index of the correspondent
octree cell in the OCC array, and examine the WEIGHT and OCCcount values. We drop the
point where OCCcount < OC and WEIGHT < NC.

We named the proposed algorithm the Octree Density outlier filter, in brief OCD.
The pseudo code of our algorithm can be seen in Algorithm 1, while Figure 2 provides a
visual representation of the filtering. After calculating the extent of the point cloud, octree
codes are determined for points at specified depths. We used quicksort to order the octree
codes, which is followed by calculating the unique values and the number of these values.
After creating a full octree space array, we can compute the outlier indicators, by going
through all the elements of the points, we increase the indicator values of the octree space
corresponding to the point. After that, you just have to switch the matching indicators back
to the original points based on the octree code and then discard the non-matching points
according to the thresholds.

Figure 2. Flowchart of the filtering.
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Algorithm 1: Octree density outlier removal.
Data: Points: P[n], Depth: D, own cell count: OC, neighbor cell count: NC
Result: Filtered points : F[n]
// OCCODE = array of octree codes in the given Depth
OCCODE = OCtreeArrayComp(P,D);
OCSPACE = Array[2**(D*3),2];
// OCC = Octree codes, OCCcount = array of OC values
OCC, OCCcount = Unique(QuickSort(OCCODE));
for i = 1 to len(OCCODE) do

OCPOS = calculate the 1. SN cell code from OCCODE[i];
OCSPACE[OCPOS] +=1/(SNweight);
// increment every SN type OCSPACE
OCPOS = calculate the 1. DN cell code from OCCODE[i];
OCSPACE[OCPOS] +=1/(DNweight);
// increment every DN type OCSPACE

end
for i = 1 to len(P) do

oci = OCCODE[i];
j = Indexof(OCC,oci);
if OCCcount[j] >= OC or OCSPACE[j] >= NC then

Append(F, P[i]);
end

end

The proposed algorithm needs to apply the quick-sort only once, which can result in
saving time. Furthermore, the computation requires only integer arithmetics and does not
suffer from the exponential growth of time when the point number increases.

4. Testing Results

We have tested our algorithm on point clouds with different sizes using numbers from
different ranges (see Table 4). The first three sample scans were received from Geodezia
Ltd. and represent buildings. Mobile scan was created with a Leica Pegasus, while the two
industrial point clouds were acquired with a Leica ScanStation P20. The last point cloud
about a temple was downloaded from the E57 sample library (http://libe57.org/data.html
(accessed on 1 July 2023)). The point cloud of an industrial area is about 39 times larger than
the smallest one used for testing. The numerical values are described with digits ranging
between five and eight.

Table 4. Sample scans used for testing.

Scan Name Number of Points Digit Counts

Industrial area 330,973,927 5
Mobile scan 79,338,713 8
Industrial hall 28,279,109 5
Temple 8,484,455 6

4.1. Testing the Proposed Algorithm on Different-Sized Point Clouds

Each of the following figures (Figures 3–6) consists of two images: the left-hand one
shows the original point clouds, while the right-hand one is the point cloud after running
OCD (the clouds are colored with a height ramp). Figures prove that our algorithm could
cope with removing outliers caused by vegetation, measured points with a low incidence
angle, points resulting from device positioning error. The most spectacular difference can
be observed on the mobile scan (Figure 4); this point cloud has a typical scanner positioning

http://libe57.org/data.html
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error that results in semicircular outlier points. All of these points were removed by our
algorithm successfully.

Figure 3. Industrial area (original and filtered). The distant, low point density spots have disappeared.

Figure 4. Mobile scan (original and filtered). Circular measurement errors from mobile measurement
removed by the filter.

Figure 5. Industrial hall (original and filtered). The distant, low point density spots have disappeared.

The next step in evaluating our algorithm is to compare its time complexity to some
of the tools in open source packages. To accomplish this, the following frequently used
algorithms were selected: PCL SOR, PDAL, Open3D SOR, and Scikit-LOF.
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Figure 6. Temple (original and filtered). Distant noise points disappeared, extent reduced.

We compared the running times without the time needed for file input/output. The
test was executed on a desktop computer AMD R2700X CPU with 32 GB RAM. Only
one core was used to run the algorithms except for the Open3D SOR algorithm, where we
also tested using three cores. Nevertheless, we have to remark that OCD was written in
Python (applying NumPy library), while the others are compiled C/C++ codes. As Table 5
demonstrates, only OCD could complete the outlier detection faster than one hour each
cloud. Waiting for the output of an algorithm longer than one hour is meaningless, which
is why we aborted these tests; they are designated by an asterisk in the table. Considering
the running times, OCD performed well. The current OCD is written in Python, so it
could be even faster if it were rewritten and compiled in C, which is one of our future
goals. Another development possibility is to make an adaptive parameter setting for more
comfortable usage.

Table 5. Running times in sec (*: Running time > 1 h, **: Stopped with memory error).

Sample PCL
(1 Core)

PDAL
(1 Core)

Open3D
(8 Core)

Open3D
(1 Core)

Scikit-LOF
(1 Core)

OCD
(1 Core)

Industrial area
(330M) * * * * ** 65

Mobile scan
(79M) 268 * 150 977 ** 44

Industrial hall
(28M) 84 * * * 218 4

Temple (8M) 27 207 5 31 51 14

4.2. Testing the Proposed Algorithm on Noisy Point Clouds

Since our algorithm seemed promising according to the test results, we made another
comparison with ROL to explore how many points will be removed as an outlier if the point
cloud is noisy. Therefore, we randomly added different amounts of noise to three point
clouds and then applied our proposed algorithm with different parameterizations (see
Table 6). Table 7 lists the parameters used for testing the efficiency in the case of noisy point
clouds of different sizes. Although the proposed algorithm is designed to remove outliers,
it could remove a remarkable amount of noise and result in a similar number of kept points
to the ROL filter.
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Table 6. Performance on noisy point clouds.

Original
Point

Number

Number of
Added

Noisy Point

Total Point
Number to
Be Tested

Kept Point
Number of

OCD (1)

Kept Point
Number of

OCD (2)

Kept Point
Number of

ROL

3,000,047 60,000 3,060,047 3,010,962 3,010,755 3,003,464
1,372,245 30,000 1,402,245 1,373,411 1,373,113 1,369,036
155,201 3000 158,201 151,207 151,064 151,175

Table 7. Parameter settings of the algorithms.

Original Point
Number OCD (1) OCD (2) ROL

3,000,047 cubesize: 14.28 OC: 8
NC: 12

cubesize: 12.70 OC: 8
NC: 13 Radius: 39.69 EPS: 20

1,372,245 cubesize: 0.03 OC: 8
NC: 12

cubesize: 0.0276
OC: 8 NC: 13 Radius: 0.085 EPS: 20

155,201 cubesize: 0.018 OC: 8
NC: 12

cubesize: 0.016 OC: 8
NC: 13 Radius: 0.05 EPS: 20

4.3. Sensitivity Test with Generated Outliers

In our last sensitivity test, we added 1000 random points to the Stanford Bunny point
cloud and tested the results of two different parameterizations (see Table 8). The test shows
that the FPR indicator of the algorithm can detect real points incorrectly, so this feature
should be improved in further development. For real TLS point clouds, this error is not so
significant, so it does not hinder the use.

Table 8. Parameter settings for the sensitivity test

Test OCD Depht = 9,
OC = 2, NC = 0

OCD Depht = 7,
OC = 13, NC = 368

ROL Eps = 10,
Radius = 0.00169

FPR 77.411 3.847 0
FNR 0 0 0.00006
TPR 0.9262 0.9963 1
TNR 1 1 0.993

Using parameters that are too strict (high OC or NC) will produce many false negatives,
while more permissive parameterization (low OC or NC) will increase the number of false
positives. The octree depth should be kept between 7 and 9. A small depth or a small OC
number will leave local outliers. Increasing the octree depth also has an impact on speed; a
larger octree depth results in a slightly slower execution.

4.4. Further Development

The algorithm can be run in parallel for computing the main loop or octree codes; the
most obvious method is to parallelize based on spatial segmentation. We plan to improve
the goodness of filtering by running the algorithm multiple times in succession. This can
be done with more permissive parameters, or by slightly shifting (in random or per-axis
direction) or increasing the total extent (depending on the octree depth)—the latter being a
more secure solution, better approximating the original ROL. These improvements increase
the runtime only linearly due to the time complexity of O(n).

5. Discussion

Point clouds created with laser scanners can be huge, making working with them
hard and long. Since industry prefers having digital models about real objects, and these
objects can be massive, the size of the point clouds tends to be larger and larger. One typical
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issue when working with these large scans is to remove outliers. Outliers are points that
must be excluded from further processing based on their location. The time needed for
preprocessing is critical and plays an important in the industry. You can save time by using
more resources (more memory, more CPU cores, etc.) and also by applying more efficient
algorithms. Our goal was to propose an algorithm to eliminate outliers with a complexity
that does not increase exponentially with the increase in the point cloud size.

Our algorithm, called Octree Density outlier filter (OCD), is fast and works well on
various-sized point clouds. We could reduce the computational demand by introducing
a new method to find outliers while its parameterization and output are similar to the
ROL filter. The test results show that the running time is not growing exponentially with
the point cloud size, which is a noticeable advantage of the algorithm. We compare the
performance of our algorithm with that of other algorithms (see Table 5) and found a very
promising quickness. We also have to mention that only our algorithm could complete
the computation within one hour in the case of the four tested point clouds. In practice,
we have already used OCD on terabytes of data, and its application saved us lots of time.
It gives appropriately good filtering like the ROL/SOR filter but runs faster than those.
The algorithm is implemented in Python currently, but we would like to implement it in C
too, which will result in becoming faster. Applying adaptive parameter settings is also a
promising opportunity to make the usage of OCD more comfortable.

6. Conclusions

The algorithm was successfully run on a database containing several terabytes of poor
quality point clouds (containing outliers and distant reflections)—even the extents in the
original point clouds were unusable due to errors. With this amount of data, the PCL library
filter, which had been the only one used so far, took four weeks to run, while the new
algorithm ran in a day and a half, after which the extents were completely fine. As Table 5
shows, the proposed algorithm performs well compared to PCL, PDL, Scikit-LOF. Open3D
running in eight cores was faster only in the case of 8M points, but we have to note that
OCD was run in one core only. The ultimate goal is to produce a Python module available
under the LGPL using the algorithm, which others can use to preprocess extremely large
point clouds or filter streaming point cloud data.
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