
Citation: Butt, M.; de Keijzer, A.

Using Transfer Learning to Train a

Binary Classifier for Lorrca

Ektacytometery Microscopic Images

of Sickle Cells and Healthy Red

Blood Cells. Data 2022, 7, 126.

https://doi.org/10.3390/

data7090126

Academic Editor: Giuseppe Ciaburro

Received: 1 January 2022

Accepted: 30 August 2022

Published: 5 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

data

Article

Using Transfer Learning to Train a Binary Classifier for Lorrca
Ektacytometery Microscopic Images of Sickle Cells and Healthy
Red Blood Cells
Marya Butt * and Ander de Keijzer

Faculty of Engineering, Design & Computing, Inholland University of Applied Sciences,
1817 MN Alkmaar, The Netherlands
* Correspondence: marya.butt@inholland.nl; Tel.: +31-6-11-87-87-59

Abstract: Multiple blood images of stressed and sheared cells, taken by a Lorrca Ektacytometery
microscope, needed a classification for biomedical researchers to assess several treatment options for
blood-related diseases. The study proposes the design of a model capable of classifying these images,
with high accuracy, into healthy Red Blood Cells (RBCs) or Sickle Cells (SCs) images. The perfor-
mances of five Deep Learning (DL) models with two different optimizers, namely Adam and Stochas-
tic Gradient Descent (SGD), were compared. The first three models consisted of 1, 2 and 3 blocks of
CNN, respectively, and the last two models used a transfer learning approach to extract features.
The dataset was first augmented, scaled, and then trained to develop models. The performance
of the models was evaluated by testing on new images and was illustrated by confusion matrices,
performance metrics (accuracy, recall, precision and f1 score), a receiver operating characteristic
(ROC) curve and the area under the curve (AUC) value. The first, second and third models with the
Adam optimizer could not achieve training, validation or testing accuracy above 50%. However, the
second and third models with SGD optimizers showed good loss and accuracy scores during training
and validation, but the testing accuracy did not exceed 51%. The fourth and fifth models used VGG16
and Resnet50 pre-trained models for feature extraction, respectively. VGG16 performed better than
Resnet50, scoring 98% accuracy and an AUC of 0.98 with both optimizers. The study suggests that
transfer learning with the VGG16 model helped to extract features from images for the classification
of healthy RBCs and SCs, thus making a significant difference in performance comparing the first,
second, third and fifth models.

Keywords: deep learning; sickle cells; transfer learning; VGG16; Resnet50; confusion matrix;
Adam optimizer; ROC curve; SGD

1. Introduction

Over the last decade, the rapid pace of development in Artificial Intelligence (AI)
has raised its prominence by creating opportunities to improve performance in various
industries and businesses [1]. In contrast to conventional programming, the success of AI
lies in the effective implementation of the algorithms having the ability to learn by trial and
error and increase their performance with time [2]. AI is an umbrella term that refers to
imitating human intelligence in machines [3]. Machine Learning (ML) and Deep Learning
(DL) are two other concepts used in conjunction with AI. If an intelligent program enables
a machine to behave human-like, it can be regarded as AI but not ML if it does not learn
from data automatically [4].

DL is a specialized instance of ML that works on the principle of biological neural
networks [5]. It has shown remarkable gains in many domains [4] with significant domi-
nance over conventional ML algorithms [5] due to a higher level of abstraction. The multiple
layers in DL models are composed of linear and non-linear transformations. The increased
popularity of DL models is due to expansion in software and hardware infrastructure [6].

Data 2022, 7, 126. https://doi.org/10.3390/data7090126 https://www.mdpi.com/journal/data

https://doi.org/10.3390/data7090126
https://doi.org/10.3390/data7090126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0002-7754-5522
https://doi.org/10.3390/data7090126
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data7090126?type=check_update&version=1

Data 2022, 7, 126 2 of 21

The exponential rise in data volume has revealed the limitations of ML algorithms in
analyzing the volume of data [7]. The use of DL techniques becomes effective when the
training dataset is voluminous. Due to the leading-edge performance in different domains
such as e-commerce [8], speech recognition [9,10], health monitoring [8] and computer
vision [11,12], DL has gained worldwide appreciation from the academic community [13].

Generally, ML and DL algorithms are used to accomplish two classical statistical tasks
of classification and regression on the provided dataset. Data may be structured (e.g., table
with numeric values) or unstructured (e.g., images or HTML). According to a study [14],
the exponential rise in digital activities signifies unstructured data, which is expected to
constitute 95% of digital data by 2020. Unstructured data does not follow any format or
formal data model, which makes it challenging to process and interpret for value extraction.
In the medical industry, unstructured healthcare data has tremendous potential to extract
valuable insight for improving healthcare service and quality [15].

Medical imaging is a research area facing rapid growth due to its significance in the
early diagnosis of disease [3]. Multiple regression and Neural Networks models can be
used to predict the possibility of a patient having a specific disease in the future [16]. There
are numerous studies conducted for the classification and prediction of multiple diseases
using ML and DL algorithms, such as the image classification of MRI brain images [17],
cardiovascular disease prediction [18], X-ray image classification [19] and breast cancer
prediction [20]. These predictions and classifications can be helpful in early detection and
diagnosis to devise early interventions for effectively managing diseases. Sickle Cell disease
is a hereditary hemolytic disorder caused by an abnormal hemoglobin structure, which
polymerizes upon deoxygenation [21]. Such a condition distorts the patient’s RBCs into a
sickle or crescent shape [22]. These sickle RBCs clutter together, causing resistance in flow
through vessels and causing stroke, which is one of the most devastating complications [23].

This study aims to develop a classification model for microscopic images of Sickle
Cells (SCs) and healthy Red Blood Cells (RBCs) using a Convolutional Neural Network
(CNN), which is a DL algorithm. CNNs are widely used for image processing as a powerful
tool because of their performance in image classification with higher accuracy [24]. Using a
CNN for image processing does not require manual feature extraction (from the image)
or segmentation. It has millions of parameters to be learned for estimation, making it
computationally expensive and thus raising the need for Graphical Processing Units (GPU)
to train the model. The computing capability of GPU is higher than the traditional CPU
cores [25]. If conducted from scratch, model training is time-consuming and needs a large
and labeled dataset for training, preparing the model for classification [26].

For the classification of SCs and RBCs, five models or approaches were used. The first,
second and third models comprised one, two and three blocks of the CNN, respectively,
and the fourth and fifth models used a transfer learning approach. This study also shows
how the transfer learning approach can be used for better cell classification with improved
accuracy. In transfer learning, two popular pre-trained models, VGG16 and Resnet50, were
used for feature extraction, and a classifier layer was added for image classification as
either an SC or healthy RBC image. The concept of using a pre-trained model was used to
borrow the model weights from the pre-trained models developed for Computer Vision
(CV) standard datasets.

The paper is structured as follows. The related work is presented in Section 2, and
Section 3 describes the dataset as well as the techniques used and architectures. Section 4
shows the experimental results, followed by the discussion in Section 5. Finally, conclusions
are drawn in Section 6.

2. Related Research

Several techniques have been employed to diagnose or classify SCs, such as Image
processing, Machine Learning and Deep Learning methods. In 2014, Patil and Khot [27]
introduced an image-processing-based technique for detecting, counting and segregating
abnormal blood cells using form factor calculation. Some significant image processing

Data 2022, 7, 126 3 of 21

algorithms used in their proposed technique are the Sobel edge mask, morphological
techniques such as erosion and dilation, and watershed transformation. The proposed
approach managed to achieve an accuracy of 83% in counting blood cells. Maity et al. [28]
proposed an ensemble-rule-based decision-making algorithm for the morphological clas-
sification of erythrocytes. The erythrocytes were first segmented from the background
image using watershed transformation followed by feature extraction to detect the shape
abnormality. Their model detected eight different types of abnormal erythrocytes with
97.81% accuracy and a weighted precision of 98%. Akrimi et al. [29] used the Support
Vector Machine (SVM) to classify RBCs as either normal or abnormal. They applied im-
age processing techniques to pre-process the images using optimization segmentation
and mean filtering to extract RBCs’ color, texture and geometric features. The developed
classifier achieved an accuracy of 99.8% with 100% sensitivity. In another study [30] of
erythrocyte classification in microscopic images, SVM, KNN and Naïve Bayes classifiers
achieved an accuracy of 0.946, 0.931 and 0.932, respectively. Veluchamy et al. [31] used
Artificial Neural Networks (ANN) to classify sickle cells as normal or abnormal by first
applying thresholding techniques and morphological operations for image segmentation.
Other studies such as [32,33] also used ANN for the classification of RBCs. Tomari et al. [34]
proposed a framework for the automatic classification of RBCs into overlapping, normal
and abnormal clusters. Their approach comprised three blocks, namely a segmentation and
processing block, a feature extraction block and a classification block. The Otsu segmenta-
tion method, with a series of post-processing filters, was used to crop RBC shapes from the
background. The model achieved an average accuracy, precision and recall of 83%, 82%
and 76%, respectively. Poomcokrak and Neatpisarnvani [35] proposed neural networks
for SC identification. An edge detection algorithm was used to extract RBCs, followed by
analyzing and classifying the individual cells using a neural network. Fadhel et al. [36]
employed watershed transform and Circular Hough Transform (CHT) to identify circular-
shaped normal RBCs. During the watershed segmentation, the effectiveness factor was
calculated to differentiate normal and sickle cells. Chy et al. [37] used Extreme Learn-
ing Machine (ELM), SVM and KNN classifiers to classify normal and sickle cells. The
approach started with image preprocessing for greyscale conversion, noise removal and
image enhancement. Then, morphological operations were applied to extract geometrical
and statistical features. ELM performed the best with an accuracy, precision and sensitivity
of 87.73%, 95.45% and 87.5%, respectively. Alzubaidi et al. [38] proposed a CNN framework
to classify RBCs into three classes, i.e., normal, abnormal and miscellaneous. Their pro-
posed model comprised 18 layers, including 4 convolutional layers for feature extraction.
After the fully connected layer, an Error-Correcting Output Code (ECOC) classifier was
added for the classification task. The model achieved an accuracy of 92.06%. Similarly,
studies such as [29,39] used CNNs to classify RBCs from microscopic images and gained
87.5% and 92.06% accuracy, respectively. Likewise, in a study about White Blood Cell
(WBC) classification into five classes [40], a two-module weighted optimized deformable
CNN (TWO-DCNN) was proposed, and the performance was compared with classical ML
algorithms such as VGG16, VGG19, Inception-V3, Resnet50, support vector machine (SVM),
multilayer perceptron (MLP), decision tree (DT) and random forest (RF). TWO-DCNN
performed the best, with precision values of 95.7%, 94.5% and 91.6% on different datasets.

This study seeks to develop a DL classifier capable of achieving higher accuracy
besides showing the use of multiple evaluation parameters such as a confusion matrix,
precision, recall, f1 score and ROC curves to obtain insight into the model performance
for each class. Consequently, these evaluation metrics can be used to improve the model
performance by adopting measures for the class(s) with weak recall and precision values.
The correctness of the diagnosis is highly dependent on the precise classification [30].
Feature extraction, therefore, plays a key role in the classifier’s performance. For better
feature extraction, this research made use of the transfer learning approach, which is
characterized by using the weights of pre-trained models.

Data 2022, 7, 126 4 of 21

The current study differs from the studies mentioned above in the following ways:

• Five CNN-based models were used, three were custom-built and the other two models
used a convolutional base of two pre-trained models, namely VGG16 and Resnet50,
for feature extraction.

• An undisclosed dataset was used, which was not previously worked on (see Section 3).
• Two optimizers, namely Adam and SGD, were used to compile all five models.
• The highest accuracy of 98% was achieved with the model using VGG16 for feature

extraction.

3. Materials and Methods
3.1. Dataset

The images used in the study were received from RR Mechatronic BV, a Netherlands-
based company specializing in hematology lab instruments and research. The blood images
used in the dataset were taken by a Lorrca Ektacytometry microscope. An Ektacytometer
is an instrument that applies a shear force on a suspension of RBCs while analyzing the
diffraction pattern of a laser beam passing along these cells. Exerting a shear onto the cells
can measure the average deformability of the cells. In this study, the used RBC images were
from a sickle cell patient. The oxygen level in the sample was reduced; therefore, some cells
started to show typical sickling behavior. The patient cells became rigid as the hemoglobin,
due to the genetic defect in these cells, started to polymerize at low oxygen levels. This
rigidifying of the RBC lies at the core of this disease. A microscope was added to observe
the sickling phenomenon while the cells were under shear. To a degree, being submitted
to a shear force mimics the process in the small capillaries of a sickle cell patient when
the oxygen is delivered to the muscles or organs [41]. Images taken by the camera needed
a classification for further study and research. The study underwent the classification of
images into Healthy RBCs or SCs.

The number of received images was 450, and the dataset was expanded using image
augmentation. Figure 1 shows the flow of the activities performed to train models or
classifiers. The augmented dataset was analyzed to remove any damaged or faded images,
leaving a total of 1085. A total of 885 images were used for training and validation, and
200 images were kept separate for the model test. Before feeding to the model, each image
of the dataset was scaled down to 255. Rescaling improves the model’s ability to learn [42],
during which each pixel value is transformed from (0,255) to (0,1). For model training,
every image of the dataset was shaped as (300, 200, 3).

Data 2022, 7, x 5 of 21

Figure 1. Workflow.

3.2. Working with the Dataset

3.2.1. Image Augmentation

The Data Augmentation technique was used for the artificial expansion of the dataset

by creating transformed versions of images by using techniques such as sharing, rotating

and scaling the images [43]. This process results in an extensive dataset that is robust and

less susceptible to adversarial attacks [44], as shown in Figure 2. There are different ways

to implement data augmentation in Python, e.g., the imgaug library of Python was used in

this study for the augmentation of the dataset. Not every technique for augmentation is

valid for all types of problems, e.g., some techniques such as shearing and skewing may

distort the critical features in medical imagery. Therefore, the techniques to extend the

dataset must be carefully handled. Figure 2 shows the different versions of the same image

after applying some augmentation techniques.

Figure 2. Augmentations of a Healthy RBC image.

Figure 1. Workflow.

Data 2022, 7, 126 5 of 21

3.2. Working with the Dataset
3.2.1. Image Augmentation

The Data Augmentation technique was used for the artificial expansion of the dataset
by creating transformed versions of images by using techniques such as sharing, rotating
and scaling the images [43]. This process results in an extensive dataset that is robust and
less susceptible to adversarial attacks [44], as shown in Figure 2. There are different ways
to implement data augmentation in Python, e.g., the imgaug library of Python was used in
this study for the augmentation of the dataset. Not every technique for augmentation is
valid for all types of problems, e.g., some techniques such as shearing and skewing may
distort the critical features in medical imagery. Therefore, the techniques to extend the
dataset must be carefully handled. Figure 2 shows the different versions of the same image
after applying some augmentation techniques.

Data 2022, 7, x 5 of 21

Figure 1. Workflow.

3.2. Working with the Dataset

3.2.1. Image Augmentation

The Data Augmentation technique was used for the artificial expansion of the dataset

by creating transformed versions of images by using techniques such as sharing, rotating

and scaling the images [43]. This process results in an extensive dataset that is robust and

less susceptible to adversarial attacks [44], as shown in Figure 2. There are different ways

to implement data augmentation in Python, e.g., the imgaug library of Python was used in

this study for the augmentation of the dataset. Not every technique for augmentation is

valid for all types of problems, e.g., some techniques such as shearing and skewing may

distort the critical features in medical imagery. Therefore, the techniques to extend the

dataset must be carefully handled. Figure 2 shows the different versions of the same image

after applying some augmentation techniques.

Figure 2. Augmentations of a Healthy RBC image.

Figure 2. Augmentations of a Healthy RBC image.

3.2.2. CNN

Artificial Intelligence has played a vital role in bridging the gap between human brains
and machines in various fields. One of them is computer vision, whose main plan is to make
machines visualize their environment like a human brain. It enables machines to perform
tasks such as image recognition, image classification, video recognition, Natural Language
Processing (NLP), recommendation systems, etc. Convolutional Neural Networks are a
vital algorithm that helps perform such tasks. A CNN is a DL algorithm that takes images
as input and can differentiate or classify them by assigning them weights and biases. The
importance of a CNN lies in the fact that weights/features of the NN for classification tasks
are implicitly learned and are not required to be passed by humans as heuristics [45]. One
block of a CNN has the following four layers.

• Convolutional Layer: A convolutional layer is the first building layer of a CNN, in
which a convolutional operation is performed. A convolution is the application of
a filter to an input that results in activation, and repeated activations result in the
construction of a feature map [46], which indicates the location and strength of a
detected feature in the input. It involves the multiplication, i.e., dot product, of input
with the set of weights, typically an array of input data and a two-dimensional array
of weights, called a kernel or a filter. The output of this multiplication is a single
value, and as the kernel is applied multiple times to the input array, it forms a two-
dimensional output, which is a filtered form of the input image. This output is called
a feature map [47]. The primary objective of this layer is to extract features such as

Data 2022, 7, 126 6 of 21

edges, color and gradient orientation. The first convolutional layer typically gives
low-level features, but by adding more layers, high-level features can be extracted.

• ReLU Layer: It is a convention to apply a Rectified Linear Unit Layer (ReLU) immedi-
ately after the convolutional layer to filter the information propagating through the
network. The ReLU layer works as shown in Equation (1) by only giving an output of
1 when x is greater than or equal to 0 [47]:

y = max(0, x)
df
dx = 1 if x ≥ 0 else 0

(1)

The ReLU Layer changes all negative activations to 0 to increase the system’s overall
nonlinearity without affecting the receptive fields of the convolution layer.

• Pooling Layer: Pooling is a down-sampling operation mainly applied after the convo-
lutional layer to create spatial invariance [48]. The two most common types of pooling
are average and max pooling, in which average and maximum values are chosen,
respectively. Max pooling is used to preserve the detected features, and average
pooling down-samples the feature map. The difference between max pooling and
average pooling is that the latter summarizes all features in the pooling tier, whereas
the former only retains the strongest activations [49]. In this study, max pooling was
used to preserve the essential features.

• Fully Connected Layer: The purpose of the fully connected layer is to transform the
results of previous layers into a meaningful outcome, i.e., a label. The output of
the convolutional/pooling layer is flattened to a column vector, where each entity
represents which feature belongs to which label, e.g., in a classification problem of the
car and mouse, features such as eyes, whiskers and tails belong to the mouse label,
whereas lights, steering wheels and tires fall under the car label. The number of output
nodes in the final fully connected layer is equal to the number of classes [47], e.g., in a
binary classification problem, the output node is set as 1, which could be either 0 for
one class or 1 for the other class.

3.2.3. Transfer Learning

In medical imagery, the use of Transfer Learning has gained popularity due to better
performance over a small dataset. Transfer learning works on the idea of choosing any
pre-trained model and using it after fine-tuning or as a feature extractor without any tuning.
However, the last dense layer of the pre-trained model is removed and replaced with the
custom classifier. Then, the weights of all other layers are set as frozen, and the network
is trained typically. This technique not only prevents the hassle of creating layers from
scratch but also assists with using the weights and biases of a pre-trained model and
simultaneously customizing the whole network according to the dataset in use. In Python,
the Keras library provides easy access to several top-performing models trained on the
ImageNet dataset for image recognition and classification tasks, namely VGG16, Resnet
and Inception.

The VGG architecture was developed by Simonyan and Zisserman in 2014 [50], and
Resnet was proposed by Him et al. in 2015 [51]. There are more than 14 million photos
and 22,000 categories in the ImageNet dataset, which were used to train these models.
VGG16 and Resnet50 can be downloaded and used directly, or they can be integrated into
any model based on any specific Computer Vision problem. VGG16 and Resnet50 were
used for this study as pre-trained models for feature extraction with an attached binary
classifier (for SC and Healthy RBC classification), as shown in Figure 3. There is a common
misconception that effective Deep Learning models cannot be created without voluminous
data. No one can neglect the importance of data, but transfer learning helps to reduce data
demands [50].

Data 2022, 7, 126 7 of 21

Data 2022, 7, x 7 of 21

3.2.3. Transfer Learning

In medical imagery, the use of Transfer Learning has gained popularity due to better

performance over a small dataset. Transfer learning works on the idea of choosing any

pre-trained model and using it after fine-tuning or as a feature extractor without any tun-

ing. However, the last dense layer of the pre-trained model is removed and replaced with

the custom classifier. Then, the weights of all other layers are set as frozen, and the net-

work is trained typically. This technique not only prevents the hassle of creating layers

from scratch but also assists with using the weights and biases of a pre-trained model and

simultaneously customizing the whole network according to the dataset in use. In Python,

the Keras library provides easy access to several top-performing models trained on the

ImageNet dataset for image recognition and classification tasks, namely VGG16, Resnet

and Inception.

The VGG architecture was developed by Simonyan and Zisserman in 2014 [50], and

Resnet was proposed by Him et al. in 2015 [51]. There are more than 14 million photos

and 22,000 categories in the ImageNet dataset, which were used to train these models.

VGG16 and Resnet50 can be downloaded and used directly, or they can be integrated into

any model based on any specific Computer Vision problem. VGG16 and Resnet50 were

used for this study as pre-trained models for feature extraction with an attached binary

classifier (for SC and Healthy RBC classification), as shown in Figure 3. There is a common

misconception that effective Deep Learning models cannot be created without volumi-

nous data. No one can neglect the importance of data, but transfer learning helps to reduce

data demands [50].

Figure 3. Architecture view of the used pre-trained models.

3.2.4. Hyperparameters

Hyperparameters are parameters that must be carefully tuned before a specific model

is trained. In Python, certain hyperparameters are already given some default values by

the packages, so if the user does not provide any value, the default value is used for train-

ing [52]. The following hyperparameters were used.

1. Kernel/filter size: The kernel or filter size is the matrix of weights with which the

input image is convolved. Smaller kernels such as 1 × 1, 2 × 2, 3 × 3, 4 × 4 or larger

ones with 5 × 5 and higher dimensions can be used. Small-sized kernels are preferred

due to reduced computational costs and weight sharing, causing lesser weights for

backpropagation. Similarly, a small-sized filter is used when objects in an image are

Figure 3. Architecture view of the used pre-trained models.

3.2.4. Hyperparameters

Hyperparameters are parameters that must be carefully tuned before a specific model
is trained. In Python, certain hyperparameters are already given some default values
by the packages, so if the user does not provide any value, the default value is used for
training [52]. The following hyperparameters were used.

1. Kernel/filter size: The kernel or filter size is the matrix of weights with which the
input image is convolved. Smaller kernels such as 1 × 1, 2 × 2, 3 × 3, 4 × 4 or larger
ones with 5 × 5 and higher dimensions can be used. Small-sized kernels are preferred
due to reduced computational costs and weight sharing, causing lesser weights for
backpropagation. Similarly, a small-sized filter is used when objects in an image are
differentiated by small and local features. In this study, a small-sized 3 × 3 kernel was
used, which is considered an optimal choice by practitioners.

2. Padding: Padding is the process of adding rows and columns of zeroes, performed
after convolution, to keep the spatial size of the input image constant. In Python, the
padding is one of the parameters of Conv2D, which can be ‘same’ or valid. Setting
padding = ‘same’ keeps the output size the same as the input size by padding zeroes
evenly on all sides. However, if the value of the padding is chosen as valid, it shrinks
the output image to

ceil
(

n + f− 1
s

)
(2)

where n is the dimension of the input image, f is the filter size, s is the stride and ceil
rounds off the value to the nearest integer. The ‘same’ padding was chosen for the
study, as it could help improve model performance by preventing data loss [53].

3. Optimizer: The optimizer can be conceptualized as a mathematical function used as an
argument to the compile function during model training in Python. The performance
of the model is usually measured by comparing the predicted output value with the
actual output value. Cross-entropy loss is one such indicator used to gauge model
performance. It is a continuous function with an initial positive value that becomes
zero when the predicted value is the same as the desired value [54]. The optimizer
facilitates optimization by bringing the cross-entropy loss value as close to zero as
possible. Optimizers use a gradient descent algorithm to iteratively minimize the
objective function J(θ) by following the gradient and by updating the parameters in
the opposite direction of the gradient of the objective function ∇θJ(θ) concerning the
parameters [54,55].

Data 2022, 7, 126 8 of 21

At each iteration, the error, after comparing the predicted and the desired output,
is backpropagated. In this study, each model was compiled twice with the following
two optimizers to observe the model performance.

• Stochastic Gradient Descent (SGD) is the simplest form of gradient descent, in which
parameter θ is updated at each step t according to the rule provided in Equation (3).

θt+1 = θt − ηdt (3)

where dt is the gradient of the objective function, and η is the learning rate.
• The second used optimizer was Adaptive Moment Estimation (Adam), which works by

computing adaptive learning rates for each parameter. It saves exponentially decaying
average values of the past gradient (at) and past squared gradient (ut), computed as
shown in Equations (4) and (5).

at = β1at−1 + (1− β1)dt (4)

ut = β2ut−1 + (1− β2)d
2
t (5)

β1 and β2 are decay rates with values near zero, causing at and ut to be biased towards
zero. To overcome this, biased corrected terms for at and ut are computed and used to
update weight by Adam, as shown in Equation (6)

θt+1 = θt −
η√

ût + ε
â t (6)

3.3. Model Performance
3.3.1. Confusion Matrix

The confusion matrix provides a holistic view of the performance of a classification
model. The matrix compares the true values with those predicted by the model. Figure 4
shows the heatmap visualization of the confusion matrix using the sklearn library of Python.
It comprises two rows and two columns representing two classes (Healthy RBCs and SCs)
with correct and incorrect predictions. The following four characteristics were used to
define the measurement matrix of the classifier.

Data 2022, 7, x 9 of 21

shows the heatmap visualization of the confusion matrix using the sklearn library of Py-

thon. It comprises two rows and two columns representing two classes (Healthy RBCs

and SCs) with correct and incorrect predictions. The following four characteristics were

used to define the measurement matrix of the classifier.

Figure 4. Confusion matrix.

• True Negatives (TN): the count of the outcomes which are originally Healthy RBCs

and are truly predicted as Healthy RBCs.

• False Positives (FP): the number of images that are originally Healthy RBCs but are

predicted falsely as SCs. This error is named as a type 1 error.

• False Negatives (FN): the count of SC images, which are falsely predicted as Healthy

RBCs, also known as a type 2 error.

• True Positives (TP): the count of SC images which are truly predicted as SCs.

3.3.2. Classification Report

After the confusion matrix is drawn, the performance metrics (accuracy, recall, pre-

cision and f1 score) of the models can be retrieved using classification report. The classifi-

cation report can be imported from the sklearn library into Python using sklearn.metrics

import classification_report. The values of the performance metrics are calculated on the ba-

sis of TN, FP, FN and TP.

• Accuracy is the measure of all correctly classified images and is represented as the

ratio of correctly classified images to the total number of images in the test dataset,

as shown in Equation (7).

Accuracy =
TN+TP

TP+FP+FN+TN
 (7)

• Precision is the correctly predicted positive images out of all positive images. For

instance, it can be defined as the ratio of correctly classified images as SCs to the total

number of images predicted as SCs, as shown in Equation (8).

Precision =
TP

TP+FP
 (8)

• Recall is calculated by dividing the correctly classified images (of a class) by the total

number of images belonging to that class.

Recall =
TP

TP+FN
 (9)

• f1 score is the weighted sum of precision and recall with a minimum value of 0 and

a maximum value of 1. It provides a better measure of incorrectly classified images

than the accuracy metric. The value of the f1 score is measured by Equation (10).

Figure 4. Confusion matrix.

• True Negatives (TN): the count of the outcomes which are originally Healthy RBCs
and are truly predicted as Healthy RBCs.

• False Positives (FP): the number of images that are originally Healthy RBCs but are
predicted falsely as SCs. This error is named as a type 1 error.

• False Negatives (FN): the count of SC images, which are falsely predicted as Healthy
RBCs, also known as a type 2 error.

• True Positives (TP): the count of SC images which are truly predicted as SCs.

Data 2022, 7, 126 9 of 21

3.3.2. Classification Report

After the confusion matrix is drawn, the performance metrics (accuracy, recall, preci-
sion and f1 score) of the models can be retrieved using classification report. The classifica-
tion report can be imported from the sklearn library into Python using sklearn.metrics import
classification_report. The values of the performance metrics are calculated on the basis of
TN, FP, FN and TP.

• Accuracy is the measure of all correctly classified images and is represented as the
ratio of correctly classified images to the total number of images in the test dataset, as
shown in Equation (7).

Accuracy =
TN + TP

TP + FP + FN + TN
(7)

• Precision is the correctly predicted positive images out of all positive images. For
instance, it can be defined as the ratio of correctly classified images as SCs to the total
number of images predicted as SCs, as shown in Equation (8).

Precision =
TP

TP + FP
(8)

• Recall is calculated by dividing the correctly classified images (of a class) by the total
number of images belonging to that class.

Recall =
TP

TP + FN
(9)

• f1 score is the weighted sum of precision and recall with a minimum value of 0 and a
maximum value of 1. It provides a better measure of incorrectly classified images than
the accuracy metric. The value of the f1 score is measured by Equation (10).

f1 score =
2∗Precision ∗ recall
precision + recall

(10)

3.3.3. Receiver Operating Characteristics (ROC) Curves

ROC curves demonstrate the performance of a model to distinguish two classes by
plotting the True Positive Rate (TPR) on the y-axis against the False Positive Rate (FPR) on
the x-axis. The area under the ROC curve is also known as AUC, which is the accuracy
measure of the model to classify between two groups. A TPR of 1 and FPR of 0 show
perfect classification for all test images, whereas a TPR of 0 and FPR of 1 indicate the worst
operating point with incorrect classifications. Equations (11) and (12) show the calculation
of FPR and TPR, respectively.

FPR =
FP

FP + TN
(11)

TPR =
TP

TP + FN
(12)

4. Results

A summary of the models’ training is shared in Table 1, which gives an overview
of the training/validation loss and accuracy of models using Adam and SGD optimizers.
The first model with both optimizers showed the same training and validation accuracy
values, but the validation loss of the model with Adam (6.9) was less than SGD (8.0). For
the two-block CNN model, the Adam optimizer did not appear to improve its numbers
significantly. The validation loss remained at 6.9, but there was a slight fall in the training
loss value from 8.2 to 7.9. Likewise, the training and validation accuracy with the Adam
optimizer did not exceed 0.50 in the second model. In the two-block CNN model, SGD

Data 2022, 7, 126 10 of 21

showed better figures. The training and validation loss values significantly fell to low scores
of 0.03 and 0.17 but with a good rise in training and validation accuracy of 0.98 and 0.89,
respectively. In the three-block CNN model with Adam, the training and validation loss
increased to 8.1 and 7.5, respectively. The learning of the three-block CNN model with
SGD showed better scores than the Adam optimizer, with a validation loss value of 0.3 and
validation accuracy of 0.6.

Table 1. Model learning comparison of transfer learning with basic models.

Model Optimizer Training Loss Validation Loss Training Accuracy Validation Accuracy

1-block CNN
Adam 8.2267 6.9845 0.4943 0.500
SGD 8.0343 8.0590 0.4943 0.500

2-block CNN
Adam 7.9005 6.9084 0.5057 0.500
SGD 0.0368 0.1746 0.9810 0.893

3-block CNN
Adam 8.1305 7.5218 0.4943 0.500
SGD 0.0401 0.3521 0.9836 0.606

VGG16
Adam 1.0973 × 10−7 1.0832 × 10−7 1.0000 1.000
SGD 8.3423 × 10−7 1.1024 × 10−7 1.0000 1.000

Resnet50
Adam 0.2486 0.2488 0.9987 1.000
SGD 0.6769 0.6785 0.9709 0.9255

Transfer learning was used for the fourth and fifth models, and two pre-trained models,
VGG16 and Resnet50, were used. The VGG16 models with both optimizers showed the best
results by reducing the training and validation losses to 0 while amplifying the training
and validation accuracy to 1. Despite having a good validation accuracy of 1 and 0.9255
with the Adam and SGD optimizers, Resnet50 performed poorer than VGG16 because of
the higher validation loss of 0.2488 and 0.6785.

After training and fitting the model, diagnostic plots or learning curves were used to
represent the model’s learning. Figure 5 shows the accuracy and loss curves during the
training and validation of the first two models using the Matplotlib library of Python.

The accuracy and loss curves of the three-block model trained with Adam and SGD
optimizers are presented in Figure 6.

Two pre-trained models, VGG16 and Resnet50, were used for feature extraction in
the fourth and fifth models, respectively. The learning curves of these models with both
optimizers are shown in Figure 7.

Data 2022, 7, 126 11 of 21

Data 2022, 7, x 11 of 21

After training and fitting the model, diagnostic plots or learning curves were used to

represent the model’s learning. Figure 5 shows the accuracy and loss curves during the

training and validation of the first two models using the Matplotlib library of Python.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Loss and accuracy plots: (a) Loss plot of one-block CNN using Adam. (b) Accuracy plot of

one-block CNN using Adam. (c) Loss plot of one-block CNN using SGD. (d) Accuracy plot of one-

block CNN using SGD. (e) Loss plot of two-block CNN using Adam. (f) Accuracy plot of two-block

CNN using Adam. (g) Loss plot of two-block CNN using SGD. (h) Accuracy plot of two-block CNN

using SGD.

Figure 5. Loss and accuracy plots: (a) Loss plot of one-block CNN using Adam. (b) Accuracy plot of
one-block CNN using Adam. (c) Loss plot of one-block CNN using SGD. (d) Accuracy plot of one-
block CNN using SGD. (e) Loss plot of two-block CNN using Adam. (f) Accuracy plot of two-block
CNN using Adam. (g) Loss plot of two-block CNN using SGD. (h) Accuracy plot of two-block CNN
using SGD.

Data 2022, 7, 126 12 of 21

Data 2022, 7, x 12 of 21

The accuracy and loss curves of the three-block model trained with Adam and SGD

optimizers are presented in Figure 6.

(a) (b)

(c) (d)

Figure 6. Loss and accuracy plots: (a) Loss plot of three-block CNN using Adam. (b) Accuracy plot

of three-block CNN using Adam. (c) Loss plot of three-block CNN using SGD. (d) Accuracy plot of

three-block CNN using SGD.

Two pre-trained models, VGG16 and Resnet50, were used for feature extraction in

the fourth and fifth models, respectively. The learning curves of these models with both

optimizers are shown in Figure 7.

(a) (b)

Figure 6. Loss and accuracy plots: (a) Loss plot of three-block CNN using Adam. (b) Accuracy plot
of three-block CNN using Adam. (c) Loss plot of three-block CNN using SGD. (d) Accuracy plot of
three-block CNN using SGD.

Data 2022, 7, x 12 of 21

The accuracy and loss curves of the three-block model trained with Adam and SGD

optimizers are presented in Figure 6.

(a) (b)

(c) (d)

Figure 6. Loss and accuracy plots: (a) Loss plot of three-block CNN using Adam. (b) Accuracy plot

of three-block CNN using Adam. (c) Loss plot of three-block CNN using SGD. (d) Accuracy plot of

three-block CNN using SGD.

Two pre-trained models, VGG16 and Resnet50, were used for feature extraction in

the fourth and fifth models, respectively. The learning curves of these models with both

optimizers are shown in Figure 7.

(a) (b)

Figure 7. Cont.

Data 2022, 7, 126 13 of 21Data 2022, 7, x 13 of 21

(c) (d)

(e) (f)

(g) (h)

Figure 7. Loss and accuracy plots: (a) Loss plot of VGG16 using Adam. (b). Accuracy plot of VGG16

using Adam. (c) Loss plot of VGG16 using SGD. (d) Accuracy plot of VGG16 using SGD. (e) Loss

plot of Resnet50 using Adam. (f) Accuracy plot of Resnet50 using Adam. (g) Loss plot of Resnet50

using SGD. (h) Accuracy plot of Resnet50 using SGD.

5. Discussion

The one-block CNN model (Figure 5) with Adam and SGD optimizers showed no

improvement during 10 epochs. Both optimizers’ training and validation accuracy plots

showed a straight horizontal line at 0.49 and 0.50, respectively. Similarly, the training loss

values with both optimizers were very high (>8) and stayed the same until the 10th epoch,

indicating that the model had not enough capacity to capture the variability of the data,

or it was unable to learn the training dataset, which is called underfitting [56]. The plots

of validation loss for both optimizers seemed stationary, with a few big spikes. The cross-

entropy loss of the model should have had a downward trend to show a decrease in loss

as training proceeded. As the value of the loss became lower, the model became better.

Figure 7. Loss and accuracy plots: (a) Loss plot of VGG16 using Adam. (b). Accuracy plot of VGG16
using Adam. (c) Loss plot of VGG16 using SGD. (d) Accuracy plot of VGG16 using SGD. (e) Loss
plot of Resnet50 using Adam. (f) Accuracy plot of Resnet50 using Adam. (g) Loss plot of Resnet50
using SGD. (h) Accuracy plot of Resnet50 using SGD.

5. Discussion

The one-block CNN model (Figure 5) with Adam and SGD optimizers showed no
improvement during 10 epochs. Both optimizers’ training and validation accuracy plots
showed a straight horizontal line at 0.49 and 0.50, respectively. Similarly, the training loss
values with both optimizers were very high (>8) and stayed the same until the 10th epoch,
indicating that the model had not enough capacity to capture the variability of the data,
or it was unable to learn the training dataset, which is called underfitting [56]. The plots
of validation loss for both optimizers seemed stationary, with a few big spikes. The cross-
entropy loss of the model should have had a downward trend to show a decrease in loss
as training proceeded. As the value of the loss became lower, the model became better.
The accuracy and loss plots for the second model with Adam were almost similar to the

Data 2022, 7, 126 14 of 21

first model. However, SGD showed improvement, with the validation loss value starting
from a value of 0.67 and gradually falling to 0.17 in the last epoch. Similarly, the accuracy
curve showed an upward trend, with a starting value of 0.50 and an end value of 0.89.
The loss and accuracy plots showed a good fit with fluctuations or noisy movements that
indicated unrepresentative validation images. The training dataset could not provide
adequate information to assess the model’s generalization ability. The three-block CNN
model with the Adam optimizer showed the same underfit loss plot. The SGD optimizer
with the three-block CNN showed similar performance to the two-block CNN, but the
validation loss increased, and the accuracy fell. The learning curve of validation loss
showed a sudden deviation from training loss, and likewise, the validation accuracy curve
was set apart from training accuracy after the eighth epoch. In that case, training could
be halted when the curve showed over-fitting dynamics. The loss and accuracy curves
with transfer learning showed a good fit as training and validation lines overlapped each
other and reached a point of stability after the third and first epoch with the Adam and
SGD optimizers, respectively. The trained models were evaluated on 200 images, and the
performance metrics are shown in Table 2.

Table 2. Comparison of the model’s performance metrics.

Model Optimizer Accuracy Class Precision Recall f1 Score

1-block CNN
Adam 50%

0 (Healthy RBC) 0.50 1.00 0.67
1 (SCs) 0.00 0.00 0.00

SGD 51%
0 (Healthy RBC) 0.58 0.07 0.13

1 (SCs) 0.51 0.95 0.66

2-block CNN
Adam 49%

0 (Healthy RBC) 0.48 0.24 0.32
1 (SCs) 0.49 0.74 0.59

SGD 50%
0 (Healthy RBC) 0.51 0.49 0.50

1 (SCs) 0.50 0.52 0.51

3-block CNN
Adam 50%

0 (Healthy RBC) 0.50 0.25 0.33
1 (SCs) 0.50 0.75 0.60

SGD 48%
0 (Healthy RBC) 0.47 0.47 0.47

1 (SCs) 0.48 0.48 0.48

VGG 16
Adam 98%

0 (Healthy RBC) 0.98 0.99 0.99
1 (SCs) 0.99 0.98 0.98

SGD 98%
0 (Healthy RBC) 0.99 0.98 0.98

1 (SCs) 0.98 0.99 0.99

Resnet 50
Adam

65% 0 (Healthy RBC) 0.59 1.00 0.74
1 (SCs) 1.00 0.30 0.46

SGD 64%
0 (Healthy RBC) 0.60 0.85 0.71

1 SCs 0.75 0.44 0.55

For the one-block CNN model, the SGD optimizer performed better than the Adam
optimizer with a 51% test accuracy. With Adam, the model classified all test images as
Healthy RBCs with 0.50 precision, an inability to recall SCs and hence an f1 score of 0 for
SCs. The f1 score for Healthy RBCs was 0.67. However, SGD enabled the model to recall
features from both classes, which may indicate the better generalization ability of SGD over
Adam [57].

The accuracy of the two-block CNN model with the Adam optimizer fell to 49%, but
this time the model could recall both classes with 0.24 and 0.74 recall values for healthy
RBCs and SCs, respectively. The test accuracy score of the same model with the SGD
optimizer also decreased from 51% to 50%, with precision values of 0.51 and 0.50 for
healthy RBCs and SCs, respectively. In the first two models, SGD performed better than the
Adam optimizer on the test dataset, with a better accuracy score. The confusion matrices of
the first two models with both optimizers are shown in Figure 8.

Data 2022, 7, 126 15 of 21

Data 2022, 7, x 15 of 21

optimizer on the test dataset, with a better accuracy score. The confusion matrices of the

first two models with both optimizers are shown in Figure 8.

(a) (b)

(c) (d)

Figure 8. Test Results in confusion matrix, 0 and 1 on x and y represent Healthy RBCs and SCs,

respectively: (a) Confusion matrix of one-block CNN with Adam optimizer. (b) Confusion matrix

of one-block CNN with SGD optimizer. (c) Confusion matrix of two-block CNN with Adam opti-

mizer. (d) Confusion matrix of two-block CNN with SGD optimizer.

The loss and accuracy curves of three-block CNNs with SGD showed signs of over-

fitting, which means that the model may have performed poorly with the test dataset. It

could be the reason for the decrease in the test accuracy score of the three-block CNN

model with SGD from 50% to 48%. The f1 score of the model was below 50%, scoring

precision values of 0.47 and 0.48 for healthy RBCs and SCs, respectively. Similarly, the

three-block model with the Adam optimizer could not improve significantly, generating

f1 scores of 0.33 and 0.60 for healthy RBCs and SCs, respectively. Figure 9 shows the con-

fusion matrices of the three-block model with the Adam and SGD optimizers.

Figure 8. Test Results in confusion matrix, 0 and 1 on x and y represent Healthy RBCs and SCs,
respectively: (a) Confusion matrix of one-block CNN with Adam optimizer. (b) Confusion matrix of
one-block CNN with SGD optimizer. (c) Confusion matrix of two-block CNN with Adam optimizer.
(d) Confusion matrix of two-block CNN with SGD optimizer.

The loss and accuracy curves of three-block CNNs with SGD showed signs of over-
fitting, which means that the model may have performed poorly with the test dataset. It
could be the reason for the decrease in the test accuracy score of the three-block CNN model
with SGD from 50% to 48%. The f1 score of the model was below 50%, scoring precision
values of 0.47 and 0.48 for healthy RBCs and SCs, respectively. Similarly, the three-block
model with the Adam optimizer could not improve significantly, generating f1 scores of
0.33 and 0.60 for healthy RBCs and SCs, respectively. Figure 9 shows the confusion matrices
of the three-block model with the Adam and SGD optimizers.

Data 2022, 7, 126 16 of 21Data 2022, 7, x 16 of 21

(a) (b)

Figure 9. Test results in a confusion matrix, 0 and 1 on x and y represent Healthy RBCs and SCs,

respectively: (a) Confusion matrix of three-block CNN with Adam optimizer. (b) Confusion matrix

of three-block CNN with SGD optimizer.

The use of Resnet50 andVGG16 as pre-trained models resulted in achieving higher

validation accuracy in fewer epochs. The learning curves for both pre-trained models

showed a good fit. When these models were tested on the test dataset, VGG16 showed the

best performance with a test accuracy score of 98%. The confusion matrix in Figure 10

shows only three falsely classified images with the VGG16 model. On the other hand,

Resnet50 could not perform better on the test dataset, showing accuracy scores of 65% and

64% with the Adam and SGD optimizers, respectively. The Resnet50 model performed

better than the first three models, but the performance was not comparable to VGG16.

(a) (b)

Figure 9. Test results in a confusion matrix, 0 and 1 on x and y represent Healthy RBCs and SCs,
respectively: (a) Confusion matrix of three-block CNN with Adam optimizer. (b) Confusion matrix
of three-block CNN with SGD optimizer.

The use of Resnet50 andVGG16 as pre-trained models resulted in achieving higher
validation accuracy in fewer epochs. The learning curves for both pre-trained models
showed a good fit. When these models were tested on the test dataset, VGG16 showed the
best performance with a test accuracy score of 98%. The confusion matrix in Figure 10 shows
only three falsely classified images with the VGG16 model. On the other hand, Resnet50
could not perform better on the test dataset, showing accuracy scores of 65% and 64% with
the Adam and SGD optimizers, respectively. The Resnet50 model performed better than
the first three models, but the performance was not comparable to VGG16.

Data 2022, 7, x 16 of 21

(a) (b)

Figure 9. Test results in a confusion matrix, 0 and 1 on x and y represent Healthy RBCs and SCs,

respectively: (a) Confusion matrix of three-block CNN with Adam optimizer. (b) Confusion matrix

of three-block CNN with SGD optimizer.

The use of Resnet50 andVGG16 as pre-trained models resulted in achieving higher

validation accuracy in fewer epochs. The learning curves for both pre-trained models

showed a good fit. When these models were tested on the test dataset, VGG16 showed the

best performance with a test accuracy score of 98%. The confusion matrix in Figure 10

shows only three falsely classified images with the VGG16 model. On the other hand,

Resnet50 could not perform better on the test dataset, showing accuracy scores of 65% and

64% with the Adam and SGD optimizers, respectively. The Resnet50 model performed

better than the first three models, but the performance was not comparable to VGG16.

(a) (b)

Figure 10. Cont.

Data 2022, 7, 126 17 of 21Data 2022, 7, x 17 of 21

(c) (d)

Figure 10. Test results in a confusion matrix, 0 and 1 on x and y represent Healthy RBCs and SCs,

respectively: (a) Confusion matrix of VGG16 with Adam optimizer. (b) Confusion matrix of VGG16

with SGD optimizer. (c) Confusion matrix of Resnet50 with Adam optimizer. (d) Confusion matrix

of Resnet50 with SGD optimizer.

The test accuracies of all five models with both optimizers are compared in Figure

11. The first two models (with the SGD optimizer) achieved higher accuracy than models

trained with the Adam optimizer. On the other hand, Adam performed better in the third

and fifth models.

Figure 11. Test accuracy comparison of models.

The accuracy scores of VGG16 and Resnet50 were higher than the accuracy scores of

the first three models. The accuracy score reflects the total performance of the model but

does not indicate the misclassified images from the testing dataset. The f1 score is a meas-

ure of incorrectly classified images from each class. The comparison of models based on

f1 scores is shown in Figure 12. The f1 score is a function of the precision and recall scores

of the model and becomes significant when false positives and false negatives are critical.

For the classification of SCs, Adam performed better with the first, second and third

Figure 10. Test results in a confusion matrix, 0 and 1 on x and y represent Healthy RBCs and SCs,
respectively: (a) Confusion matrix of VGG16 with Adam optimizer. (b) Confusion matrix of VGG16
with SGD optimizer. (c) Confusion matrix of Resnet50 with Adam optimizer. (d) Confusion matrix of
Resnet50 with SGD optimizer.

The test accuracies of all five models with both optimizers are compared in Figure 11.
The first two models (with the SGD optimizer) achieved higher accuracy than models
trained with the Adam optimizer. On the other hand, Adam performed better in the third
and fifth models.

Data 2022, 7, x 17 of 21

(c) (d)

Figure 10. Test results in a confusion matrix, 0 and 1 on x and y represent Healthy RBCs and SCs,

respectively: (a) Confusion matrix of VGG16 with Adam optimizer. (b) Confusion matrix of VGG16

with SGD optimizer. (c) Confusion matrix of Resnet50 with Adam optimizer. (d) Confusion matrix

of Resnet50 with SGD optimizer.

The test accuracies of all five models with both optimizers are compared in Figure

11. The first two models (with the SGD optimizer) achieved higher accuracy than models

trained with the Adam optimizer. On the other hand, Adam performed better in the third

and fifth models.

Figure 11. Test accuracy comparison of models.

The accuracy scores of VGG16 and Resnet50 were higher than the accuracy scores of

the first three models. The accuracy score reflects the total performance of the model but

does not indicate the misclassified images from the testing dataset. The f1 score is a meas-

ure of incorrectly classified images from each class. The comparison of models based on

f1 scores is shown in Figure 12. The f1 score is a function of the precision and recall scores

of the model and becomes significant when false positives and false negatives are critical.

For the classification of SCs, Adam performed better with the first, second and third

Figure 11. Test accuracy comparison of models.

The accuracy scores of VGG16 and Resnet50 were higher than the accuracy scores of
the first three models. The accuracy score reflects the total performance of the model but
does not indicate the misclassified images from the testing dataset. The f1 score is a measure
of incorrectly classified images from each class. The comparison of models based on f1
scores is shown in Figure 12. The f1 score is a function of the precision and recall scores of
the model and becomes significant when false positives and false negatives are critical. For

Data 2022, 7, 126 18 of 21

the classification of SCs, Adam performed better with the first, second and third models
with higher f1 scores, and SGD performed better with the VGG16 and Resnet50 models.

Data 2022, 7, x 18 of 21

models with higher f1 scores, and SGD performed better with the VGG16 and Resnet50

models.

(a) (b)

Figure 12. f1 score comparison of models: (a) f1 score comparison of models with the Adam opti-

mizer (b) f1 score comparison of models with the SGD optimizer.

Another way to illustrate the diagnostic ability of the binary classifier is by plotting

the Receiver Operating Characteristic (ROC) curve, as shown in Figure 13. The increasing

values on the x-axis indicate higher FPs than TNs; however, the higher values on the y-

axis indicate more TPs than FNs. The comparison of both pre-trained models, VGG16 and

Resnet50, is shown in Figure 13. VGG16 with both optimizers showed the highest values

of TPs than FPs with the highest Area Under the Curve (AUC) value of 0.98. VGG16 per-

formed better than the Resnet50 pre-trained model, as indicated in the study [58].

Figure 13. ROC curve plot for VGG16 and Resnet50.

6. Conclusions

The use of DL algorithms in medical imaging has the prime purpose of predicting

accurately to make judgments for a correct diagnosis. This study focused on designing a

model to correctly classify microscopic blood samples, providing grounds for further re-

search by biomedical researchers. This study included five DL models compiled dually

with the Adam and SGD optimizers. The test accuracy scores of the first, second and third

Figure 12. f1 score comparison of models: (a) f1 score comparison of models with the Adam optimizer
(b) f1 score comparison of models with the SGD optimizer.

Another way to illustrate the diagnostic ability of the binary classifier is by plotting
the Receiver Operating Characteristic (ROC) curve, as shown in Figure 13. The increasing
values on the x-axis indicate higher FPs than TNs; however, the higher values on the y-axis
indicate more TPs than FNs. The comparison of both pre-trained models, VGG16 and
Resnet50, is shown in Figure 13. VGG16 with both optimizers showed the highest values
of TPs than FPs with the highest Area Under the Curve (AUC) value of 0.98. VGG16
performed better than the Resnet50 pre-trained model, as indicated in the study [58].

Data 2022, 7, x 18 of 21

models with higher f1 scores, and SGD performed better with the VGG16 and Resnet50

models.

(a) (b)

Figure 12. f1 score comparison of models: (a) f1 score comparison of models with the Adam opti-

mizer (b) f1 score comparison of models with the SGD optimizer.

Another way to illustrate the diagnostic ability of the binary classifier is by plotting

the Receiver Operating Characteristic (ROC) curve, as shown in Figure 13. The increasing

values on the x-axis indicate higher FPs than TNs; however, the higher values on the y-

axis indicate more TPs than FNs. The comparison of both pre-trained models, VGG16 and

Resnet50, is shown in Figure 13. VGG16 with both optimizers showed the highest values

of TPs than FPs with the highest Area Under the Curve (AUC) value of 0.98. VGG16 per-

formed better than the Resnet50 pre-trained model, as indicated in the study [58].

Figure 13. ROC curve plot for VGG16 and Resnet50.

6. Conclusions

The use of DL algorithms in medical imaging has the prime purpose of predicting

accurately to make judgments for a correct diagnosis. This study focused on designing a

model to correctly classify microscopic blood samples, providing grounds for further re-

search by biomedical researchers. This study included five DL models compiled dually

with the Adam and SGD optimizers. The test accuracy scores of the first, second and third

Figure 13. ROC curve plot for VGG16 and Resnet50.

6. Conclusions

The use of DL algorithms in medical imaging has the prime purpose of predicting
accurately to make judgments for a correct diagnosis. This study focused on designing
a model to correctly classify microscopic blood samples, providing grounds for further
research by biomedical researchers. This study included five DL models compiled dually
with the Adam and SGD optimizers. The test accuracy scores of the first, second and
third models, with both optimizers, could not surpass the value of 51%. However, for
the classification of SCs, SGD performed better than Adam with the VGG16 and Resnet50

Data 2022, 7, 126 19 of 21

models. The use of VGG16 as a fourth model brought an exponential rise in accuracy,
indicating a higher feature extraction ability and empowering the classifier to generalize
better on the test dataset, with an accuracy of 98%. One limitation of this study is that
the specific undisclosed dataset from the Lorrca Ektacytometry microscope was used for
the training, validation and testing of the classifier. This study will be extended further to
annotate sickle cells from the same undisclosed dataset to measure their deformability.

Author Contributions: Writing—original draft, M.B.; Writing—review & editing, A.d.K. All authors
have read and agreed to the published version of the manuscript.

Funding: No external funding or grant was received.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this study is not public or publicly archived.

Acknowledgments: The author, Marya Butt, thanks the Katrin Tazelaar, TechValley-NH, and the
Research Director of R.R. Mechatronics, Jan de Zoeten, for providing support and valuable feedback.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abduljabbar, R.; Dia, H.; Liyanage, S.; Bagloee, S.A. Applications of Artificial Intelligence in Transport: An Overview. Sustainability

2019, 11, 189. [CrossRef]
2. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. Statistical and Machine Learning forecasting methods: Concerns and ways

forward. PLoS ONE 2018, 13, e0194889. [CrossRef] [PubMed]
3. Latif, J.; Xiao, C.; Imran, A.; Tu, S. Medical Imaging using Machine Learning and Deep Learning Algorithms: A Review. In

Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET),
Sukkur, Pakistan, 10–13 June 2019; pp. 1–5. [CrossRef]

4. Kersting, K. Machine Learning and Artificial Intelligence: Two Fellow Travelers on the Quest for Intelligent Behavior in Machines.
Front. Big Data 2018, 1, 6. [CrossRef] [PubMed]

5. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Online.
6. Nisbet, R.; Miner, G.; Yale, K. Chapter-19, Deep Learning. In Handbook of Statistical Analysis and Data Mining Applications, 2nd ed.;

Academic Press: Boca Raton, NJ, USA, 2018.
7. Chen, X.-W.; Lin, X. Big Data Deep Learning: Challenges and Perspectives. IEEE Access 2014, 2, 514–525. [CrossRef]
8. Yu, Y.; Hur, T.; Jung, J.; Jang, I.G. Deep learning for determining a near-optimal topological design without any iteration.

Struct. Multidiscip. Optim. 2018, 59, 787–799. [CrossRef]
9. Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech

Recognition. IEEE Trans. Audio Speech Lang. Process. 2011, 20, 30–42. [CrossRef]
10. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.-R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al.

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal
Process. Mag. 2012, 29, 82–97. [CrossRef]

11. Cireşan, D.; Meler, U.; Cambardella, L.; Schmidhuber, J. Deep, big, simple neural nets for handwritten digit recognition.
Neural Comput. 2010, 22, 3207–3220. [CrossRef]

12. Zeiler, M.D.; Taylor, G.W.; Fergus, R. Adaptive deconvolutional networks for mid and high level feature learning. In Proceedings
of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2018–2025. [CrossRef]

13. Rahman Minar, M.; Naher, J. Recent Advances in Deep Learning: An Overview, CoRR, abs/1807.08169 (2018). Available online:
http://arxiv.org/abs/1807.08169 (accessed on 20 November 2021).

14. Turner, V.; Gantz, J.F.; Reinsel, D.; Minton, S. The digital universe of opportunities: Rich data and the increasing value of the
internet of things. IDC Analyze Future 2014, 16, 13–19.

15. Adnan, K.; Akbar, R.; Khor, S.W.; Ali, A.B.A. Role and Challenges of Unstructured Big Data in Healthcare. Data Manag. Anal. Innov.
2019, 20, 301–323. [CrossRef]

16. Harrell, F.E., Jr.; Lee, K.L.; Matchar, D.B.; Reichert, T.A. Regression models for prognostic prediction: Advantages, problems, and
suggested solutions. Cancer Treat. Rep. 1985, 69, 1071–1077. [PubMed]

17. Pa, M.K.; Raja, S.S. Deep Learning Based Image Classification and Abnormalities Analysis of MRI Brain Images. In Proceedings
of the 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks
(IMICPW), Tiruchirappalli, India, 22–24 May 2019; pp. 427–431. [CrossRef]

18. Anderson, K.M.; Odell, P.M.; Wilson, P.W.; Kannel, W.B. Cardiovascular disease risk profiles. Am. Hear. J. 1991, 121, 293–298.
[CrossRef]

http://doi.org/10.3390/su11010189
http://doi.org/10.1371/journal.pone.0194889
http://www.ncbi.nlm.nih.gov/pubmed/29584784
http://doi.org/10.1109/icomet.2019.8673502
http://doi.org/10.3389/fdata.2018.00006
http://www.ncbi.nlm.nih.gov/pubmed/33693322
http://doi.org/10.1109/ACCESS.2014.2325029
http://doi.org/10.1007/s00158-018-2101-5
http://doi.org/10.1109/TASL.2011.2134090
http://doi.org/10.1109/MSP.2012.2205597
http://doi.org/10.1162/NECO_a_00052
http://doi.org/10.1109/iccv.2011.6126474
http://arxiv.org/abs/1807.08169
http://doi.org/10.1007/978-981-32-9949-8_22
http://www.ncbi.nlm.nih.gov/pubmed/4042087
http://doi.org/10.1109/imicpw.2019.8933239
http://doi.org/10.1016/0002-8703(91)90861-B

Data 2022, 7, 126 20 of 21

19. Mondal, S.; Agarwal, K.; Rashid, M. Deep Learning Approach for Automatic Classification of X-Ray Images using Convolutional
Neural Network. In Proceedings of the 2019 Fifth International Conference on Image Information Processing (ICIIP), Shimla,
India, 15–17 November 2019; pp. 326–331. [CrossRef]

20. Asri, H.; Mousannif, H.; Al Moatassime, H.; Noel, T. Using Machine Learning Algorithms for Breast Cancer Risk Prediction and
Diagnosis. Procedia Comput. Sci. 2016, 83, 1064–1069. [CrossRef]

21. Wheeless, L.L.; Robinson, R.D.; Lapets, O.P.; Cox, C.; Rubio, A.; Weintraub, M.; Benjamin, L.J. Classification of red blood cells as
normal, sickle, or other abnormal, using a single image analysis feature. Cytometry 1994, 17, 159–166. [CrossRef]

22. NIH. Sickle Cell Disease. Available online: https://ghr.nlm.nih.gov/condition/sickle-cell-disease#definition.
23. Bush, A.M.; Borzage, M.T.; Choi, S.Y.; Václavů, L.; Tamrazi, B.; Nederveen, A.J.; Coates, T.D.; Wood, J.C. Determinants of resting

cerebral blood flow in sickle cell disease. Am. J. Hematol. 2016, 91, 912–917. [CrossRef]
24. Xin, M.; Wang, Y. Research on image classification model based on deep convolution neural network. EURASIP J. Image

Video Process. 2019, 2019, 40. [CrossRef]
25. Yao, Q.; Liao, X.; Jin, H. Training deep neural network on multiple GPUs with a model averaging method. Peer-to-Peer Netw. Appl.

2018, 11, 1012–1021. [CrossRef]
26. Mohsen, H.; El-Dahshan, E.-S.A.; El-Horbaty, E.-S.M.; Salem, A.-B.M. Classification using deep learning neural networks for

brain tumors. Futur. Comput. Inform. J. 2018, 3, 68–71. [CrossRef]
27. Patil, D.N.; Khot, U.P. Image processing based abnormal blood cells detection. Int. J. Technical. Res. Appl. 2017, 31, 37–43.
28. Maity, M.; Mungle, T.; Dhane, D.; Maiti, A.K.; Chakraborty, C. An Ensemble Rule Learning Approach for Automated Morphologi-

cal Classification of Erythrocytes. J. Med. Syst. 2017, 41, 56. [CrossRef]
29. Akrimi, J.A.; Suliman, A.; George, L.E.; Ahmad, A.R. Classification red blood cells using support vector machine. In Proceedings

of the Information Technology and Multimedia (ICIMU), 2014 International Conference on IEEE, Putrajaya, Malaysia, 18–20
November 2014; pp. 265–269. [CrossRef]

30. Rodrigues, L.F.; Naldi, M.C.; Maari, J.F. Morphological analysis and classification of erythrocytes in microscopy images. In
Proceedings of the XII Workshop de Visao Computacional, Mato Grosso do Sul, Brazil, 9–11 November 2016; Volume 1, pp. 69–74.

31. Samira; Veluchamy, M.; Perumal, K.; Ponnuchamy, T. Feature Extraction and Classification of Blood Cells Using Artificial Neural
Network. Am. J. Appl. Sci. 2012, 9, 615–619. [CrossRef]

32. Lotfi, M.; Nazari, B.; Sadri, S.; Sichani, N.K. The detection of Dacrocyte, Schistocyte and Elliptocyte cells in Iron Deficiency
Anemia. In Proceedings of the Pattern Recognition and Image Analysis (IPRIA), 2015 2nd International Conference on IEEE,
Rasht, Iran, 11–12 March 2015; pp. 1–5. [CrossRef]

33. Elsalamony, H. Detection of some anaemia types in human blood smears using neural networks. Meas. Sci. Technol. 2016,
27, 085401. [CrossRef]

34. Tomari, R.; Zakaria, W.N.W.; Jamil, M.M.A.; Nor, F.M.; Fuad, N.F.N. Computer Aided System for Red Blood Cell Classification in
Blood Smear Image. Procedia Comput. Sci. 2014, 42, 206–213. [CrossRef]

35. Poomcokrak, J.; Neatpisarnvanit, C. Red blood cells extraction and counting. In Proceedings of the 3rd International Symposium
on Biomedical Engineering, Changsha, China, 8–10 June 2008; pp. 199–203.

36. Abdulraheem Fadhel, M.; Humaidi, A.J.; Razzaq Oleiwi, S. Image processing-based diagnosis of sickle cell anemia in erythrocytes.
In Proceedings of the 2017 Annual Conference on New Trends in Information & Communications Technology Applications
(NTICT) IEEE, Baghdad, Iraq, 7–9 March 2017; pp. 203–207.

37. Chy, T.S.; Rahaman, M.A. A Comparative Analysis by KNN, SVM & ELM Classification to Detect Sickle Cell Anemia. In
Proceedings of the 2019 IEEE International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka,
Bangladesh, 10–12 January 2019; pp. 455–459.

38. Alzubaidi, L.; Al-Shamma, O.; Fadhel, M.A.; Farhan, L.; Zhang, J. Classification of Red Blood Cells in Sickle Cell Anemia Using
Deep Convolutional Neural Network. Adv. Intellig. Syst. Comput. 2019, 940, 550–559. [CrossRef]

39. Xu, M.; Papageorgiou, D.P.; Abidi, S.Z.; Dao, M.; Zhao, H.; Karniadakis, G.E. A deep convolutional neural network for
classification of red blood cells in sickle cell anemia. PLoS Comput. Biol. 2017, 13, e1005746. [CrossRef]

40. Yao, X.; Sun, K.; Bu, X.; Zhao, C.; Jin, Y. Classification of white blood cells using weighted optimized deformable convolutional
neural networks. Artif. Cells Nanomed. Biotechnol. 2021, 49, 147–155. [CrossRef]

41. Rab, M.A.; Van Oirschot, B.A.; Bos, J.; Merkx, T.H.; Van Wesel, A.C.; Abdulmalik, O.; Safo, M.K.; Versluijs, B.A.; Houwing, M.E.;
Cnossen, M.H.; et al. Rapid and reproducible characterization of sickling during automated deoxygenation in sickle cell disease
patients. Am. J. Hematol. 2019, 94, 575–584. [CrossRef]

42. Moolayil, J. An Introduction to Deep Learning and Keras. In Learn Keras for Deep Neural Networks; Apress: Berkeley, CA, USA,
2018; pp. 1–16. [CrossRef]

43. Mikolajczyk, A.; Grochowski, M. Data augmentation for improving deep learning in image classification problem. In Proceedings
of the International Interdisciplinary PhD Workshop (IIPhDW), Swinoujscie, Poland, 9–12 May 2018; pp. 117–122. [CrossRef]

44. Engstrom, L.; Tran, B.; Tsipras, D.; Schmidt, L.; Madry, A. A rotation and a translation suffice: Fooling CNNs with simple
transformations. arXiv 2017, arXiv:1712.02779.

45. Shpilman, A.; Boikiy, D.; Polyakova, M.; Kudenko, D.; Burakov, A.; Nadezhdina, E. Deep Learning of Cell Classification Using
Microscope Images of Intracellular Microtubule Networks. In Proceedings of the 16th IEEE International Conference on Machine
Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 1–6. [CrossRef]

http://doi.org/10.1109/iciip47207.2019.8985687
http://doi.org/10.1016/j.procs.2016.04.224
http://doi.org/10.1002/cyto.990170208
https://ghr.nlm.nih.gov/condition/sickle-cell-disease#definition
http://doi.org/10.1002/ajh.24441
http://doi.org/10.1186/s13640-019-0417-8
http://doi.org/10.1007/s12083-017-0574-4
http://doi.org/10.1016/j.fcij.2017.12.001
http://doi.org/10.1007/s10916-017-0691-x
http://doi.org/10.1109/icimu.2014.7066642
http://doi.org/10.3844/ajassp.2012.615.619
http://doi.org/10.1109/pria.2015.7161628
http://doi.org/10.1088/0957-0233/27/8/085401
http://doi.org/10.1016/j.procs.2014.11.053
http://doi.org/10.1007/978-3-030-16657-1_51
http://doi.org/10.1371/journal.pcbi.1005746
http://doi.org/10.1080/21691401.2021.1879823
http://doi.org/10.1002/ajh.25443
http://doi.org/10.1007/978-1-4842-4240-7_1
http://doi.org/10.1109/IIPHDW.2018.8388338
http://doi.org/10.1109/icmla.2017.0-186

Data 2022, 7, 126 21 of 21

46. Kumar, V.; Singh, D.; Kaur, M.; Damaševičius, R. Overview of current state of research on the application of artificial intelligence
techniques for COVID-19. PeerJ Comput. Sci. 2021, 7, e564. [CrossRef]

47. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology.
Insights Imag. 2018, 9, 611–629. [CrossRef]

48. Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.K.; Zhang, X.; Huang, X. Hyperspectral Image Classification with Deep Learning Models.
IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [CrossRef]

49. Nirthika, R.; Manivannan, S.; Ramanan, A.; Wang, R. Pooling in convolutional neural networks for medical image analysis: A
survey and an empirical study. Neural Comput. Appl. 2022, 34, 5321–5347. [CrossRef]

50. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
International Conference on Learning Representations, San Diego, CA, USA, 7–9 April 2014; pp. 1409–1556.

51. He, K.M.; Zhang, X.Y.; Ren, S.Q.; ve Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

52. Amir, A.; Butt, M.; Van Kooten, O. Using Machine Learning Algorithms to Forecast the Sap Flow of Cherry Tomatoes in a
Greenhouse. IEEE Access 2021, 9, 154183–154193. [CrossRef]

53. Chen, Y.; Qin, S.; Qiao, S.; Dou, Q.; Che, W.; Su, G.; Yao, J.; Nnanwuba, U.E. Spatial Predictions of Debris Flow Susceptibility
Mapping Using Convolutional Neural Networks in Jilin Province, China. Water 2020, 12, 2079. [CrossRef]

54. Taqi, A.M.; Awad, A.; Al-Azzo, F.; Milanova, M. The Impact of Multi-Optimizers and Data Augmentation on TensorFlow
Convolutional Neural Network Performance. In Proceedings of the 2018 IEEE Conference on Multimedia Information Processing
and Retrieval (MIPR), Miami, FL, USA, 10–12 April 2018; pp. 140–145. [CrossRef]

55. Bera, S.; Shrivastava, V.K. Analysis of various optimizers on deep convolutional neural network model in the application of
hyperspectral remote sensing image classification. Int. J. Remote Sens. 2019, 41, 2664–2683. [CrossRef]

56. Jabbar, H.K.; Khan, D.R.Z. Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study).
In Computer Science, Communication & Instrumentation Devices; Research Publishing Services: Singapore, 2014; pp. 163–172.

57. Hardt, M.; Recht, B.; Singer, Y. Train faster, generalize better: Stability of stochastic gradient descent. In Proceedings of the
International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 1225–1234.

58. Vatathanavaro, S.; Tungjitnob, S.; Pasupa, K. White blood cell classification: A comparison between VGG-16 and ResNet-50
models. In Proceedings of the 6th Joint Symposium on Computational Intelligence, Seville, Spain, 18–20 August 2018; Volume 12,
pp. 4–5.

http://doi.org/10.7717/peerj-cs.564
http://doi.org/10.1007/s13244-018-0639-9
http://doi.org/10.1109/TGRS.2018.2815613
http://doi.org/10.1007/s00521-022-06953-8
http://doi.org/10.1109/ACCESS.2021.3127453
http://doi.org/10.3390/w12082079
http://doi.org/10.1109/mipr.2018.00032
http://doi.org/10.1080/01431161.2019.1694725

	Introduction
	Related Research
	Materials and Methods
	Dataset
	Working with the Dataset
	Image Augmentation
	CNN
	Transfer Learning
	Hyperparameters

	Model Performance
	Confusion Matrix
	Classification Report
	Receiver Operating Characteristics (ROC) Curves

	Results
	Discussion
	Conclusions
	References

