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Abstract: Motion capture (MOCAP) is a widely used technique to record human, animal, and
object movement for various applications such as animation, biomechanical assessment, and control
systems. Different systems have been proposed based on diverse technologies, such as visible light
cameras, infrared cameras with passive or active markers, inertial systems, or goniometer-based
systems. Each system has pros and cons that make it usable in different scenarios. This paper
presents a dataset that combines Optical Motion and Inertial Systems, capturing a well-known
sports movement as the vertical jump. As a reference system, the optical motion capture consists
of six Flex 3 Optitrack cameras with 100 FPS. On the other hand, we developed an inertial system
consisting of seven custom-made devices based on the IMU MPU-9250, which includes a three-axis
magnetometer, accelerometer and gyroscope, and an embedded Digital Motion Processor (DMP)
attached to a microcontroller mounted on a Teensy 3.2 with an ARM Cortex-M4 processor with
wireless operation using Bluetooth. The purpose of taking IMU data with a low-cost and customized
system is the deployment of applications that can be performed with similar hardware and can be
adjusted to different areas. The developed measurement system is flexible, and the acquisition format
and enclosure can be customized. The proposed dataset comprises eight jumps recorded from four
healthy humans using both systems. Experimental results on the dataset show two usage examples
for measuring joint angles and COM position. The proposed dataset is publicly available online and
can be used in comparative algorithms, biomechanical studies, skeleton reconstruction, sensor fusion
techniques, or machine learning models.

Dataset: 10.5281/zenodo.6600752.

Dataset License: The dataset is available under LGPL v3.0 license

Keywords: biomechanics; inertial measurement units-imu; motion capture system-mocap; sports;
vertical jump

1. Introduction

Motion capture (MOCAP) is a technique that started around the 1970s using pho-
togrammetry for biomechanical analysis. It is used in various fields such as education [1],
sports training [2], and cinema and video games [3]. Its main purpose is to record the
movements of an object, in this case the human body, for later analysis and to apply data
modeling [4,5]. In human motion capture, it is required to establish the position and
orientation of each of the body segments [6–8]. Technological development has resulted
in various systems for measuring the position of body segments and angles, most no-
tably optical and Inertial Measurement Units (IMU). Optical capture systems use a set
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of cameras and reflective markers to obtain the position from the superposition of the
images. Its greatest advantage is the accuracy that, in the case of the system used in this
work, reaches ±0.1 mm. IMU-based capture systems use a combination of accelerometers,
gyroscopes, and magnetometers. Inertial systems have an advantage over optical systems
because they are portable and can be used in environments with uncontrolled conditions.
Moreover, in comparison, implementations such as the one presented in this paper can be
lower-cost options.

One of the main uses of IMUs is related to orientation determination. Different works
have been developed supported by datasets, such as in [9], where inertial orientation
estimation (IOE) is validated by providing a large reference dataset. In addition, ref. [10]
presented examples of activities of daily living (ADL), and [11] developed a deep-learning-
based method for gait recognition from IMUs’ raw information. A current trend in the
biomechanical analysis is to mix or fuse data to derive measurements or find patterns,
such as [12] where IMUs, pressure-distribution, and photoelectric data are obtained for
gait analysis.

On the other hand, jumping is a physical gesture or exercise that can be related to
different sports and reflects the lower body’s power. In a data context, works have been
developed as in [13] where a review is conducted on the meta-analysis of the effects of a
plyometric jump from a female soccer player’s vertical jump. Moreover, in a similar topic,
the authors of [14] performed a biomechanical analysis of the effect of ball inclusion on
jump performance in soccer players. These works show the interest in conducting studies
to improve the performance of athletes or human evaluation. Although examples related
to soccer players are shown, applications can go to Taijiquan martial art gestures [15],
among others. Particularly, the vertical jump is a fundamental motor skill in many sports
that influences both training and performance. For instance, when an athlete can make
a short sprint or reach a high point starting from the ground, his vertical jumps make
a difference [16]. Nevertheless, the vertical jump is not an easy movement. It requires
coordination between the neuronal system, muscle excitation, joint motion, and force
production to succeed. The main objective of the vertical jump is to bring the center of
mass (COM) to the highest possible point by reaching the maximum speed in the instant of
takeoff. Moreover, the jump technique could be tracked to determine its correct execution.

Previous works show an interest in generating MOCAP datasets, which allow compar-
ative analyses or performance evaluations. Sometimes, this data type is not easy to acquire
due to the cost of optical capture equipment and calibration processes. In the case of the
presented work, the combination of low-cost IMUs is considered to lead to the development
of low-cost technological solutions or developments that can reach a greater number of
applications. It is important to highlight that the interest of this work using a low-cost
IMU is to validate them in order to develop algorithms that allow their use in open field
applications or under remote acquisition models. It will also allow for analyzing off-line
applications and reaching users who do not have access to robust and more expensive
equipment such as the Optitrack, which is used as a reference in this work.

This paper presents a dataset collected from healthy people performing a vertical jump
using an IMU-based system compared to an optical MOCAP as a reference system. The
use of IMUs allows the development of low-cost and customized systems for deploying
applications that can be realized with similar hardware and adjusted to different areas. For
this purpose, we implemented an inertial system using seven IMU devices of nine degrees
of freedom, and in parallel, we used an Optitrack system configured with 22 passive
markers. Both IMUs and optical markers were located at the anatomical reference points of
the leg joints to obtain the anthropometric measurements and the legs’ angles during the
jump. This dataset is publicly available online and can be used in comparative algorithms,
biomechanical studies, skeleton reconstruction, sensor fusion techniques, or machine
learning models.

The rest of the paper is presented as follows. Section 2 describes the configuration
of the optical system used for data acquisition, which is the reference for comparing the
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inertial system. Section 3 presents the IMU-based system developed to collect the proposed
dataset, giving details on the hardware and communication settings. Sections 4 and 5
show the dataset’s structure and results from both acquisition systems, respectively. Finally,
Section 7 gives the conclusions.

2. Optical System for Data Acquisition

Optical motion capture systems consist of a set of high-speed cameras that perform a
three-dimensional (3D) construction of the environment based on the relative position of
the cameras. The cameras detect reflective optical markers in the capture volume, and the
system determines their position by triangulation, obtaining the 3D construction from
image superposition algorithms.

For systems that use optical markers, the person must locate them on their body,
and the system tracks the markers to reconstruct the movement. There are active and
passive markers; the active ones generate light using LEDs, and the passive ones reflect
the light emitted by the cameras. Systems without markers are also used, such as RGB-D
cameras, which skeletonize the subject from a data array of infrared sensors. This type
of system is usually less accurate. The main drawback of these systems is the markers’
occlusion or falling out of the capturing volume, making it impossible to know the marker
position. It is then necessary to make assumptions to perform the reconstruction. However,
their accuracy is very high when optimal capture conditions are met.

In the following, we describe the configuration of the optical capture system Optitrack
used to measure vertical jump performance. This system is considered the Gold Standard in
the field of motion capture.

2.1. Hardware

The optical capture system manufactured by OptitrackTM was used as the reference
system. The system includes six Flex 3 cameras at 100 FPS, linked to two synchronized
OptiHub with a USB connection to a computer. Figure 1 shows the used devices. These
devices provide a compact approach with all required features for image capturing and
motion tracking. The optical system has an accuracy of 0.2± 0.01 mm.

(a) (b)

Figure 1. Devices used in the optical capture system: (a) Optitrack Flex 3 camera; (b) Optitrack
OptiHub devices, where the cameras are connected to the computer.

Motion capture was performed using Optitrack’s Motive Tracker software. Figure 2
depicts the capturing area setup, whose the capture volume has 2 m diameter and 2 m
height (sufficient volume for capturing the human lower body). The cameras are installed
in two parallel rails, three cameras and a hub per rail. Both hubs are synced with an RCA
cable. This installation generates a semi-circular capture volume. The ground level capture
area is shown in Figure 2b drawn with black tape. The highest possible point for capture is
set by the camera height.
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(a) Camera setup. In red circles are the Flex 3 cameras. In blue boxes are the OptiHub devices.

(b) Capture area.

Figure 2. Representation of the capture volume of the optical capture system.

2.2. Calibration

The calibration process consists of two stages. In the first stage, the relative position
between the cameras is calculated, and in the second one, the ground reference plane
is determined.

For the first stage, we used the CW-250 calibration tool (Figure 3a), which has three
markers aligned at different and known distances. The CW-250 is placed in the capturing
area and moved to try to cover the largest possible volume. Thus, for each image obtained
from the markers, a spatial relationship is established with the distance between them.
After having a sufficient number of samples, a three-dimensional reconstruction can be
obtained; therefore, the greater the number of samples, the greater the precision is.

The calibration process continues using the CS-200 tool (Figure 3b) in the second
stage. The CS-200 has three markers in an orthogonal arrangement forming a plane.
This arrangement becomes the capture volume origin and determines the floor plane. It
is located in the volume’s center, and all cameras take a simultaneous image. Thereby,
with the spatial distribution obtained from the first stage, the CS-200 position is established
to determine the origin of the capture volume. After executing these two procedures,
the markers can be captured, and their position respecting the volume origin can be
established. Typical estimation errors are within 0.2 ± 0.01 mm, which determine the
system’s accuracy.
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Figure 3. Calibration tools used for the optical capture system.

2.3. Marker Locations

Since the objective is to obtain and compare the anthropometric measurements and
the legs’ angles with the inertial system, the markers are located at the anatomical reference
points of the leg joints. In the rigid segments, they are located asymmetrically with respect
to the two legs, which makes it possible to differentiate them. Thus, in addition to the
position of the markers, the joints’ angles can be obtained. Figure 4 shows the placement
of the reflective optical markers on the legs, represented as yellow squares, alongside the
IMU positions as cyan circles.

(a) Front view (b) Back view (c) Left view (d) Right view

Figure 4. Configuration of the optical markers’ and IMUs’ placement for measuring a vertical jump.
The reflective markers for the optical capture system are shown in the yellow squares. IMUs are
placed in cyan circles for the inertial system.

3. Proposed IMU-Based Inertial System

Accelerometers and gyroscopes are commonly known as inertial sensors. An Inertial
Measurement Unit (IMU) is basically composed of the combination of three orthogonal
accelerometers and three orthogonal gyroscopes. On the one hand, the orthogonally aligned
accelerometers allow obtaining the absolute acceleration vector of the body to which it
is attached. With this data, it is possible to perform integration with respect to time and
obtain the velocity vector and then a second integration to obtain the body’s position in
relation to a reference. Secondly, the absolute orientation of the body can be obtained with
the gyroscope arrangement that measures the rotation rate (degrees per time unit) in each
axis, also synchronized to the time. Thus, IMUs can provide information on the position
and orientation of a body or object. These sensors can be attached by other sensors such
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as magnetometers or GPS to obtain redundant information that improves the accuracy of
the systems.

In recent years, the development of Micro-Electromechanical Systems (MEMS) has
reduced the inertial sensor dimensions. Thus, IMUs can be used in several applications,
such as human motion capture. In the following, we describe the system developed
based on IMUs to obtain the position and orientation of the body’s lower segments during
vertical jumps. It is worth mentioning that the system is portable and does not affect the
exercise execution.

3.1. Hardware

The inertial acquisition system was designed to be compact and lightweight. Thus,
it is possible to locate it on the person’s body without generating inconvenience while
performing movements. Figure 5 depicts the general scheme of the proposed IMU-based
inertial system and samples of system components. The dimensions of the assembled
device are 4.0 cm high, 2.5 cm wide, and 4.4 cm in long. The proposed system has five main
parts. The features are described below. features :

PC

Python

Cortex®-M4

Processor  

IMU

MPU-9250 

       9 Variables

- 3 axis accelerometer
- 3 axis gyroscope
- 3 axis magnetometer

IDE

ARM Cortex® 

Bluetooth®

10 Variables

x7 IMU

Data

x7

(a) System scheme (b) System components

Figure 5. Proposed IMU-based inertial system: (a) general scheme depicting components and
communication links; and (b) samples of device and components, from left to right: (1) assembled
device; (2) device without enclosure; (3) Bluetooth module; (4) microcontroller; (5) charging circuit;
and (6) IMU MPU-9250.

1. Microcontroller: a 32-bit 72 MHz ARM Cortex-M4 32-bit MK20DX256VLH7 from
Freescale Semiconductor, mounted on a Teensy 3.2 development board.

2. IMU MPU-9250: combines a triaxial accelerometer, a triaxial gyroscope, and a triax-
ial magnetometer for motion monitoring, enclosed in a 3× 3× 3 mm chip developed
by InvenSense [17]. These sensors have programmable operating ranges as follows:
the accelerometer has operating scales of ±2, ±4, ±8, and ±16 gravity (g), the gy-
roscope ±250, ±500, ±1000, and ±2000 degrees/second, and the magnetometer
±1200 micro-tesla.

3. Bluetooth module: the 2.4 GHz Bluetooth HC-05 serial module is used. The transfer
rate was set to 57, 600 Bd.

4. Battery charging circuit: to ensure that each IMU does not require connection to
an external power source, it is powered by a 110 mAh 3.7 V lithium-ion battery.
Additionally, a circuit is responsible for charging the battery by supplying 5 V from a
USB connection and powering the other modules.

5. Personal computer: DELL T5610, Inter Xeon E5-2667 24 cores 2.90 GHz, 32 Gb RAM
DDR3.

3.2. Communication

Each IMU has a Bluetooth module connected to a receiver on a personal computer for
communication and data transmission. Data are acquired simultaneously from all seven
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IMUs and stored in text files. For each sample, 10 data variables are sent: acceleration in
X, Y, and Z axes; rotation speed in X, Y, and Z axes; magnetic field in X, Y, and Z axes;
and the microcontroller timestamp corresponding to the sampling time. Notice that the
timestamp is not the collection time but a reference to the capturing moment. The sensor
data are a 32-bit floating number. To reduce the number of characters sent, each value is
converted to hexadecimal using the IEEE Standard for Floating-Point Arithmetic (IEEE
754) [18]. Thus, we have 72 characters for the sensors and 4 for the sampling time, which is
a 16-bit integer. Table 1 shows a description of a data frame sample sent from an IMU.

Table 1. Description of a data frame sample sent by serial Bluetooth communication from an IMU.
The last row shows the complete data frame.

Data Variable Hexadecimal Value Decimal Value Unit

X-axis 3F1CEA16 0.61294686794281005859375
Accelerometer Y-axis BFACD9DC −1.350398540496826171875 m/s2

Z-axis C11670AD −9.40250873565673828125

X-axis 3C3BA031 0.011451766826212406158447265625
Gyroscope Y-axis 3C8FFDEA 0.0175771303474903106689453125 deg/s

Z-axis 3B945AF1 0.0045274426229298114776611328125

X-axis C20A9F8D −34.655811309814453125
Magnetometer Y-axis 4259EFAE 54.48406219482421875 mT

Z-axis 4254CBD2 53.19904327392578125

Timestamp 51FC 20,988 ms

Dataframe 3F1CEA16BFACD9DCC11670AD3C3BA0313C8FFDEA3B945AF1C20A9F8D4259EFAE4254CBD251FC

Since the communication is serial Bluetooth, the size of each sample is 8× 72 bits
(576 bits), having a floating-point precision of 16 bits. Each IMU sends data to the receiver
at a rate of 57,600 baud. The sensors are sampled by an Inter-Integrated Circuit bus (I2C
for Inter-Integrated Circuit) at a frequency of 1 kHz. After transmission, the data are
read at 75 Hz, a rate close to the traditional sampling rate for human motion [19–21].
After receiving the data, they are decoded and stored in text files as explained in Section 4.

3.3. IMUs Location

To capture motion from inertial sensors, each limb of the body (in this case, the lower
body) is treated as an independent rigid element; therefore, an IMU is attached to each
segment. Figures 4 and 6 show the IMU locations arranged to measure a vertical jump.
Aiming to avoid discomfort when performing the exercise, we located the devices outside
each leg and at the back of the waist. The location is arbitrary since the proposed method
does not depend on a specific location since it is estimated from the initial data of the
accelerometers and magnetometers.

IMU0

IMU1

IMU2

IMU3

IMU4

IMU5

IMU6

Figure 6. Scheme of kinematic chain model of the lower body, the blue boxes represent the
IMUs locations.
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4. Data Description and Structure

The dataset comprises eight jumps recorded from four healthy humans using the
optical reference system and the proposed IMU-based system. The four participants
where male, with good physical condition, age between 20 and 30 years. All participants
performed five jumps with one minute rest between them. After the jumps were recorded,
we cleansed the data. The proposed database is publicly available online at the Zenodo
repository through the following link: 10.5281/zenodo.6600752. The structure of the dataset
is as follows:

Zenodo repository
Vertical Jump Data From Inertial and Optical Motion Tracking System

JUMP_XX.zip
I0.txt
I1.txt
I2.txt
I3.txt
I4.txt
I5.txt
I6.txt
OPTIC.txt

Each jump is stored as a separate JUMP_XX.zip file, where XX corresponds to the jump
number. OPTIC.txt contains the data from the optical motion tracking system; it includes
the XYZ position of each optical marker. TXT files store data variables from the IMUs,
and the order is shown in Figure 6: I0.txt from Right Foot, I1.txt from Right Lower
Leg, I2.txt from Right Upper Leg, I3.txt from Center Of Mass (waist), I4.txt from Left
Upper Leg, I5.txt from Left Lower Leg, and I6.txt from Left Foot.

5. Data Samples

This section shows samples for a jump captured with the optical and inertial systems
contained in the dataset. For conciseness, only the data for a single jump are shown. For the
optical system data, skeletonization is made from the location of the markers. The inertial
system data are shown in their raw format as supplied by the sensors, without any processing.

5.1. Optical System

After running the calibration procedure of the cameras in the Optitrack Motive Tracker
Software, the program has the spatial location of each camera. With their locations, the sys-
tem can reconstruct a volume in the capture space. Thus, the position of the markers is
obtained. After recording a jump, the software exports each marker position captured in
the volume. We used the markers located at the joints or biometric points to construct
the skeletonization of the subject, connecting them and forming the links. The angles
at the joints are calculated using geometry from the segments obtained. Figure 7 shows
the skeletonization obtained from the data provided by the Optitrack system at different
jump moments.

https://doi.org/10.5281/zenodo.6600752
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(a) Starting position (b) Momentum (c) Maximum reach

(d) Landing (e) Contraction (f) Rest

Figure 7. Skeletonization samples for a jump captured by the optical motion capture system from
markers in anatomical positions.

5.2. Inertial System

As explained in the previous section, there are seven text files for each recorded
jump, one for each IMU. Each file contains the sensors’ hexadecimal data, containing the
signals provided by accelerometers, gyroscopes, and magnetometers. Plots for the raw data
obtained by the inertial system are shown below. Figures 8–10 show the data provided by
the accelerometers, gyroscopes, and magnetometers, respectively, from each IMU during
the entire execution of an example jump. It is worth mentioning that the signals shown are
from the captured raw data (with the digital motion processing (DMP) features enabled),
and no pre-processing or noise reduction was applied.
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Figure 8. Cont.
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Figure 8. Accelerometer signal samples from each IMU for a jump captured by the inertial system.
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Figure 9. Gyroscope signal samples from each IMU for a jump captured by the inertial system.
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Figure 10. Magnetometer signal samples from each IMU for a jump captured by the inertial system.
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6. Dataset Usage Examples and Results

The proposed examples for jump measuring using the dataset are composed of two
stages. Firstly, it consists of calculating each IMU orientation using a quaternion-based
operation; with this information, the joint angles are determined. The second stage is for
determining the COM’s speed and position. The initial orientation of each IMU is calculated
from the pseudo-orthogonal system between the gravity vector and the magnetic field.

6.1. Joint Angles

Each body segment to which an IMU is attached has an initial unit vector (~I) for orien-
tation, given by the pseudo-orthogonal system between the gravity vector and the magnetic
field. From this director vector, the orientation changes are made using the gyroscope data.
A unit quaternion from the angular velocity is calculated using Equation (1).

q =

[
cos (‖ω‖∆t)

ω

‖ω‖ sin (‖ω‖∆t)

]
(1)

where ω is the three-dimensional vector of gyroscope data, and ‖ω‖∆t is the angle θ of
rotation. Using q, the initial unit vector (~I) is rotated with Equation (2):

~Ir = q~Iq̄ (2)

Thus, the joint angles are defined as the angles between the director vectors. Figure 11
illustrates the rotation process of each body segment.

I

I

Figure 11. Illustration of the body segments rotation using the gyroscope data and the quaternion
approach.

Following, we show data processing results to obtain the bio-mechanical values on a
vertical jump from the dataset. The ankle, knee, and hip joints are calculated with the unit
vector of each segment. Figure 12 shows the angles of each joint in a vertical jump. These
values were compared with the optical system and are shown in Table 2.
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(a) Hip joint.
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(b) Knee joint.
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(c) Ankle joint.

Figure 12. Joint angles in the vertical jump measured with the IMUs. The takeoff and the landing
time is marked with vertical lines.
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Table 2. Comparison between both estimation systems of the bio-mechanical variables involved in
the vertical jump. The value r indicates the correlation between the signals of each system. The mean
and standard deviation (SD) are shown for each system.

Measurement r Optitrack IMU Units
Mean SD Mean SD

Ankles Right 0.989 79.222 21.113 83.094 13.751 ◦

Left 0.973 77.648 22.616 95.863 12.550 ◦

Knees Right 0.992 141.020 25.021 136.421 23.757 ◦

Left 0.999 134.999 29.490 136.852 24.999 ◦

Hips Right 0.812 32.979 34.868 21.670 12.818 ◦

Left 0.89 30.011 28.837 32.707 13.711 ◦

COM Axis X 0.30 −0.044 0.043 0.007 0.029 m
Axis Y 0.70 0.058 0.132 −0.001 0.155 m
Axis Z 0.79 −0.001 0.005 0.005 0.022 m

6.2. COM Position

An IMU is placed near the COM (IMU3 in Figure 6), at the waist near the fifth
lumbar vertebra (L5 vertebra) [22]. To calculate the COM’s speed and position, the gravity
acceleration is removed from the accelerometer measurements depending on the IMU
rotation, as described in the previous section. Figure 13 shows the jump sequence and the
rotation of the IMU. Numerical integration to the 3D acceleration gives the 3D velocity. This
operation adds up bias because the area under the curve in the movement is not zero or
close. Nonetheless, the speed at the beginning and end of the movement is zero; with this
assertion, the bias of the operation can be determined. A threshold is set in the acceleration
magnitude signal to get its duration. A Single Rectangular Pulse of Movement (SRPM)
is obtained, where active SRPM indicates the movement duration. In the active SRPM,
numerical integration is applied to the 3D acceleration using the trapezoidal rule. In the
inactive SRPM, the integral result is set to zero. This operation is shown in Equation (3).

Impulse Flying Cushioning

Figure 13. Jump sequence of the trunk and the thigh. The rotation of the waist IMU is shown with
reference to the gravity vector (green arrow).

~vt =

~vt−1 +

(
~at+~at−1

2

)
∆t if ‖~at‖ > threshold

0 if ‖~at‖ ≤ threshold
(3)

where ~vt is the velocity result, and~at the acceleration vector. At the trailing edge of the
SRPM, the velocity result must be zero, so the bias will be the integral value in that instant
of time. The velocity bias of each sample is calculated using Equation (4).

Sk = k
(
~v(n)

n

)
k = 1, 2, 3, 4, . . . , n (4)

where n is the number of samples in the duration of movement, and k the actual sample.
Finally, Sk is subtracted in ~vt.
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For position calculation, the above assertion cannot be made, i.e., the final position is
not zero because the jumper does not return to the beginning spot. For this reason, just the
trapezoidal rule is applied.

In the following, we show a performance analysis with the obtained data from joint
angles and COM position. Figure 14a depicts the typical signal of an accelerometer located
at the waist during a vertical jump. From these signals, the gravity is removed depending
on the IMU rotation. Figure 14b represents the signals after gravity subtraction. The signal
‖~at‖ and the binary signal of the movement interval are shown in Figure 15. Afterwards,
Equation (3) is applied, and the results are shown in Figure 16a. The bias subtraction from
the 3D velocity result is shown in Figure 16b.
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(a) Raw data.
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(b) COM acceleration after removing the gravity

Figure 14. Three-dimensional acceleration of the COM in a squat vertical jump measured with the
IMU at the waist.
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Figure 15. Magnitude of the three-dimensional acceleration of the COM and the binary signal (blue
line) of the movement interval after the threshold operator application. Dashed lines indicate the
start and end of the jump.

In the velocity result, the flying time can be easily estimated. The maximum ascending
speed denotes the instant of takeoff; from there, the velocity starts to descend linearly to
the moment of landing. The maximum height is calculated with this data and the free-fall
equations. In this study, the validity of the inertial system in COM tracking in the vertical
jump must be tested against the optical system. For this, integration is made in the COM
velocity signal to obtain the COM position. The results and the comparison of both systems
are shown in Figure 17, and the Table 3.
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Figure 16. Three-dimensional velocity obtained from the numerical integration using the movement
intervals: (a) three-dimensional velocity before removing the bias; (b) three-dimensional velocity
after removing the bias.

Table 3. Maximum height estimation. Comparison between both systems.

Measurement Optitrack IMU % Error

Max height 0.3837 m 0.3921 m 2.1908
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Figure 17. Three-dimensional position of COM.

With the proposed application to measure the maximum height reached in the jump,
high accuracy was obtained. It is an important measure for a future limb power estimation
system. Likewise, the joint angles in Figure 12 provide information about which muscular
power is generated and dissipated using the lower train. Moreover, the developed ap-
proach can be applied in research about bipedal locomotion such as gait analysis, sit–stand
transfers, and step-up transfers [23,24].

7. Conclusions

This paper presented a dataset including optical motion capture system data and
inertial measurement capture system data from eight vertical jumps. The proposed dataset
was designed to fundamentally compare both systems, validating algorithms that use the
inertial data and comparing with the optical data from the Optitrack system, which is
considered the gold standard in motion capture systems. The dataset is publicly available
online, and the data are very simple to use since the file names link both system data.

The main contribution of the proposed IMU-based approach is that it allows the user to
try and design algorithms related to human motion tracking without buying and setting up
expensive and delicate systems. Moreover, since the proposed dataset was collected using
an IMU-based system and an optical MOCAP as a reference system, it contains correlated
data that allow us to compare an IMU-based low-cost system against the MOCAP gold
standard. In contrast, the main disadvantage of the proposed method is that it requires a
controlled environment and the collaboration of the subject.
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As future work, we plan to extend the size of the dataset, incorporating the study of
a larger number of subjects. In addition, statistical characterization of the dataset could
be of interest depending on the study application. Further studies can be carried out on
biomechanical studies, skeleton reconstruction, sensor fusion techniques, or machine
learning models. New versions of the database will be available in the same public
repository.
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