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Abstract: A novel method of monitoring the health of dairy cows in large-scale dairy farms is
proposed via image-based analysis of cows on rotary-based milking platforms, where deep learning
is used to classify the extent of teat-end hyperkeratosis. The videos can be analyzed to segment the
teats for feature analysis, which can then be used to assess the risk of infections and other diseases.
This analysis can be performed more efficiently by using the key frames of each cow as they pass
through the image frame. Extracting key frames from these videos would greatly simplify this
analysis, but there are several challenges. First, data collection in the farm setting is harsh, resulting in
unpredictable temporal key frame positions; empty, obfuscated, or shifted images of the cow’s teats;
frequently empty stalls due to challenges with herding cows into the parlor; and regular interruptions
and reversals in the direction of the parlor. Second, supervised learning requires expensive and
time-consuming human annotation of key frames, which is impractical in large commercial dairy
farms housing thousands of cows. Unsupervised learning methods rely on large frame differences
and often suffer low performance. In this paper, we propose a novel unsupervised few-shot learning
model which extracts key frames from large (∼21,000 frames) video streams. Using a simple L1
distance metric that combines both image and deep features between each unlabeled frame and a few
(32) labeled key frames, a key frame selection mechanism, and a quality check process, key frames
can be extracted with sufficient accuracy (F score 63.6%) and timeliness (<10 min per 21,000 frames)
for commercial dairy farm setting demands.

Keywords: key frame extraction; dairy cows; unsupervised few shot learning

1. Introduction

Monitoring the dairy cows’ health is critical in ensuring quality milk production.
In the commercial dairy farm setting, monitoring the health of thousands of cows is a
time-consuming and expensive task. During the milking process, cows are moved toward
large parlors for machine milking as shown in Figure 1. These systems consist of a large
and slowly rotating set of stalls, where a cow is guided into a stall, a milking unit is
manually attached to the cow’s teats, machine milking commences via vacuum, and the
milking unit automatically detaches and retracts from the teats. Thereafter, the cow exits
the rotating parlor.

Within a milking session, the opportunity for a veterinarian to assess the health of
the dairy cows’ teats is limited to immediately before or after the milking unit attaches
or detaches from the teats. Mastitis, or bacterial infections of the udders and/or teats,
poses one of the greatest health concerns for dairy cows. The risk of mastitis is increased
with changes in the callosity (hyperkeratosis) of the teat end, and this can be assessed via
manual inspection. While it is possible to assess the extent of hyperkeratosis in a large
proportion of the herd during a milking session, the total time available for the veterinarian
to conduct this assessment is limited due to the finite amount of time that the cow is in the
stall (typically tens of seconds). It is thus impractical to conduct health assessments of the
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entire herd in this manner, and industry standards suggest evaluating 20% (or greater) of
the herd [1].

Figure 1. The milking machine of large dairy farm. Videos are recorded when the parlor is rotating.
The two cameras shown on the left correspond to the video camera (below the rotary parlor).

Recently, we proposed a digital framework for evaluating the extent of hyperkeratosis
by using a digital camera and software [2]. This approach allows remote assessment of
the entire population of cows that enter the parlor. A digital approach also permits the
opportunity for several experts to conduct assessments of hyperkeratosis independently
and mitigate the influence of inter-rater variability. We have also shown that it is feasible to
use deep learning to classify the extent of hyperkeratosis [3]. These innovations permitted
the opportunity to explore whether such health assessments can be conducted remotely
using video-based imaging systems. Later, we proposed a separable confident transductive
learning [4] model to minimize the difference between training and test datasets, and we
improved the hyperkeratosis recognition accuracy from 61.8 to 77.6%.

While a video-based analysis might seem like a simple extension of this work, ana-
lyzing the entire video frame by frame is inefficient since only a small number of frames
contain useful diagnostic information. Many vision-based tasks (classification, segmenta-
tion) can be performed more efficiently using key frames (KFs) instead of the full video,
thus one option is to select KFs from these cow teat videos for analysis. Most existing key
frame extraction (KFE) methods use supervised or unsupervised learning. Supervised
learning requires the manual labeling of KFs from large-scale training data to train a model.
In the dairy farm setting, it is not practical nor economical to manually label all video im-
ages; thus, unsupervised or semi-supervised learning models are preferred. Unsupervised
learning models for detecting KFs rely on significant changes between image frames. The
cognitive goal of our problem is to extract key teat frames from video sequences in which
changes in objects between frames are less obvious. The utilitarian goal is to efficiently and
accurately extract key frames with only a few key frames. Therefore, existing supervised
(require massive labels) and unsupervised (require significant frame changes) methods are
ineffective in our problem.

We propose a modified few-shot learning approach and leverage knowledge from
several (N = 32) support KFs and then identify KFs in unlabeled video image frames
(Figure 2). Figure 3 shows 6 of the 32 KFs used in this study. This paper provides three
specific contributions:

• The CowTeatVideo Benchmark. We provide a new, publicly available dataset con-
sisting of dairy cow teat videos for key frame extraction. This is a published dataset
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of dairy cow teat videos that can be used for the testing and evaluation of different
KFE models.

• Few-shot generalized learning. We run few-shot learning without a base training
dataset and unlabeled query datasets (cow teat videos). The key frames are detected
using the distance between unlabeled query datasets and support key frame images.

• UFSKFE model. We describe a novel unsupervised few-shot learning key frame
extraction (UFSKFE) model for our problem. We combine the L1 distance of raw RGB
images and extracted deep features to form a robust fusion distance. After selecting
key frame candidates, we further propose a quality check process to remove noisy
key frames.

Figure 2. Differences between existing supervised key frame extraction (KFE), supervised KFE,
and our proposed unsupervised few-shot KFE (UFSKFE) model.

Figure 3. Six sample key frames (KFs) in the cow teat video. These KFs should provide a clean,
unambiguous, and high-resolution image of the dairy cow teats for clinical diagnosis, suppress
similar frames, and be diverse enough to reduce redundancy.

2. Related Work

Extracting correct KFs has been a long-standing problem with many applications, such
as managing, storing, transmitting, and retrieving video data. Both traditional and deep
learning-based methods have been explored.

2.1. Traditional Methods

Traditional KFE models can be divided into two categories: unsupervised learning and
supervised learning. Unsupervised KFE often relies on computing the relevance, diversity
and representations using extracted traditional features using optical flow [5,6], SIFT [7,8]
and SURF features [9,10]. The clustering approach is one representative unsupervised KFE
method [11]. Mendi and Bayrak [12] developed a dynamic KFE method through three
steps: color histogram differences, self-similarity modeling and unsupervised k-means
clustering. Priya and Dominic [13] utilized inter-cluster similarity analysis to extract KFs.
Vázquez-Martín and Bandera [14] computed similarity by building an auxiliary graph of
frame features and then applied spectral clustering to extract KFs. Later, Ioannidis et al. [15]
extracted KFs via applying spectral clustering to a composite similarity matrix that was
computed using weighting sum of all similarity matrices of video frames. Supervised KFE
models rely on human annotated data to train a machine learning model and generate KFs
from the test videos. Ghosh et al. [16] and Gygli et al. [17] treated the process of extracting
KFs as a regression scoring problem, where a higher score is selected as a KF. Yao et al. [18]
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proposed a multifeature fusion method (which can capture complicated and changeable
dancer motions) to extract KFs from dance videos.

2.2. Deep Learning Models

Recently, deep learning approaches have attracted interest in KFE. Both supervised
and unsupervised deep learning models have been proposed to boost the performance of
KFE from videos. Supervised deep KFE models usually estimate a frame’s importance via
deep neural networks with the aid of ground truth KFs. Zhang et al. [19] first applied long
short-term memory (LSTM) units to model variable-range temporal dependency among
video frames, and they predicted the frame’s importance via multi-layer perceptron. Later,
Zhao et el. [20] proposed a two-layer LSTM to estimate the key fragments of a video. They
further developed a tensor-train embedding layer in a hierarchical architecture of recurrent
neural networks to model the long temporal dependency among video frames [21]. Based
on [19], Casas and Koblents introduced an attention mechanism to estimate the frame’s
importance and select the video KFs. Fajtl et al. [22] utilized self-attention with a two-layer
fully connected network to predict the frame’s importance score. Li et al. [23] developed
a global diverse attention mechanism based on a pairwise similarity matrix that contains
diverse attention weights. These weights can further transform into frame importance
scores. Jian et al. [24] extracted the KFs of sports videos, considering the neighboring
probability difference of frames, and these probabilities were estimated from a CNN on
extracted region of interest areas. Yuan et al. [25] introduced a global motion model to
extract candidate KFs; spatial–temporal consistency and hierarchical clustering were used
to extract KFs.

There are also several unsupervised deep learning models for KFE. Yuan et al. [26]
introduced a bidirectional LSTM model to automatically extract KFs. Mahasseni et al. [27]
applied the generative adversarial networks (GAN) in KFE. They employed an LSTM as a
frame selector and confused the discriminator (which aims to distinguish original video
and reconstructed video). Yuan et al. [28] utilized bidirectional LSTM as a frame selector to
model the temporal dependency among frames, and KFs were evaluated by two GANs.
Yan et al. [29] proposed an automatic self-supervised learning model to detect KFs in videos.
They proposed to generate pseudo labels for each frame with optical flow and RGB image
features. Li [30] proposed an end-to-end network embedding for unsupervised KFE for
person re-identification. They designed a KFE module by training a CNN with pseudo
labels generated by hierarchical clustering. Recently, Elahi and Yang [31] proposed an
online learnable module for KFE, and the extracted KFs were used for recognizing action
with deep learning-based classification models.

Our goal is to devise an effective strategy to extract KFs that contain a clear, unambigu-
ous, and high-resolution image of the dairy cow teats for clinical diagnosis. Unsupervised
learning models rely on the sharp differences between consecutive frames to determine the
KFs, but this is not the case in our problem. Unsupervised clustering models can lead to
low performance in our situation since KFs are similar to each other and may be easily be
assigned to the same class (see sample KF images in Figure 3).

Few-shot learning aims to accomplish a learning task by using very few training
examples, which typically recognize the different categories of images in the query dataset
given a base training dataset and a support dataset [32–34]. Oreshkin et al. [35] trained
a normal global classifier on the base dataset to form an auxiliary task, which can co-
train the few-shot classifier and create a regularization effect. Gidaris et al. [36] combined
self-supervision with few-shot learning, which can learn rich and transferable visual repre-
sentations with few annotated samples. Hong et al. [37] utilized reinforcement learning for
training an attention agent to generate discriminative representation in few-shot learning.
Wei and Mahmood [38] optimized few-shot learning tasks by generating new samples
using variational autoencoders on face recognition. However, current few-shot models
are mostly supervised and rely on labeled examples. Current attempts of unsupervised
few-shot learning [39,40] are not suitable in our problem. Only a few KFs (support dataset)
and unlabeled cow teat videos are provided for the learning.
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3. Methodology
3.1. Motivation

Given the unique nature of our dataset and problem, we propose to apply few-shot
learning in an unsupervised manner for KFE. We then design a framework that takes the
knowledge from the few support KF images to find its nearby neighbors using both raw
RGB images and pre-trained deep features distances as shown in Figure 4.

Figure 4. The scheme of our proposed unsupervised few-shot key frame extraction (UFSKFE) model.
We first calculate the raw distance draw between each video frame image and few support key frame
(KF) images. Secondly, we employ a pre-trained CNN (ResNet-101) to extract deep features for video
frame images Φ(V) and 32 support key frames (Φ(S)) and then calculate the deep distance ddeep.
Lastly, we perform a quality check (QC) to select KFs for each video with a smaller fusion distance (d).

3.2. Preliminaries
3.2.1. Key Frame Extraction

Given a video V = {vi}nv
i=1, where vi is the i-th frame image and nv is the number of

frames in video V, the goal of video KFE is to fetch the KF numbers Y :

Y = S(V), (1)

where Y = {yj}
ny
j=1 (ny is the number of predicted KFs, and ny << nv) and S is an

automatic KF selection function. In supervised KFE, the KF numbers F = { fi}
n f
i=1 of video

V, or importance of each frame image, are provided, where n f is the number of KFs and
typically n f << nv. We aim to minimize the error between Y and F during the training
and generalize the trained model for new video data. In unsupervised KFE, no KFs are
known (i.e., F = Ø). It aims to predict Y that can best describe the content of a video V.

3.2.2. Few Shot Learning

In supervised few-shot learning, we have a labeled base training dataset Dbase =
(X ,Z) = {xi, zi}

nd
i=1 that contains nd labeled training images from A base classes, i.e.,

zi ∈ {1, 2, · · · , A}. In addition, we are given a support dataset DS of labeled images from
C novel classes, and each class has K examples. The goal of few-shot learning is to train a
model that can accurately recognize the C novel classes in another query dataset DQ. This
learning paradigm is called C-way K-shot learning. In unsupervised few-shot learning,
there are no labels for the base training dataset, i.e., Dbase = X = {xi}

nd
i=1. In our KFE

problem, the base training dataset is also unavailable i.e., Dbase = Ø. We treat the full video
as the query dataset, and it has no labels. In the next section, we discuss how we can
construct tasks in unsupervised KFE with few-shot learning.

3.3. Unsupervised Few-Shot KFE

In traditional unsupervised KFE, poor performance is often the result of no labeled
KFs. In our videos, there are no distinctive changes between frames, like in sports videos.
To improve the learning of these KFs, we start with a few KFs (i.e., a support dataset DS
exists). Since we only have one class (KFs) and K KFs (K images, K = 32 in our case), our
problem can be treated as a one-way 32-shot problem, or a few-shot learning perspective.
However, the aforementioned base training dataset is not provided. Furthermore, the query
dataset is our unlabeled cow teat video (DQ = V). A key question then is how to obtain
key frames from each cow in all unlabeled videos with only a few prior KFs. Inspired by
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few-shot learning, we consider measuring the distance between each video frame image
and support KFs.

3.3.1. Raw Distance Representation

To select KFs from the unlabeled videos, we propose to calculate the distance between
support KF images DS = {sk}K=32

k=1 and each frame image of a video. Frames with the
lowest distances could be potential KFs. First, we calculate a distance based on each raw
frame image and support KF image via the distance matrix Mraw ∈ Rnv×K in Equation (2),
which represents the L1 difference between each raw video frame image and K support KF
raw images. An element in the distance matrix is defined as

Mik
raw = |sk − vi|1, (2)

where | · |1 is the L1 norm of the difference between one support KF image and one video
frame (k ∈ {1, · · · , K} and i ∈ {1, · · · , nv}), |sk − vi|1 ∈ R1×1, and hence, Mraw ∈ Rnv×K.
We then define the raw distance as

draw = min
r

Mraw, (3)

where min
r

returns the minimum number of each row in the matrix Mraw. For each frame

vi, its associated raw distance is di
raw = min{Mik

raw}K
k ∈ R1×1 and denotes the distance to

one of the closest support KF images. Since a video contains many images of a cow—and
many cows—several KFs to compare against an analyzed image are necessary. We aim
to have a diverse set of support key frame KF sk from which at least one image closely
resembles the current frame. For all frames in any video V, we can calculate the raw
distance draw ∈ Rnv×1. Note, however, that the raw distance is computed using original
images and might not capture all of the important features in a key frame. So, we describe
how we extract deep features from both the video frame images and support KF images,
and then calculate a deep feature distance, as described in more detail in the next section.

3.3.2. Deep Distance Representation

There is no deep model for cow teat video classification or segmentation; thus, our
approach is to extract deep features from a pre-trained ImageNet model. Let Φ represent
feature extraction from a pre-trained ImageNet model. Similar to the raw distance matrix
in Equation (2), an element in a deep distance matrix is denoted as

Mik
deep = |Φ(sk)−Φ(vi)|1, (4)

where Φ(·) −→ RD, which represents the feature vector for a given frame image with
dimensionality D (We extract deep features from the layer prior to the last fully connected
layer.), Mik

deep ∈ R1×1, and Mdeep ∈ Rnv×K. The deep distance is then defined as:

ddeep = min
r

Mdeep. (5)

Again, ddeep has the size of nv × 1. This deep distance can represent feature differences
of the current video frame to its closest support KF. Both draw and ddeep can denote the
distance between one video frame and support KFs. Next, we form a robust fusion distance
by considering these two distances for KFE.

3.3.3. Fusion Distance

We combine the raw and deep distances in a new distance function to improve the
performance of KF detection in our problem:

d = αd̂raw + (1− α)d̂deep. (6)
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Since raw distance draw and deep distance ddeep have different magnitudes, we re-
scale them by dividing them by the maximum distance within their respective matrices
i.e., d̂raw = draw/ max(draw) and d̂deep = ddeep/ max(ddeep). The parameter α controls the
weight between re-scale raw distance d̂raw and re-scale deep distance d̂deep. With this new
fusion distance d defined, the next step is to design a KF select function S that correctly
retrieves KFs.

3.3.4. Key Frame Selection Mechanism

One straightforward way of extracting KFs is to return frames that have a distance
score below a threshold. However, establishing an (arbitrary) threshold is prone to errors
and redundancy. Different KFs could have very large distances to the support KFs, resulting
in an incorrect KF. Alternatively, frames which have a distance below the threshold can
belong to the same cow (redundancy). For example (Figure 5), the fusion distance when
analyzing a video suggests four frames (circles) would be selected as KFs. However, each
circle represents one cow, and only one frame is needed for the best view of the key cow
teat frame. To address the redundancy problem, we propose to first sort d in ascending
order, then iteratively take the first small distance frame as the KF, and then remove its
nearby window of potentially ±R redundant frames. This process can be summarized in
Algorithm 1. This key frame selection S allows us to uniquely obtain KFs from each cow in
the video.

Figure 5. Threshold-based KFE. These red circle frames are the selected KFs.

Algorithm 1 Key frame selection mechanism (S)

1: Input: fusion distance d, and redundant frame number R = 500
2: Output: selected key frame numbers YS
3: [dsort, dindex] = ascend-sort(d) // return the sorted distance and its index
4: I = dindex
5: for t = 1 to len(I) do
6: if It ! = −1 then
7: tem = It
8: I[(I < (It + R)) & (I > (It − R))] = −1 // Assign -1 to (±R) of one key frame
9: It = tem

10: end if
11: end for
12: YS = unique(I) // Get unique key frame numbers
13: YS [Y == −1] = [] // Remove −1 from the predicted KFs
14: return YS

3.3.5. Predicted KFs Quality Check

After generating several KF candidates YS with Algorithm 1, we conduct a quality
check (QC) of the predicted KFs. The most common issue for an incorrect KF candidate is
when the milking unit is still attached to the dairy cow, or it obstructs visualization of the
dairy cow teats (as shown in Figure 6a). To enforce selected KFs with a clear view of the
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teat area, we calculate the structural similarity index (SSIM) [41] score between support
KF approximate teat area and selected KFs area (The position and size of teat areas is x
coordinate = 130, y coordinate = 80, width = 170, height = 190, and remains constant since
the camera is in a fixed position.). If the SSIM score between the most similar support KF
and the selected KF is smaller than the threshold (O = 0.45), the selected KF is excluded.
This threshold is determined empirically. Let L be the number of selected KFs candidates
YS and Y l

S be its l-th KF number. We then can calculate SSIM between each selected KF and
each support KFs in the teat position to form a similarity matrix H ∈ RL×K. An element in
H is defined as

Hlk = SSIM(sp
k , vp
Y l
S
), (7)

where p represents the sub-region of the image of greatest clinical relevance, and vY l
S

is the
selected KF image. Finally, we determine the KFs numbers with the following equation,

Y = Y
(max

r
H)≥O

S , (8)

where max
r

returns the maximum number of each row of the similarity matrix H. The su-

perscript (max
r

H) ≥ O selects the frame number when the highest SSIM score is greater

than the threshold O.

(a) Detected key frame (b) The closest support key frame

Figure 6. Quality check between detected key frame (a), which shows the milking apparatus still
attached to the dairy cow, and its closest support frame (b). SSIM are computed over a fixed region
of interest within the frame (red and green rectangles). Key frame (a) does not pass the quality check
since its SSIM score is lower than the predetermined threshold.

Figure 6a displays a candidate KF image from S but the milking unit is still attached
to the dairy cow teats. To mitigate this issue, we calculate the SSIM between the the current
KF and support KFs within the sub-region using Equation (7), and the highest SSIM scores
among all K frames to obtain its most similar support KF (Figure 6b). The SSIM score is
0.41, which is lower than the threshold O = 0.45. Using this method, we are able to exclude
the detected KF in Figure 6a.

3.4. Ufskfe Model

Figure 4 depicts the overall framework of our proposed UFSKFE model. Combining
all steps in Section 3.3, our UFSKFE model is denoted by the function:

Y = QC(S(d)), (9)

where QC is the quality check, S is the section mechanism in Algorithm 1, and d is the
fusion distance. The overall learning algorithm is shown in Algorithm 2.
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Algorithm 2 Unsupervised few-shot key frame extraction

1: Input: Cow teat video V, K = 32 support KFs, weight balance factor α, redundant
frame number R and similarity threshold O

2: Output: predicted KFs Y
3: for i = 1 to nv do
4: for k = 1 to K do
5: Compute Mik

raw and Mik
deep according to Equations (2) and (4)

6: end for
7: end for
8: Calculate draw and ddeep according to Equations (3) and (5) and form d using Equation (6)

9: Select KFs candidates using Algorithm 1
10: for l = 1 to len(YS ) do
11: for k = 1 to K do
12: Compute similarity matrix H according to Equation (7)
13: end for
14: end for
15: Return predicted key frame numbers YS using Equations (8)

4. Experiments
4.1. Datasets
4.1.1. Data Collection

Approximately eight hours of video footage of dairy cow teats on a commercial dairy
farm were obtained using a GoPro 10 camera mounted on a tripod with two adjustable LED
lights directed towards the teats. The farm houses approximately 1600 Holstein cows which
are milked daily on a 60-stall rotary parlor. The 1691 Holstein dairy cows were housed in
free-stall pens and milked three times per day in a 60-stall rotary parlor. Cows were in
the first (697, 41.2%), second (446, 26.4%), and third or greater lactation (548, 32.4%) and
between 1 and 738 days in milk (mean and standard deviation, 185 (113)). All procedures
were reviewed and approved by the Cornell University Institutional Animal Care and
Use Committee (protocol no. 2013-0064). Videos were sampled at 1080× 1920 × 3 pixels,
59.94 frames per second and saved in MP4 format. The camera was set to use default
settings, and external lighting was used. The images were acquired immediately after
removal of the milking cluster.

The rotational speed of the milking rotary parlor was 8.5 s/stall, leading to a rotation
time of 510 s (i.e., 8.5 min). This resulted in a theoretical throughput of 423 cows per
hour. The average milking duration to milk the 1600 cows was approximately five hours.
The speed of rotation of the milking parlor platform does not affect the accuracy of the
camera measurements, provided that the video feed is sampled at a sufficiently high enough
rate. Our data were sampled with a minimum of 60 frames per second. Four milking
technicians operated the milking parlor and were assigned to four different positions,
including the following tasks: Position 1, manual forestripping of teats and application of
pre-milking teat disinfection; position 2, cleaning and drying of teats with a clean cloth
towel; position 3, attachment and alignment of the milking unit; and position 4, application
of post-milking teat disinfectant with a dip-applicator cup. Post-milking teat disinfectant
was applied by an automatic teat spray robot. Cows were led to the holding area by one
farm technician.

Plastic covers protected the tripod and lights and were mounted around the camera
to minimize the contamination of feces and other contaminants. The camera feed was
displayed continuously and regularly checked to ensure that the lens was not obfuscated
from such contaminants, and the camera lens itself was regularly inspected and cleaned
throughout the data collection.
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4.1.2. Data Analysis

Table 1 shows the statistics of the cow teat videos analyzed in this study. There are
only few KFs in each cow teat video, which leads to the difficulty of KFE. Note that cows
do not always occupy all the stalls in the rotating parlor, which explains why fewer key
frames are detected in videos 1–10. Note also the videos are relatively large in file size
(2.47 gigabytes on average), with 21,191 frames in each video. Here, the number of KFs are
checked with an expert for evaluation purposes. There are usually 500 frame differences
between two successive KFs unless the parlor rotation is interrupted, the parlor stall is
empty, or the milking system obfuscates the teats: for these reasons, the redundant frame
number R is set to 500. The computation time should be as short as reasonably possible, as
it may result in delays in assessing a cow’s teat health. We expect the computation time of
any KFE algorithm to be less than an hour per video, which is reasonable in a commercial
dairy farm setting.

Table 1. Statistics of cow teat videos (M: megabyte, G: gigabyte).

# Video Name # Frames # Key Frames Memory Size

1 GH060066 3192 6 382 M
2 GH010063 3985 7 478 M
3 GH010067 3474 3 416 M
4 GH020070 4759 7 570 M
5 GH010069 5395 7 647 M
6 GH010068 7043 10 844 M
7 GH010065 16,881 27 1.97 G
8 GH020071 24,399 30 2.85 G
9 GH030072 25,567 27 2.99 G
10 GH040066 31,860 33 3.72 G
11 GH010071 31,860 42 3.72 G
12 GH030066 31,860 44 3.72 G
13 GH010070 31,860 47 3.72 G
14 GH020072 31,860 47 3.72 G
15 GH010066 31,860 43 3.72 G
16 GH020066 31,860 48 3.72 G
17 GH010072 31,860 48 3.72 G
18 GH050066 31,860 43 3.72 G

Ave - 21,191 29 2.47 G

4.2. Evaluation Metric

We use the F score to evaluate the performance of KFE models [27,29]. The F score
uses recall (Re) and precision (Pr) to measure how much the KFs overlap in Equation (10).
The higher these metrics, the better the model is.

Re =
Ncorr

n f
, Pr =

Ncorr

len(Y) , F =
2Re× Pr
Re + Pr

, (10)

where n f is the number of ground truth KFs (third column in Table 1), len(Y) is the length
of the predicted KFs, and Ncorr is the number of correctly detected KFs. The closer the
F score is to 1 (or 100% in Table 2), the better the model. Since several nearby frames of
annotated KFs are similar to each other, they also contain a clear view of the teat area.
Therefore, we treat the annotated KF number within ±20 frames (or approximately 0.3 s)
as the correct prediction (e.g., a predicted KF number of 120 is correct if the annotated KF
number is 100). This value will vary based on the video frame rate and rotation rate of
the parlor.



Data 2022, 7, 68 11 of 21

Table 2. F score (%) and computation time (s) of cow teat video key frame extraction (QC is conducted,
NAST: NASNetLarge).

Videos
dSURF dBinary dSobel HSSIM dcrop

raw draw dAlexNet
deep dN AST

deep dResNet−101
deep UFSKFE

F Time F Time F Time F Time F Time F Time F Time F Time F Time F Time

GH060066 54.5 109.5 72.7 66.9 40.0 27.6 72.7 3435.2 20.0 84.9 72.7 41.1 72.7 14.4 60.0 57.7 90.9 20.8 90.9 65.3
GH010063 57.1 118.6 57.1 81.0 42.9 40.2 14.3 1038.1 0.0 105.8 57.1 51.0 30.8 19.0 42.9 94.0 28.6 20.4 61.5 84.5
GH010067 22.2 102.6 44.4 71.8 85.7 42.3 66.7 902.5 0.0 92.2 44.4 44.2 22.2 18.0 44.4 73.1 60.0 17.7 50.0 71.3
GH020070 26.7 142.4 62.5 100.1 30.8 57.8 25.0 1241.6 37.5 127.5 50.0 61.1 12.5 21.6 0.0 99.9 37.5 23.0 61.5 97.5
GH010069 23.5 160.7 70.6 110.1 53.3 65.9 23.5 1408.2 23.5 148.6 58.8 69.3 47.1 23.9 0.0 122.4 58.8 26.5 66.7 110.4
GH010068 34.8 228.8 45.5 144.0 20.0 84.2 43.5 1830.9 9.1 188.4 69.6 90.1 52.2 32.3 34.8 158.2 69.6 34.2 80.0 145.8
GH010065 28.6 639.1 45.6 346.1 46.2 219.8 10.7 4395.2 15.4 453.2 40.7 218.9 17.5 84.2 35.1 354.4 42.1 86.7 50.0 359.7
GH020071 34.4 1161.7 58.3 507.3 39.4 364.7 43.2 6442.8 2.9 651.8 57.5 348.5 19.2 145.3 33.3 554.0 43.8 188.0 65.6 544.2
GH030072 30.8 1183.4 43.8 562.7 34.0 219.1 38.9 6756.0 3.1 653.4 39.4 375.4 25.0 181.3 16.7 593.7 44.8 181.5 55.6 581.9
GH040066 69.7 1151.0 68.9 695.6 70.5 308.8 67.4 8395.9 30.6 590.2 71.1 478.9 69.7 280.3 71.9 810.6 74.2 268.7 75.9 780.6
GH010071 34.0 1170.4 58.6 697.3 42.7 303.9 34.3 8710.8 19.6 584.5 56.8 475.5 30.9 299.4 30.6 807.6 53.1 272.9 61.9 792.4
GH030066 18.8 1145.3 51.5 671.8 38.8 312.2 48.0 8794.7 23.9 579.5 53.5 462.8 43.1 282.0 37.6 777.9 49.0 289.0 52.1 784.3
GH010070 35.6 1169.2 55.2 682.8 29.5 305.0 36.2 8733.1 18.6 581.4 50.5 476.5 23.3 311.8 45.7 799.3 34.3 277.9 54.5 783.0
GH020072 27.7 1176.1 53.3 666.0 37.8 338.7 25.5 9812.4 23.2 588.6 53.8 475.9 23.1 408.7 29.7 818.0 46.2 281.8 51.6 767.8
GH010066 19.1 631.6 56.9 667.1 44.2 345.5 43.3 9709.1 30.9 598.1 52.5 486.0 36.0 327.3 43.6 799.4 48.5 281.9 70.2 808.5
GH020066 21.4 671.6 50.5 667.4 53.3 333.7 39.3 11023.7 38.0 589.5 58.5 487.3 34.3 300.4 35.5 804.0 58.5 285.2 55.8 792.3
GH010072 18.4 710.2 50.9 673.6 40.9 329.4 26.7 10083.3 22.0 587.9 52.8 474.0 17.1 293.5 36.2 780.3 37.4 286.7 66.0 786.0
GH050066 24.7 661.0 47.5 681.8 44.4 327.7 58.6 8243.1 34.4 588.1 57.1 478.5 47.5 277.6 25.7 785.5 59.6 286.1 74.2 804.3

Ave 32.3 685.2 55.3 449.6 44.1 223.7 39.9 6164.3 19.6 433.0 55.4 310.8 34.7 184.5 34.7 516.1 52.1 173.8 63.6 508.9

4.3. Implementation Details

In our UFSKFE model, we utilize ResNet-101 [42] as the pre-trained model to ex-
tract deep features from the layer prior to the last fully connected layer. We conducted
experiments with 12 different ImageNet models in order to justify selecting ResNet-101
for feature extraction. The performance of different ImageNet models can be found in
Appendix A. Frame image features are extracted with an NVIDIA RTX A6000 GPU with
48 Gigabyte. The three hyperparameters are set at α = 0.4, R = 500 and O = 0.45. We also
conduct a parameter analysis in Section 4.6. Since there are no KFE models to adopt in
our problem, we compare several existing models with different frame image extraction
methods. In Section 3.3.2, Φ refers to the feature extractor from an ImageNet model. We
can also extract other features, such as SURF features [9,10], binary image features [43]
and Sobel edge detection image features [44]. We then can calculate dSURF, dBinary and
dSobel . We replace the fusion distance d with these other distances in Algorithm 1 to predict
KFs. The details of feature extraction can be found in Appendix A.1. Results in Table 2 are
reported with the additional quality check.

4.4. Results

Table 2 shows the performance of all 18 cow teat videos. Compared with all other
baselines, our UFSKFE model achieves the highest average F score over all videos. Note
that while dcrop

raw has the lowest F score, it only calculates the distance between each video
frame to the support KF images in the small teat area, and ignores other important areas,
e.g., the cow leg area. We find that the performance of extracted AlexNet [45] features and
NASNetLarge [46] features are similar and lower than ResNet-101 [42] features. One reason
for this is that AlexNet is not a high-performance ImageNet model. Its extracted features
might focus on shallow features. In comparison, the performance of the NASNetLarge
model is high, suggesting extracted features might lead to ImageNet image features. The F
score of the SURF features is lower than those of the AlexNet and NASNetLarge features,
likely because the SURF features can only detect a few important points while ignoring
background features. draw achieves the second-best results, which demonstrates that the
raw images also contain important features that deep neural networks are not captured.
The performance when using binarized images of the videos is similar to the performance of
draw since it contains similar important features to the raw frame images. They both perform
better than the Sobel edge detection images likely because edge features are predominantly
analyzed. In terms of computation time, deep feature extraction with ResNet-101 is faster
than with all other models. Although our UFSKFE model takes longer, it combines the
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feature extraction time of ResNet-101 and raw images. The total average time to extract
KFs is less than nine minutes and is faster than extracting SURF, NASNetLarge features,
and HSSIM (details are shown in Appendix A.2). The SSIM similarity selection is not an
efficient method, with computation times of more than 1.7 h per video. These extensive
results demonstrate that our proposed UFSKFE model can quickly and accurately extract
KFs.

Figure 7 shows KFs detection using our model from the GH060066 video using fusion
distance d. There are five true KFs (green dots), while our model detected six points as the
KFs (red dots). Although there are differences between green and red dots, those differences
are within ±20 frames, and are considered correct predictions. Figure 8 compares detected
KF images with the ground truth. In our UFSKFE model, only one wrong prediction (frame
2611) is detected. This is likely due to the milking apparatus still being attached to the
dairy cow’s teats with the low field of view. The quality check process does not remove this
detected KF (similarity score 0.62 exceeds threshold O). The other two methods dSURF and
dBinary also incorrectly identify this cow’s images as a key frame. Compared with predicted
KF images of other models, UFSKFE has a higher F score, and these frames are closer to the
ground truth KF images than other models.

Figure 7. Extracted key frame numbers with our UFSKFE model of GH060066 cow teat video. d is the
fusion distance to the supported KFs. Red dots are the detected KFs, while green dots are true KFs.

Figure 8. Different key frame comparisons of GH060066 video. The Xmeans a correct prediction,
while 5 means a wrong prediction. The number below each image is the video frame. The F score is
also reported in each method. UFSKFE achieves the highest F score.
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4.5. Ablation Study

To demonstrate the effectiveness of different components on the final F score, we
conduct an ablation study for each component of our proposed UFSKFE model (Table 3)
with four randomly selected videos (GH060066, GH030072, GH010066, and GH050066).
Realizing that the KF selection function S is required, we conduct the ablation study with
draw, ddeep, and QC. draw selects the KFs using raw distance with S , ddeep selects the KFs
using deep distance with S , and draw + QC conducts a quality check after selecting the KFs
of the raw distance. We find that the F score for fusion distance d is higher than when using
draw or ddeep. The quality check process is also effective in improving the F score. Therefore,
all our proposed components demonstrate effectiveness and importance in this KFE.

Table 3. F score (%) of ablation study.

Videos GH060066 GH030072 GH010066 GH050066 Ave

draw 72.7 38.4 52.0 56.0 54.8
ddeep 72.7 40.5 47.5 54.9 53.9

draw + QC 72.7 39.4 52.5 57.1 55.4
ddeep + QC 90.9 44.8 48.5 59.6 61.0

d 90.9 45.3 64.7 64.7 66.4

UFSKFE 90.9 55.6 70.2 74.2 72.7

4.6. Parameter Analysis

There are three hyperparameters in our model: weight balance factor α, redundant
frame number R and similarity threshold O. To determine the best parameters, we report F
score of randomly select three videos when these hyperparameters are varied. α is selected
from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.1}, R ∈ {300, 350, 400, 450, 500, 550, 600, 650, 700,
750, 800} and O ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6}. We vary each parame-
ter independently, while keep others fixed. From Figure 9a,c, we find that when α = 0.4,
R = 500 and O = 0.45, the F score is maximized.

(a) Effects of α on F score (b) Effects of R on F score (c) Effects of O F score

Figure 9. Parameter analysis for α, R, and O on F score. When α = 0.4, R = 500 and O = 0.45,
the average F score achieves the maximum number.

5. Discussion of Results and Limitations of UFSKFE Model

Our UFSKFE achieves the highest average F score when compared with other meth-
ods. There are three possible reasons why this model performs well. First, the proposed
unsupervised few-shot learning paradigm leverages knowledge from a few support KFs
to all of the video frames. Second, our proposed fusion distance takes advantage of both
raw and deep distances from support frames that represent a diverse range of possible key
frames. Third, the quality check process acts as an effective method for removing noisy KF
candidates, resulting in a substantially improved overall performance.

A limitation of our proposed UFSKFE model is that it cannot remove some of the KFs,
primarily those images where the milking apparatus remains attached to the dairy cows.
Although our quality check can remove some of these images (Figure 6a) the removal of
such images becomes more challenging when the cameras’ field of view does not adequately
image the cows’ teats. This can be circumvented with re-positioning the camera in the
portrait as opposed to landscape mode when collecting the videos. In addition, we only
extract one key frame per cow. A clear view of each teat in the same cow can come from
different frames. Therefore, we can consider extracting key frames for each teat. Exploring
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other methods for extracting features from video frames from few-shot learning may
also be of value in our efforts to improve performance. Furthermore, our process can be
performed in real time if we can directly store the recorded video on the cloud console.
Future work focuses on the use of other machine learning approaches to assess the extent
of hyperkeratosis and the risk of mastitis.

The performance of our key-frame extraction methodology may also be influenced by
farm- and cow-related factors. With regards to the farm itself, the lighting conditions and
cleanliness of the farm, stall, and parlors could affect the performance. The rotary parlor is
housed inside a large complex which mitigates the effects of weather, lighting, and other
environmental factors that could affect the quality of the video data. Variations from best
milking practices could similarly affect performance, such as inconsistent cleaning of the
teat ends. Key-frames with the milking unit still attached to the cow will depend on the
settings of the milking system (vacuum pressure and detachment), parlor rotational speed,
and location of the camera. Finally, the performance of the key-frame extraction method
will depend on the size of the dataset. Our model was developed using only 32 labeled key
frames. While additional labeled data could improve overall performance, our findings
suggest that in the commercial dairy farm setting where such rotating parlors are used, key
frames from only a very small fraction of the herd are necessary if using our automated
key-frame extraction technique.

6. Conclusions

In this paper, we propose a novel unsupervised few-shot learning key frame extraction
model for cow teat videos. We combine the raw and deep distances between each video
frame and support key frame images and form a fusion distance to better denote the
differences between each video frame and support key frame images. An efficient key frame
selection mechanism is proposed to first determine the key frame candidates, followed by
a quality check procedure to refine the predicted key frames. Extensive experiment results
demonstrate that the proposed UFSKFE model can accurately and efficiently extract the
key cow teat frames. Our approach provides an opportunity to reduce the redundancy of
processing large videos. The extracted key teat-end frames can be collected to monitor the
health status of dairy cows.
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Appendix A

Appendix A.1

To calculate deep distance, we need to extract deep features for video frames from pre-
trained ImageNet models. To select the best ImageNet model for feature extraction of our
cow teat videos, we conducted extensive experiments with 12 frequently used ImageNet
models. We use the layer prior to the last fully connected layer to extract deep features.
These 12 ImageNet models are AlexNet [45], VGG16 [47], VGG19 [47], GoogLeNet [48],

https://github.com/YoushanZhang/UFSKFE
https://github.com/YoushanZhang/UFSKFE
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DenseNet-201 [49], ResNet-18 [42], ResNet-50 [42] , ResNet-101 [42] , Inception-V3 [50],
Xception [51], InceptionResNet-V2 [52], NASNetLarge [46].

We also utilize t-SNE [53] to visualize extracted deep features in 2D space as shown
in Figure A1, but it is still difficult to select the best pre-trained ImageNet model. We
thus plot the projected loss from a high dimension space to the 2D space of the t-SNE
model in Figure A2. We observe that ResNet-101 has the smallest projection loss among
the 12 models, which suggests that ResNet-101 is a suitable ImageNet model for extracting
deep features. However, we still do not know whether the performance of ResNet-101
features of our key frame extraction problem is better than other deep features. We thus
report the performance of all 12 models in Table 2. We first calculate these deep distances
and use key frame selection S to select the key frame candidates, then the quality check is
performed to remove noisy key frames. We can find that the deep ReseNet-101 distance
indeed achieves a higher F score than other models.

Figure A1. T-SNE visualization of extracted features of 12 ImageNet models from GH060066 video.
Blue represents video frames, while green dots are the key frame image position.

Figure A2. T-SNE projection loss of different ImageNet models. Y-axis denotes the projected loss
from high dimension space to the 2D space.

Appendix A.2. Other Baseline Features

Here, we provide the details of extracting features from other baselines. As shown
in Figure A3, we show SURF detected points, binary image, and edge detection using the
Sobel algorithm. In Figure A3b, we only show 10 of the strongest SURF points, while a
total of 500 points are extracted from each video frame and supported key frame images,
and there are 64 features for each point. We could extract 500× 64 = 3200 SURF features
for each image. The SURF distance is defined as follows:

dSURF = min
r

MSURF, Mik
SURF = |φ(sk)− φ(vi)|1, (A1)
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where φ refers to the SURF feature extractor and φ(·) ∈ R1×3,200. In Figure A3c, we calculate
the distance between the binary image of each video frame and support key frame images.
The binary distance is defined as follows:

dBinary = min
r

Mbinary, Mik
binary = |B(sk)− B(vi)|1, (A2)

where B refers to obtaining the binary image. In Figure A3d, we calculate the distance
between edge detection images using the Sobel algorithm of each video frame and support
key frame images. The Sobel distance is defined as follows:

dSobel = min
r

MSobel , Mik
Sobel = |E(sk)− E(vi)|1, (A3)

where E refers to obtaining an edge detection image using the Sobel algorithm. After ob-
taining SURF distance dSURF, binary distance dBinary and Sobel distance dSobel , we use the
key frame selection S (the fusion distance d will be replaced with these three distances,
respectively) and perform the quality check process to obtain the final extracted key frames.

(a) Raw image (b) SURF points (c) Binary image (d) Sobel edge

Figure A3. Raw image, SURF 10 strongest points, binary image edge detection with Sobel algorithm
image comparison.

We utilize visualize extracted SURF features (Figure A4) using t-SNE. These frame
features (blue dots) are indistinguishable from the non-key frames, as shown in blue in
Figure A1. SURF features also have a higher project loss (1.819) than other ImageNet
models. This implies that the performance of SURF features might be lower than different
ImageNet models. The average F score of SURF is 32.3 (in Table 1 of the main paper), which
is lower than most ImageNet models.

Figure A4. T-SNE visualization of extracted SURF features.

In Table 1 of the main paper, we also present the result of HSSIM, using the SSIM
similarity matrix to determine key frames. Specifically, we calculate the SSIM score of the
crop teat area of each video frame image and support video key frame image, and then
select the highest score to detect the key frames and then perform the quality check process.
The SSIM similarity matrix is defined as follows:

HSSIM = max
r

hSSIM, hik
SSIM = SSIM(sp

k , vp
i ), (A4)
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where p represents the teat position area, and max
r

returns the maximum number of each

row of the similarity matrix hSSIM ∈ Rnv×K. Hence, HSSIM ∈ Rnv×1. We then have a
partial new key frame selection function S ′ to determine the key frame candidates as in
Algorithm A1. There are two changes, the first is that the input is not the fusion distance d,
but the SSIM similarity matrix HSSIM. Secondly, we sort HSSIM in a descending order since
a more similar teat area is more likely to be a key frame. Figure A5 shows the process of
detecting key frames using new key frame selection function (S ′) on GH060066 video with
similarity matrix HSSIM.

Algorithm A1 Key frame selection mechanism (S ′)
1: Input: SSIM similarity matrix HSSIM, and redundant frame number R = 500
2: Output: selected key frame numbers YS
3: [Hsort, Hindex] = descend-sort(HSSIM) // return the sorted distance and its index
4: I = Hindex
5: for t = 1 to len(I) do
6: if It ! = −1 then
7: tem = It
8: I[(I < (It + R)) & (I > (It − R))] = −1 // Assign -1 to (±R) of one key frame
9: It = tem

10: end if
11: end for
12: YS = unique(I)
13: YS [Y == −1] = [] // Remove −1 from the predicted key frames
14: return YS

Figure A5. Key frame extraction with HSSIM model of GH060066 cow teat video. HSSIM is similarity
matrix. Red dots are the detected key frames, while green dots are the ground truth key frames.
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Table A1. F score (%) and computation time (s) of 12 different ImageNet models (IR: InceptionResNet-
V2, NAST: NASNetLarge).

Videos
dAlexNet

deep dVGG16
deep dVGG19

deep dGoogLeNet
deep dDenseNet−201

deep dResNet−18
deep

F Time F Time F Time F Time F Time F Time

GH060066 72.7 14.4 72.7 25.9 36.4 28.4 18.2 11.8 36.4 42.8 54.5 21.3
GH010063 30.8 19.0 14.3 30.5 28.6 31.0 28.6 15.7 15.4 52.4 14.3 15.6
GH010067 22.2 18.0 60.0 27.0 20.0 27.6 66.7 14.1 22.2 46.3 60.0 14.2
GH020070 12.5 21.6 37.5 35.6 37.5 36.5 12.5 17.8 37.5 62.1 37.5 18.0
GH010069 47.1 23.9 58.8 40.4 47.1 40.7 58.8 19.9 47.1 70.6 35.3 19.8
GH010068 52.2 32.3 27.3 56.9 43.5 61.8 43.5 28.6 52.2 101.9 43.5 25.0
GH010065 17.5 84.2 38.6 137.8 45.6 134.3 25.0 67.3 17.5 233.5 38.6 65.3
GH020071 19.2 145.3 33.3 228.1 40.5 229.4 31.0 132.3 33.3 424.3 38.4 152.3
GH030072 25.0 181.3 8.2 228.0 32.9 242.0 22.9 142.0 25.0 428.4 35.1 157.3
GH040066 69.7 280.3 74.2 333.6 71.1 359.4 70.5 255.0 71.9 526.4 75.0 248.7
GH010071 30.9 299.4 34.7 338.3 47.4 341.9 29.2 253.2 20.6 509.7 42.4 249.2
GH030066 43.1 282.0 33.7 322.4 39.6 343.0 33.7 242.1 26.0 505.8 51.5 249.2
GH010070 23.3 311.8 36.2 331.1 45.7 348.8 19.6 229.3 40.4 516.8 45.7 248.6
GH020072 23.1 408.7 27.2 365.4 32.4 334.9 13.6 243.3 37.3 518.6 42.3 252.1
GH010066 36.0 327.3 41.6 325.4 45.1 338.0 33.3 247.8 31.7 495.6 45.1 252.0
GH020066 34.3 300.4 44.9 326.1 45.3 329.8 41.9 292.2 39.3 510.0 41.5 252.1
GH010072 17.1 293.5 31.8 327.3 44.9 335.6 15.1 293.2 27.2 511.3 44.9 241.7
GH050066 47.5 277.6 54.9 330.8 54.9 347.1 21.8 264.9 25.7 511.9 47.1 250.2

Ave 34.7 184.5 40.6 211.7 42.1 217.2 32.6 153.9 33.7 337.1 44.0 151.8

Videos
dAlexNet

deep dVGG16
deep dVGG19

deep dGoogLeNet
deep dDenseNet−201

deep dResNet−18
deep

F Time F Time F Time F Time F Time F Time

GH060066 54.5 14.3 90.9 20.8 72.7 22.5 18.2 29.5 36.4 30.9 60.0 57.7
GH010063 14.3 18.0 28.6 20.4 14.3 28.0 14.3 37.7 0.0 36.3 42.9 94.0
GH010067 60.0 16.0 60.0 17.7 60.0 24.7 60.0 33.2 22.2 33.2 44.4 73.1
GH020070 50.0 20.9 37.5 23.0 40.0 33.2 13.3 44.4 40.0 43.9 0.0 99.9
GH010069 47.1 22.8 58.8 26.5 12.5 39.5 35.3 50.2 37.5 49.2 0.0 122.4
GH010068 52.2 40.3 69.6 34.2 60.9 53.7 17.4 66.4 17.4 65.3 34.8 158.2
GH010065 45.6 80.9 42.1 86.7 38.6 121.2 28.1 161.0 18.2 159.5 35.1 354.4
GH020071 32.9 140.4 43.8 188.0 28.2 218.0 28.6 250.4 14.1 268.5 33.3 554.0
GH030072 32.0 155.9 44.8 181.5 22.5 239.2 16.7 287.8 16.9 278.2 16.7 593.7
GH040066 75.0 266.7 74.2 268.7 68.9 343.4 68.2 424.3 71.9 418.9 71.9 810.6
GH010071 50.5 269.1 53.1 272.9 35.4 369.2 16.5 440.5 20.8 402.8 30.6 807.6
GH030066 39.6 300.3 49.0 289.0 30.6 342.7 31.7 435.8 28.3 423.5 37.6 777.9
GH010070 39.6 275.0 34.3 277.9 32.4 338.3 40.0 434.7 21.2 427.0 45.7 799.3
GH020072 45.7 287.1 46.2 281.8 15.8 326.8 31.1 420.8 14.0 425.6 29.7 818.0
GH010066 52.9 259.9 48.5 281.9 32.3 361.1 38.4 439.0 14.1 399.1 43.6 799.4
GH020066 50.5 248.3 58.5 285.2 39.6 360.4 39.3 421.7 19.4 422.8 35.5 804.0
GH010072 44.9 272.7 37.4 286.7 36.9 344.3 21.2 423.2 29.1 448.8 36.2 780.3
GH050066 47.1 269.2 59.6 286.1 33.3 332.2 36.4 423.0 22.4 437.2 25.7 785.5

Ave 46.4 164.3 52.1 173.8 37.5 216.6 30.8 268.0 24.7 265.0 34.7 516.1

Appendix A.3. Other Ablation Study

In this section, we show small variants of our UFSKFE model. As shown in Table A2,
dResNet−101−p

deep refers to calculating the deep distance using the crop teat area position. L2
norm means balancing the scale of raw distance and deep distance using L2 norm. In the
main paper, we use d̂raw = draw/ max(draw) and d̂deep = ddeep/ max(ddeep) to balance the
scale between them. Here, we instead use the L2 norm, i.e., d̂raw = draw/||draw||2 and
d̂deep = ddeep/||ddeep||2. The raw L2 distance means that we calculate the L2 distance in
Equation (2) of the main paper. It can be denoted as Mik

raw = ||sk − vi||2.
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Table A2. Ablation study of different variants of UFSKFE.

Video Name dResNet−101−p
deep

Feature L2 Norm Raw L2 Distance

GH060066 54.5 90.9 54.5
GH010063 14.3 57.1 57.1
GH010067 60.0 44.4 44.4
GH020070 37.5 50.0 75.0
GH010069 11.8 58.8 58.8
GH010068 26.1 69.6 69.6
GH010065 39.3 52.6 37.0
GH020071 30.6 54.1 60.3
GH030072 19.7 46.6 36.6
GH040066 73.3 73.3 68.9
GH010071 24.5 57.7 52.1
GH030066 38.0 49.0 56.9
GH010070 17.6 52.9 48.5
GH020072 25.0 48.5 53.8
GH010066 21.6 62.0 56.0
GH020066 24.5 56.6 56.6
GH010072 11.5 57.9 50.9
GH050066 35.6 64.7 57.1

Ave 31.4 58.2 55.2

From Table A2, we find that the performance of dResNet−101−p
deep (31.4) is much lower

than that of dResNet−101
deep (52.1). The reason is that the small teat area tends to ignore other

important background features. The performance of L2 norm (58.15) is also lower than
the simple L1 norm (63.6 in Table 2). In addition, the F score of raw L2 distance (55.2) is
slightly lower than the performance of the L1 distance 55.4 (Table 2). We can conclude that
all proposed strategy in our UFSKFE model is effective in improving the accuracy of key
frame extraction in cow teat videos.

Appendix A.4. Cow Teat Process Video

We attached a UFSKFE_GH060066.mp4 demo video, which demonstrates the process
of our UFSKFE detecting key frames in the GH060066 video. We first plot the fusion
distance and then show the extracted six key frames. The video frame is accelerated,
skipping every 10 frames in the demo, which leads to the oscillation of the demo video.
The fusion distance of all frames is also plotted. The actual computation time of our model
for GH060066 video is 65.3 s.
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