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Abstract: Generally, a courier company needs to employ a fleet of vehicles to travel through a number
of locations in order to provide efficient parcel delivery services. The route planning of these vehicles
can be formulated as a vehicle routing problem (VRP). Most existing VRP algorithms assume that
the traveling durations between locations are time invariant; thus, they normally use only a set
of estimated travel times (ETTs) to plan the vehicles’ routes; however, this is not realistic because
the traffic pattern in a city varies over time. One solution to tackle the problem is to use different
sets of ETTs for route planning in different time periods, and these data are collectively called the
time-dependent estimated travel times (TD-ETTs). This paper focuses on a low-cost and robust
solution to effectively scrape, process, clean, and analyze the TD-ETT data from free web-mapping
services in order to gain the knowledge of the traffic pattern in a city in different time periods. To
achieve the abovementioned goal, our proposed framework contains four phases, namely, (i) Full
Data Scraping, (ii) Data Pre-Processing and Analysis, (iii) Fast Data Scraping, and (iv) Data Patching
and Maintenance. In our experiment, we used the above framework to obtain the TD-ETT data
across 68 locations in Penang, Malaysia, for six months. We then fed the data to a VRP algorithm
for evaluation. We found that the performance of our low-cost approach is comparable with that of
using the expensive paid data.

Keywords: time-dependent route planning; estimated travel time; data scraping; data preprocessing;
data analysis

1. Introduction

The number of vehicles travelling on the roads in a city varies over time, and the
resulting traffic pattern is actually an important factor that logistics companies, such as
those providing courier services, need to consider when planning routes for their vehicles.
Generally, a courier company owns multiple outlets in a city for senders to submit their
parcels. Then, the vehicles of the company have to travel to all the outlets to collect these
parcels, send them for sorting, and deliver them to the respective recipients. The travelling
routes of the vehicles between the outlets and the sorting center can be formulated as a
Vehicle Routing Problem (VRP).

In order to improve the efficiency of parcel collection and delivery services, the courier
company needs accurate traffic data in order to plan the routes of the vehicles; however,
most of the existing algorithms solve the VRP by assuming that the travelling durations
between locations are time invariant, and thus, they normally use only a set of travel input
data to plan the vehicles’ routes all of the time. This may not be realistic because the traffic
pattern in a city is variable depending on the period of the day, and this causes the travelling
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duration between two specific locations to change from time to time. In other words, the
travel time from a location to another location is actually time dependent. Neglecting the
time dependency can introduce significant errors to route planning.

One solution to tackle the problem is to use different sets of estimated travel times
(ETTs) for route planning in different time periods. Collectively, these different sets of
ETTs are called the time-dependent estimated travel times (TD-ETTs). The TD-ETT is
a four-dimensional data set, and each entry includes (1) the estimated travel time from
(2) a source vertex to (3) a destination vertex in (4) a particular time period as shown in
Figure 1, where the vertices represent the geographical locations denoted by their respective
longitude-latitude coordinates in the region.
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Such TD-ETT data can actually be bought from the web-mapping companies; how-
ever, depending on the number of outlets and the sets of ETT data required, the acquisi-
tion of a full set of TD-ETT data is normally very expensive and not affordable to most
courier companies.

Other than paying for web-mapping data, the courier company can also install the
Global Positioning System (GPS) in their fleet of vehicles and subscribe the relevant services
from a GPS service provider [1]. This enables the courier company to keep track of the
travel times spent by the vehicles to travel between their outlets accurately; however, it is
impossible for the fleet of vehicles to collect all TD-ETT data between outlets because the
size of the fleet is limited and thus not all sets of traveling paths in different time periods
can be covered.

Another possible solution is that the courier company can capture the past traffic data,
so that it can learn and analyze the past data in order to estimate the future travel times
between outlets accurately. With the estimation, the routes for vehicles can be properly
planned even before they depart. For this approach, however, sufficient data must be
collected first so that they can be pre-processed, cleaned, and analyzed in order to produce
accurate TD-ETT values for the route optimization process.

In this research, we study a low-cost and robust framework that is able to scrape,
process, clean, and analyze the TD-ETT data for a set of pre-determined outlet locations in
a city. The proposed framework is at a low cost because the data collection is done through
scraping the data from the free web-mapping services; it is also robust because the data
maintenance strategy is derived from the processing and analysis of the scraped data.

In general, the points of interest in a geographical region can be represented by a set
of vertices, V , in a directed graph, G. The arc from vertex i to vertex j exists if, and only if,
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there is a possible route from point i to point j in the real map. In a city with a good road
network, the representing graph G should be a fully connected directed graph because
there must be at least a route from any point of interest to another. Note that the route from
i to j may not be the same as the route from j to i, depending on the real road condition in
the geographical region. For a particular time period, we can further label each arc in G
with the ETT of the best route as the weight of the arc. An example of traveling from one
point to another on a geographical map and its representation in a directed graph is shown
in Figure 2.
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Figure 2. (a) An example showing there are three possible routes to travel from point i to point j on a
geographical map; (b) the representation in a directed graph where the weight of the arc from vertex
i to vertex j is the ETT of the best route from point i to point j on a geographical map.

Through our experiment, we found that the ETT data provided by the web-mapping
company may not be always optimum, regardless of whether the data are paid or free
of charge. It is because the ETT data returned from the web-mapping services are highly
dependent on the route selections of the backend routing algorithm. Owing to the limitation
of the backend routing algorithm, not only that the selected routes may be non-optimum,
but there can also be illogicality among some routes. For instance, the ETT from vertex i to
vertex j is larger than the sum of the ETTs from vertex i to vertex k and then from vertex
k to vertex j, which violates the triangle inequality principle. Such illogicality is actually
not uncommon with the ETTs obtained from the web-mapping services. If we directly
use the ETTs returned from the web-mapping services as the weights of the arcs, then
the existence of the illogicalities will affect the effectiveness and correctness of the route
planning algorithms.

Therefore, a data pre-processing phase is also introduced in our framework to identify
and patch the arcs with illogical scraped ETT values in order to improve the correctness of
the data. Such a pre-processing phase is also important to the subsequent data scraping
process because the arcs that consistently contain illogical scraped ETT values can be
removed from being scraped in the future cycle, because even in the absence of the scraped
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data, the weights can just be patched by alternative routes with better combined ETTs. In
doing so, time required to scrape ETT data in a cycle can also be reduced, and thus more
cycles can be completed in a given time in order to increase the time-dependent fineness of
the data.

To achieve the abovementioned goal, our proposed approach can be divided into
four phases, namely, (i) Full Data Scraping, (ii) Data Pre-Processing and Analysis, (iii) Fast
Data Scraping, and (iv) Data Patching and Maintenance. Their objectives are described
as follows.

In the (i) Full Data Scraping phase, the full set of ETTs in a particular time period will
be scraped. It should be noted that since the entire set of ETTs need to be scraped, the
interval of the scraping cycle is rather long, and thus the number of cycles is limited. This
phase will continue for weeks in order to collect enough ETT data.

In the (ii) Data Pre-Processing and Analysis phase, the illogical ETT values will
be identified by applying the inequality principle shown in Theorem 1 in Section 3. If
for a particular arc, the illogicality happens frequently up to a certain threshold, the
corresponding ETT value can then be safely replaced by the alternative shorter ETT by
taking another route with a transit point. Such a relationship will also be learned in
this phase.

In the (iii) Fast Data Scraping phase, all the illogical arcs will be removed from the
scraping process. This will shorten the scraping cycle and more cycles can be completed in
a given time. As a result, the number of ETT data sets in a given time can be increased, and
thus more accurate ETT data in the time period can be obtained. This process will continue
until there is a need for another full data scraping.

Since the arcs with the consistently illogical scraped ETTs have been removed from
the previous phase, the missing ETT values have to be patched before the entire set of
TD-ETTs can be fed to the route planning algorithm; therefore, in the (iv) Data Patching
and Maintenance phase, the first objective is to patch the missing ETT values with the
relationships (equations) learned in phase (ii). Moreover, although we continue to use the
reduced graph for data scraping in (iii), after a certain number of cycles, a new round of
full data scraping needs to be executed again in order to verify and maintain the data.

The work presented in this paper is actually an extension of our previous work in [2].
In our previous work, we only performed the first phase, (i) Full Data Scraping, and we
partially performed the second phase in the proposed framework; however, the entire data
cleaning process was not formulated in [2] and the full cycle of the scraping process also
takes a long time, which affects the fineness of the collected data.

The novelty of this paper lies in the following three aspects: (1) the overall concept
of data cleaning for the practical implementation of VRP algorithms for route planning;
(2) the analysis of the full set of TD-ETT data with the aim to reduce the amount of data to
be subsequently scraped; (3) a framework that collects TD-ETT data with shortened cycles
to get finer data, while maintaining the validity and accuracy of the data. This is done by
introducing (ii) Data Pre-Processing and Analysis (full phase), the (iii) Fast Data Scraping
phase and the (iv) Data Patching and Maintenance phase. We have also expanded our
scope of research to study the relationship between the scraping efficiency and accuracy of
data collection. We believe that the outcomes of this study could offer practical insights
that could be useful to logistics industry.

In our experiment, we scraped, processed, cleaned, analyzed, and maintained the
TD-ETT data across 68 outlets of a courier company in Penang, a state of Malaysia, for six
months; we then fed the data produced by our approach to some VRP algorithms, such as
the Traveling Salesman Problem algorithm, and found that the performance of our low-cost
approach is comparable with that of using the full set of paid data.

The remainder of the paper is organized as follows. Section 2 discusses the related
works in the literature. In Section 3, we elaborate the methodology of this research. Experi-
ment setting, results and possible extended works will be presented in Section 4. Finally,
the conclusions are discussed in Section 5.
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2. Related Work

In traditional route planning approaches, the travelling duration between two points
is assumed to be known and fixed prior to the planning stage; however, it is not applicable
in real world situations as real traffic varies over time; therefore, the approaches without
considering time-dependent traffic conditions will result in poor planning even though the
algorithms are robust [3–5]. Thus, to generate a more reasonable travel time estimation,
past traffic data have to be studied in order to extract the information and find out a realistic
estimation for inputs for the route planning algorithms.

2.1. Data Collection

There are a few approaches for data collection on historical traffic data, namely, (i) web
scraping, (ii) distance matrix API, and (iii) GPS. To find out the most feasible methods for
data collection, these three methods are compared in terms of monetary costs and accuracy
as follows. It is crucial to collect the ETT data as frequently as possible to obtain more
samples and information about the changes of traffic data. In general, the shorter the
interval between two samples, the better the accuracy of ETT for route planning algorithms.
An example of benefits to have a faster data collection cycle is shown in Figure 3.
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Figure 3 shows the scraped data of the ETTs between two geographical points with
two different interval settings, i.e., 60 min and 120 min. For the 120 min scraping interval,
interpolation will be needed to make an estimation of the travel time between two scraped
samples, and it can be obtained by taking the average value of the two samples; however,
this might result in the inaccuracy of data, as shown in Figure 3. In this example, the
120 min scrapping interval fails to capture the peak at 12:00. In general, the shorter the
interval, the finer the time-dependent data. In order to increase the accuracy, the fineness
of data is therefore an important factor to be considered in any time-dependent data
maintenance framework.

The research in [6] considers using GPS to collect actual-time traffic data, and it is
highlighted in [6] that GPS traffic data further helps to create dynamic routes with the
real-time traffic data input; however, this approach is rather costly. For example, one of
the local GPS service providers in Malaysia [7] is charging around USD 17.06 per month to
track a vehicle. Assume that there are 50 vehicles of a courier company that employ the
GPS service. Choosing the Lite plan costs roughly USD 853 per month. Another issue is,
even though the GPS service is more likely to provide a higher accuracy of the travelling
duration between two points as it captures the data in real-time as the vehicle travels, the
fleet of vehicles will not be able to collect all required traffic data over a geographical area
at all possible times because the travelling paths of these vehicles are limited. This results
in the incompleteness of data when finding optimal routes in different time periods.
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Kim et al. [8] collected past traffic data from Michigan Intelligent Transportation
System Center; however, the outcome of route planning using the given past traffic data
may not be feasible. This is because the collected data had an age of 5 years when the
research was being carried out, and thus the data might not have fully reflected the changes
of the road layouts and the increasing number of vehicles on roads. This directly affects the
accuracy of route planning with the given data.

Google Maps Distance Matrix API is used by [9] to collect real-time ETT data. Accord-
ing to the pricing reference from Google Developer [10], at the time of writing, it costs USD
0.008 per API call. The pricing is considered costly if the ETT data among many locations is
required for the route planning. For instance, in our research scenario, there are 68 vertices,
which consists of 4556 arcs, that construct a fully connected directed graph. Assume that
the Google Distance Matrix API is used as a tool for data collection, and 24 iterations of
API calling are required to get the ETT data of these 4556 arcs per day. This will result in
109,344 API calls daily, that cost USD 874 per day, or USD 26,242 per month. Although it
provides real-time ETT data almost instantly, the monetary cost is nevertheless very high,
especially when the number of arcs to be collected is very large.

In order to collect ETT data, web scraping on the web mapping websites is one of the
viable approaches. There are multiple kinds of framework for web scraping. Reference [11]
used Scrapy to extract the data from websites to perform analysis, whereas Beautiful Soup
is used by [12] for web scraping; however, the method that [11] used is actually applying
an API provided by Reddit to analyze the data from Reddit. This method is not valid for
websites that do not provide API. The data scraped by Upadhyay et al. in [12] consists
of multiple web links; however, the scraped data consists of multiple web links that are
composed of different HTML structures. Moreover, pre-processing the scraped data might
be very time consuming as different HTML structures from websites store their attributes in
different ways. In short, there are multiple ways, as stated above, to develop a web scraper,
and they show a high flexibility of web scraping that allows specific data to be collected.

The abovementioned approaches are compared in Table 1 to find out the most feasible
method for courier companies to collect ETT data for time-dependent route planning.

Table 1. Comparison between different approaches for traffic data collection, adapted from [2].

Google Distance
Matrix API [10]

Local GPS Service
Provider [7] Web Scraper

Estimated cost per
month (USD) 26,242 (68 nodes) 853.24 (50 vehicles) Free

Flexibility Low Low High

Implementation Easy Easy (Data
incomplete) Hard

With the comparison shown in Table 1, the best method in terms of monetary cost is to
develop a web scraper to collect the TD-ETT data, and this is also the focus of this paper.
That is, a web scraper is developed in this project to scrape the ETT data autonomously
and continuously over different time periods from the free web-mapping websites.

Developing a web scraper is challenging as the efficiency of the web scraper is vital to
scrape the ETT data. The increasing number of vertices will increase the number of arcs
exponentially, leading to a longer time to finish an iteration of web scraping. In addition, it
is necessary to complete an iteration of web scraping as fast as possible so the next iteration
of scraping can be started as soon as possible. In doing so, finer time dependent data can
be produced to improve the accuracy of route planning.

The web performance and security company Cloudflare stated that there is a strategy
to tackle web scraping on websites, which is called “rate limiting” [13]. “Rate limiting”
is implemented to limit the network traffic by capping repetitive actions within a certain
timeframe from a given IP address. This disallowed a high frequency of web scraping from
the same IP address. There are two solutions to overcome the “rate limiting” imposed on
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a specific IP address used for web scraping. One of them is to reduce the web scraping
frequency on the appointed website. This method requires multiple tunings to find out the
optimum number of requests to be made towards the website without experiencing rate
limiting; therefore, this method can only maximize the frequency of using an IP address,
hence the number of requests is still limited.

The second solution is to subscribe proxy service providers for proxy services. AVG
Technologies described the proxy server as a gateway between browsers and the inter-
net [14]. It acts as an intermediary to prevent direct contact from clients with the websites.
Thus, using proxy services will prevent similar IP address from requesting on the website
and this prevents rate limiting from happening; however, subscribing to proxy service
providers is expensive in terms of monetary cost. For instance, the Oxylabs proxy service
subscription [15] costs USD 300 per month for 20 GB of traffic regardless of the country or
region chosen; therefore, the proxy service is not considered in this research as the monetary
cost is too high. Instead, a multithreaded web scraper is developed and tuned to scrape
the real-time traffic data with multiple tabs to increase the efficiency of web scraping and
prevent rate limiting from happening.

2.2. Predictive Analysis

After the data collection phase, it is essential to pre-process the data so that the
knowledge extracted from the data can be studied and the traffic pattern can be found.
Narayanan et al. reported that the Support Vector Regression (SVR) model could improve
the travel time prediction accuracy by predicting future travel times based on current travel
speed data and historical trends [16]; however, travel time measurement is done over a
sequence of locations for a fixed route.

Yang et al. partitioned a geographical area into regions based on the GPS data to
predict the number of passengers at different times [17]. They showed that there is a pattern
of demand of passengers across different regions; however, this paper did not investigate
the travel time of each passenger.

Park et al. proved that they are able to predict the existence of accident on the road
using logistic regression and traffic data collected from vehicle detection sensor (VDS),
which consists of speed of cars and number of cars on the road [18]; however, the monetary
cost is very high if VDS is installed on every single road in a city.

Yuan and Li [19] summarized the problems of traffic prediction including on the
preprocessed spatio-temporal data, which is traffic classification, traffic generation and
traffic forecasting. Traffic classification mainly consists of traditional learning and deep
learning to classify the spatio-temporal data. Traffic generation is used to simulate the
actual scenarios according to past observations. Then, traffic forecasting is used to predict
the traffic states. They partitioned into six different states namely Origin-Destination travel
time, path travel time, travel demand, regional flow, network flow, and traffic speed. Path
travel time is our focus as its purpose is to predict TD-ETT data for a given path/route.

Noussan et al. [20] considered two datasets that is related to the flow of vehicles of
main roads from the sensors and bike sharing system utilization related data, in order to
support transport modeling.

Although many approaches are summarized, the methods to collect spatio-temporal
data have not received much attention in these existing works. Moreover, there is no
ground truth to prove the accuracy of the predictive model stated.

2.3. Route Planning

After collecting, preprocessing, analyzing, and maintaining the TD-ETT data, it has
to be fed into a route planning algorithm for an optimum route traversing plan around
vertices. By mapping the TD-ETT data into a route planning algorithm, traffic pattern
can be found, and this is the knowledge extracted from the raw data. Route planning
algorithms were first discovered in 1959 by Dantzig and Ramser [21], and the term was
generalized into a Traveling-Salesman Problem (TSP). It is the simplest form of VRP as
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it only consists of a route and a vehicle that traverses through every vertex. For VRP,
there are many conditions to be considered such as number of vehicles, time-window, and
the capacity of vehicles, which are more realistic as these conditions occurred in real life
routing problem. To solve VRP, there are also multiple approaches with different algorithms.
Ge et al. [22] proposed a hybrid tabu search and scatter search algorithm framework to
solve the vehicle routing problem with a soft time window. Novoa and Storer [23] used
a dynamic programming approach to the solve vehicle routing problem with stochastic
demands. Baker and Ayechew [24] used a genetic algorithm to solve the vehicle routing
problem. Experimentation from [22–24] had shown good results during the simulation;
however, those input data are actually simulated data. By proving the robustness of the
algorithm from the simulation, it does not guarantee that the algorithm can work well in a
real situation.

For a practical logistic problem, a vehicle traveling cost that reflects the real-world traf-
fic is important as the real-world traffic is dynamic, and the traveling cost varies according
to different time periods. As VRP is a model for real-world situations, it should be solved
with the real-world data in order to provide a practical solution for the corresponding
logistic problem; hence, real-world traffic data is very important to act as an input, and
to fit into the routing algorithm to prove that the solution from the routing algorithm
works properly.

3. Methodology

With reference to Table 2, consider a geographical region, G, with a set of points of
interest, V , which are connected by a set of arcs, A. Assuming that the total number of points
of interest is n, then we have the vertex set V = {v1, v2, . . . , vn} and arc set A = {(vi, vj)|vi,
vj ∈V, vi 6= vj}. Note that each arc (vi, vj) refers to a route in the real map; and we can
further label the arc with a weight ci,j, which represents the shortest travel time from i to j,
as shown in the example in Figure 2.

Table 2. Notations/Abbreviations and Definitions.

Notation/Abbreviation Definition

G = (V, A) A geographical region consists of vertex set V and arc set A
V = {v1, v2, . . . vn} The set of n points of interest in G

A = {(vi, vj)|vi, vj ∈ V, vi 6= vj}
The set of arcs where each arc (vi, vj) refers to a route

connecting point i to j in the real map
R(i, j) The route from point i to j with the shortest travel time

ci,j
The weight of arc (vi, vj), which represents the shortest

travel time from i to j in the real map
a = |A| The number of arcs in the directed graph G

ETT Estimated travel time
TD-ETT Time-dependent estimated travel times

Definition 1. We define R(i, j) as the route from i to j that is with the shortest travel time, and the
shortest travel time is denoted by ci,j.

Note that it is not necessary for ci,j to equal cj,i; on the other hand, ci,i = 0 by definition.
With the above definition, we have the following theorem.

Theorem 1. For all i, j, k ∈ V, the following inequality must always be true

ci,j ≤ ci,k + ck,j (1)

Proof. We will prove this by contradiction as follows.
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Assume that there exists i, j, k ∈ V in such a way that their optimum routes R(i, j),
R(i, k), and R(k, j) have the shortest travel times, ci,j, ci,k, and ck,j, respectively, that fulfil
the following inequality

ci,j > ci,k + ck,j (2)

Consider another route R′(i, j) = R(i, k) + R(k, j), which has a total travel time from i to j
as ci,k + ck,j.

If (2) is true, then ci,k + ck,j is smaller than ci,j, and route R′(i, j) has a smaller travel
time compared with R(i, j), which contradicts the definition that R(i, j) is the route with
the shortest travel time. Thus, Inequality (2) cannot be true, and therefore Inequality (1)
must be true. �

The above theorem can actually be derived from the triangle inequality principle. That
is, if the shortest-travelling-time route from i to j, R(i, j), does not pass by another point k,
then ci,j < ci,k + ck,j; on the other hand, if R(i, j) passes by point k, then ci,j = ci,k + ck,j.

For a legitimate graph, all of the shortest travel time routes must fulfill Theorem 1;
however, it is very difficult to acquire the correct value for ci,j. That is why data scraping
needs to be performed in order to use the scraped ETT to substitute the value of ci,j.
However, when the scraped ETT is used to substitute the value of ci,j, we observe that there
are some routes which do not fulfil Theorem 1. These routes then need to be identified and
their ETT values need to be rectified.

To ensure an optimal route can be found with a route planning algorithm in the time-
dependent traffic condition, the framework starts at a selected time by scraping the ETT of
every arc. Note that in a fully connected directed graph, the number of arcs is given by:

a = n (n − 1) (3)

where a is the number of arcs whereas n the number of vertices.
As mentioned in the previous section, there are multiple ways of data collection to find

out the ETT of each arc. One of them is to buy the data from the web-mapping company;
however, such approach is monetarily expensive; therefore, in this project, the TD-ETTs of
all arcs are collected using a web scraper continuously for weeks. Then, the scraped data
will be pre-processed to identify the illogical arcs and record their alternative routes that
consists of shorter ETTs between two vertices in that time period.

To remove the illogicality and redundancy of the directed graph, there are four phases
of the framework that need to be carried out as shown in Figure 4. These phases are
demonstrated and discussed with a case study in the following subsections.

3.1. Full Data Scraping Phase

In this research, 68 vertices, each representing a logistic company outlet is considered,
as shown at Figure 5.

It consists of 4556 arcs that construct a fully connected arcs graph. For the Full Data
Scraping phase, all possible ETTs are collected continuously using the developed web
scraper on web mapping websites. The objective of this phase is to collect complete initial
data for analysis. All possible ETTs have to be scraped in order to provide every possible
route to route planning algorithms for finding the optimal route; however, the time needed
to complete an iteration of scraping is fairly long. Based on the results from 765 iterations
of collected data, an average of 54.87 min is needed to complete an iteration of scraping
a fully connected arc graph. Thus, fully scraping is not suitable for collecting data which
requires a finer iteration in terms of time setting. This phase will last for weeks to collect
as many iterations of data as possible, and these data will be fed into the next phase for
preprocessing and analysis.



Data 2022, 7, 54 10 of 18
Data 2022, 6, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 4. Diagram illustrating the pipeline of proposed framework.  

3.1. Full Data Scraping Phase 
In this research, 68 vertices, each representing a logistic company outlet is consid-

ered, as shown at Figure 5. 
It consists of 4556 arcs that construct a fully connected arcs graph. For the Full Data 

Scraping phase, all possible ETTs are collected continuously using the developed web 
scraper on web mapping websites. The objective of this phase is to collect complete initial 
data for analysis. All possible ETTs have to be scraped in order to provide every possible 
route to route planning algorithms for finding the optimal route; however, the time 
needed to complete an iteration of scraping is fairly long. Based on the results from 765 
iterations of collected data, an average of 54.87 min is needed to complete an iteration of 
scraping a fully connected arc graph. Thus, fully scraping is not suitable for collecting data 
which requires a finer iteration in terms of time setting. This phase will last for weeks to 
collect as many iterations of data as possible, and these data will be fed into the next phase 
for preprocessing and analysis. 

Figure 4. Diagram illustrating the pipeline of proposed framework.

Data 2022, 6, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 5. Location of 68 outlets of a logistic company. 

3.2. Data Pre-Processing and Analysis Phase 
After scraping the full set of ETTs over different time periods for weeks, in the Data 

Pre-processing and Analysis Phase, the illogicality of the scraped ETT data in each time 
period will be detected and the alternative paths that consists of the combination of arcs 
with a shorter total ETT will be identified. The objective of this phase is two-fold. Firstly, 
the identified arcs with consistently illogical ETTs in each time period will be removed in 
the Fast Data Scraping phase so that the system can perform an iteration of scraping much 
faster in order to get a finer time-dependent data; secondly, arc-patching graphs can also 
be constructed in each time period so that the missing ETTs of the removed arcs can be 
patched with the ETTs of their respective alternative paths later.  

During the examination on the scraped data, we found that the web mapping web-
sites will not always provide the shortest arc between two vertices in a single iteration of 
scraped data because it does not fulfil Theorem 1. Thus, these illogical arcs need to be 
detected and their ETT values need to be rectified. 

Algorithm 1 briefly outlines the pseudocode for detecting and patching illogical arcs. 
In order to detect the illogicality, all scraped data are divided into different time pe-

riods, where each period has a duration of an hour. For the scraped data in a particular 
time period, they will be further split into a training set and a testing set. 

In our approach, 85% of hourly data are categorized into the training set. Within this 
training set, if more than 70% of the data show that an arc consistently violates the ine-
quality principle given in Theorem 1, then we will classify the scraped data of this arc as 
invalid, and thus the data needs to be removed and be patched later. Furthermore, the 
ETT of this arc will not be scraped in the future in order to shorten the scraping cycle; 
however, the unscraped ETT can still be patched with the alternative route that provides 
a shorter ETT route.  

For the remaining 15% of the data, they are categorized as the testing set. The arcs 
that violated the inequality principle in Theorem 1 in the training set are patched with the 

Figure 5. Location of 68 outlets of a logistic company.



Data 2022, 7, 54 11 of 18

3.2. Data Pre-Processing and Analysis Phase

After scraping the full set of ETTs over different time periods for weeks, in the Data
Pre-processing and Analysis Phase, the illogicality of the scraped ETT data in each time
period will be detected and the alternative paths that consists of the combination of arcs
with a shorter total ETT will be identified. The objective of this phase is two-fold. Firstly,
the identified arcs with consistently illogical ETTs in each time period will be removed in
the Fast Data Scraping phase so that the system can perform an iteration of scraping much
faster in order to get a finer time-dependent data; secondly, arc-patching graphs can also
be constructed in each time period so that the missing ETTs of the removed arcs can be
patched with the ETTs of their respective alternative paths later.

During the examination on the scraped data, we found that the web mapping websites
will not always provide the shortest arc between two vertices in a single iteration of scraped
data because it does not fulfil Theorem 1. Thus, these illogical arcs need to be detected and
their ETT values need to be rectified.

Algorithm 1 briefly outlines the pseudocode for detecting and patching illogical arcs.
In order to detect the illogicality, all scraped data are divided into different time

periods, where each period has a duration of an hour. For the scraped data in a particular
time period, they will be further split into a training set and a testing set.

In our approach, 85% of hourly data are categorized into the training set. Within
this training set, if more than 70% of the data show that an arc consistently violates the
inequality principle given in Theorem 1, then we will classify the scraped data of this arc as
invalid, and thus the data needs to be removed and be patched later. Furthermore, the ETT
of this arc will not be scraped in the future in order to shorten the scraping cycle; however,
the unscraped ETT can still be patched with the alternative route that provides a shorter
ETT route.

For the remaining 15% of the data, they are categorized as the testing set. The arcs
that violated the inequality principle in Theorem 1 in the training set are patched with the
corresponding alternative paths in the testing set, and they (the patched arcs), together with
other unpatched arcs, form a full set of Partially-Patched ETT data. In order to verify the
correctness and validity of the set of Partially-Patched ETT data, it needs to be benchmarked
with the full set of original, unpatched data, which is called the Fully-Unpatched ETT data.
The benchmarking is done through feeding both sets of data, respectively, to the TSP
algorithm to find the optimal route by traversing around every vertex.

Algorithm 1 Pseudocode for detecting and patching illogical arcs

1. Input : V = {v1, v2, . . . vn},
2. Let ETTij be the scraped ETT of the arc connecting vi to vj

3. R̃(i, j) the corresponding route, where vi 6= vj
4. for i ∈ {1, . . . , n} do
5. for j ∈ {1, . . . , n}\{i} do
6. for k ∈ {1, . . . , n}\{i, j} do
7. if ETTij > ETTik + ETTkj
8. ETTij ← ETTik + ETTkj

9. R̃(i, j)← R̃(i, k) + R̃(k, j)
10. end for
11. end for
12. end for

Based on the training data, an average of 34.26% (with a maximum of 63.78% and
minimum of 6.50%) of arcs can be patched with shorter alternative routes in different
periods from 00:00 to 23:59. The percentage of patched arcs of each hourly period is shown
in Figure 6.



Data 2022, 7, 54 12 of 18

Data 2022, 6, x FOR PEER REVIEW 12 of 18 
 

 

corresponding alternative paths in the testing set, and they (the patched arcs), together 
with other unpatched arcs, form a full set of Partially-Patched ETT data. In order to verify 
the correctness and validity of the set of Partially-Patched ETT data, it needs to be bench-
marked with the full set of original, unpatched data, which is called the Fully-Unpatched 
ETT data. The benchmarking is done through feeding both sets of data, respectively, to 
the TSP algorithm to find the optimal route by traversing around every vertex. 

Algorithm 1 Pseudocode for detecting and patching illogical arcs 
1. Input: 𝑽 =  𝑣 , 𝑣 , … 𝑣 ,  
2. Let 𝐸𝑇𝑇  be the scraped ETT of the arc connecting 𝑣  to 𝑣 , 
3. 𝑅(𝑖, 𝑗) the corresponding route, where 𝑣  ≠ 𝑣    
4. for 𝑖 ∈ 1, … , 𝑛  do 
5. for 𝑗 ∈ 1, … , 𝑛 \ 𝑖   do 
6. for 𝑘 ∈ 1, … , 𝑛 \ 𝑖, 𝑗   do  
7. if 𝐸𝑇𝑇 > 𝐸𝑇𝑇 + 𝐸𝑇𝑇  
8. 𝐸𝑇𝑇 ← 𝐸𝑇𝑇 + 𝐸𝑇𝑇  
9. 𝑅(𝑖, 𝑗) ← 𝑅(𝑖, 𝑘) + 𝑅(𝑘, 𝑗)      
10. end for 
11. end for 
12. end for 

Based on the training data, an average of 34.26% (with a maximum of 63.78% and 
minimum of 6.50%) of arcs can be patched with shorter alternative routes in different pe-
riods from 00:00 to 23:59. The percentage of patched arcs of each hourly period is shown 
in Figure 6. 

 
Figure 6. Percentage of patched arcs in each time period [2]. Figure 6. Percentage of patched arcs in each time period [2].

To verify the validity of the graph with patched arcs, the Simulated Annealing (SA)
algorithm is used for benchmarking by solving the TSP with the derived Partially-Patched
graph and the original Fully-Unpatched graph, respectively.

Initially, for each time period, T (say 12:00–12:59) on each day (say a specific Monday),
the ETT data of the Partially-Patched graph are fed into the SA algorithm 10 times, and
only the best resulted route (with shortest TSP travel time) among the iterations is stored.

This step will be done for the same time period, T (i.e., 12:00–12:59), over different
days (say all weekdays with the scraped data), and then the average TSP travel time in
this time period over all weekdays by using the relevant Partially-Patched graphs will be
calculated, which is denoted by CP(T).

The similar process can be applied to the Fully-Unpatched graphs in the same time
period, T (i.e., 12:00–12:59) over different days (i.e., all weekdays with the scraped data),
and then the average TSP travel time by using the Fully-Unpatched graphs can also be
calculated, which is denoted by Co(T).

Note that by comparing CP(T) against Co(T), we will be able to compare the results of
the Partially-Patched graphs against that of the Fully-Unpatched graphs. Let the percentage
of TSP travel time reduction be calculated as (4).

Percentage of TSP travel time reduction =
Co − CP

Co
× 100% (4)

The percentage of TSP travel time reduction obtained from our experiment is plotted
in Figure 7.
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Figure 7 shows the percentage difference between the routing results generated with
the Partially-Patched ETT data and the corresponding Fully-Unpatched ETT data. It can
be noted that the difference is insignificant, that is, it is only in the range of −2% to 4%.
The linear regression shows that majority of the patched graph data has positive difference.
This also proves that the Partially-Patched graph is more likely to provide a shorter route
than the original Fully-Unpatched graph, showing that the latter can actually be replaced
by the former; therefore, arcs that violate the inequality principle of Theorem 1 can be
skipped from web scraping in the future as there are alternative routes to patch them. This
also improves the efficiency of web scraping as an average of 34.26% of arcs can be skipped
from scraping.

Moreover, the correlation score between percentage of patched arcs and average ETT
of each subsequent hour is 0.8567, proving that the percentage of patched arcs is directly
proportional to average TSP travel time. This is shown in Figure 8.
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In actuality, the average ETT of each subsequent hour can be interpreted as the traffic
condition. A higher average ETT indicates a heavier traffic condition. Moreover, the
percentage of patched arcs indicates the correctness of the web mapping website to provide
a shorter travel time arc. A higher percentage of patched arcs shows that a higher frequency
of the ETT provided by the web mapping website is not optimal. As the average ETT
increases, the percentage of patched arcs increases, proving the web mapping website is
not likely to provide an optimal path when the traffic condition is heavier. This shows the
importance of scraping traffic data efficiently and effectively by skipping arcs that will not
be used frequently.

3.3. Fast Data Scraping Phase

After verifying the usability of the Partially Patched graph, in the Fast Data Scraping
Phase, those arcs that can be patched (i.e., likely to have illogical ETT values) will be
removed from being scraped, and thus the cycle of scraping can be shortened. The iteration
time of the Fast Data Scraping Phase is much shorter than the Full Data Scraping Phase.
Hence, more iterations of web scraping can be made, and a higher accuracy of traffic data
can be obtained with finer details. This process will last for weeks to continuously scrape
for ETT data.

3.4. Patching Phase

After the reduced scraping phase, the scraped data has to be patched during the
patching phase, as an average 34.26% of arcs from the fully connected arcs graph are not
scraped in the reduced scraping phase; therefore, these arcs have to be patched with the
input of shortest ETT paths that consists of multiple arcs before solving TSP with route
planning algorithms.

4. Experimentation and Results

According to the scraped data from the Full Data Scraping Phase, an average of 54.87
min is spent to finish an iteration of web scraping. After skipping the 34.26% of illogical
arcs in the Fast Data Scraping Phase, it only takes an average of 32.97 min to complete an
iteration of web scraping, which is 40% faster than the Full Data Scraping Phase. Figure 9
shows the correlation between the percentage of skipped arcs and the time consumed to
finish an iteration of web scraping. It shows the trade-off between the percentage of skipped
arcs and the scraping duration, where one could choose to reduce the time consumption by
skipping more arcs.
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Based on scraped data, the traffic pattern can be classified according to different time
ranges based on the normalized average ETT of all arcs, as shown in Figure 10.
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According to Figure 10, the time from 07:00 to 08:59 and from 15:00 to 18:59 can be
classified as the Peak period because the average traffic condition is much heavier compared
with other times. Moreover, the time from 09:00 to 12:59 can be classified as the Normal
period. Finally, other time ranges which are not within the Peak or Normal periods can be
classified as the Traffic-free period.

As the arcs of traffic data in an iteration are not possible to be concurrently scraped,
causing a time gap of an average 32.97 min between the first and the last arc, a ground truth
is needed to justify the correctness of scraped data with the patched arcs graph. In this case,
the ETT from the Google Distance Matrix API is used as our benchmark for comparison.
This is because Google Distance Matrix API can collect an ETT of every arc within 1 min.
The average TSP travel time during the Peak period and the Normal period are chosen for
a comparison with the scraped data, as shown in Figure 11.
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According to Figure 11, most of the average travel time to complete TSP from the
Google matrix is higher than the scraped data, with an average of 6.17%. To ensure that the
TSP route provided from scraped ETTs is applicable, the Google matrix’s ETTs are fitted
into the route given by the scraped ETTs. Since the route is not optimal because of the
fixed route from scraped ETTs, the average travel time of “Yellow” is 1.3% higher than
“Blue”, with ranges between 1.5–7.0%. This shows the TSP route provided from scraped
ETTs is applicable as there is only a 1.3% travel time difference compared to “Blue”, which
is derived from the ETTs by using the Google Distance Matrix API. Without paying a huge
monetary cost for the Google Distance Matrix API, even though the traffic data could not
be instantaneously scraped using a web scraper, the TSP route provided from scraped ETTs
does not bring much difference of the output of TSP travel time. This also verifies that our
low-cost approach can be used to generate almost similar route planning results that can be
generated by the data obtained from the paid Google Distance Matrix API.

One of the limitations of our proposed solution is that we only collected data within
a city in Malaysia. In the future, data in other cities may need to be collected to test the
model for further improvement. On the other hand, the interface or layout of the Google
Map web page may change in the future; however, the data of interest will still be similar;
therefore, we can use the same principle for data scraping but with a rearranged scraping
position to reflect the changes in the web page layout. In addition, we only used one TSP
algorithm to measure the cost of the route. In the future, we may fit the ETT data set into
other VRP algorithms and simulation models [25].

Finally, the data scraped by our framework could be extended to include not only the
ETT data, but also the sequence of roads in the recommended route. Such a sequence of
roads actually forms a string. Thus, if we can compare the string data (i.e., recommended
road sequences) of two arcs, then we can examine the similarity/dissimilarity between
these two recommended routes using a string comparison framework, such as the one
proposed by Cauteruccio et al. in [26]. Such information will be useful to improve our
framework in the future.

5. Conclusions

In this paper, we have proposed a new cost-effective framework to effectively scrape,
process, clean, and analyze TD-ETT data from free web-mapping services in order to gain
knowledge of the traffic pattern in a city in different time periods. After scraping traffic data
from free web-mapping websites, the collected data is then processed to detect arcs that
violated the triangle inequality principle, from which we derived a theorem to pre-process,
clean, and patch the TD-ETT values of these illogical arcs. In our experiment, we used
the above framework to obtain the TD-ETT data over 68 locations in Penang, Malaysia,
for six months. We then fed the data into a TSP algorithm for evaluation. We found that
the performance of our low-cost approach is comparable with using the expensive paid
data. By applying the framework proposed in this research in a real world scenario that
consists of real-time traffic, a logistics company will be able to maintain the time-dependent
estimated-travel-time data among locations of interest at a low cost, so that it can better
plan the routes of its vehicles.
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