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Abstract: A collection of thirty mathematical functions that can be used for optimization purposes 

is presented and investigated in detail. The functions are defined in multiple dimensions, for any 

number of dimensions, and can be used as benchmark functions for unconstrained multidimen-

sional single-objective optimization problems. The functions feature a wide variability in terms of 

complexity. We investigate the performance of three optimization algorithms on the functions: two 

metaheuristic algorithms, namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), 

and one mathematical algorithm, Sequential Quadratic Programming (SQP). All implementations 

are done in MATLAB, with full source code availability. The focus of the study is both on the objec-

tive functions, the optimization algorithms used, and their suitability for solving each problem. We 

use the three optimization methods to investigate the difficulty and complexity of each problem and 

to determine whether the problem is better suited for a metaheuristic approach or for a mathemati-

cal method, which is based on gradients. We also investigate how increasing the dimensionality 

affects the difficulty of each problem and the performance of the optimizers. There are functions 

that are extremely difficult to optimize efficiently, especially for higher dimensions. Such examples 

are the last two new objective functions, F29 and F30, which are very hard to optimize, although the 

optimum point is clearly visible, at least in the two-dimensional case. 

Dataset: All the functions and the optimization algorithms are provided with full source code in 

MATLAB for anybody interested to use, test, or explore further. All the results of the paper can be 

reproduced, tested, and verified using the provided source code in MATLAB. A dedicated github 

repository has been made for this at https://github.com/vplevris/Collection30Functions (accessed 

on 24 February 2022). 

Dataset License: CC-BY 

Keywords: optimization; unconstrained; benchmark functions; objective function; GA; PSO; SQP 

 

1. Background 

1.1. Introduction 

Mathematical optimization is the process of finding the best element, with regard to 

a given criterion, from a set of available alternatives. Optimization problems arise in var-

ious quantitative disciplines from computer science and engineering to economics and 

operational research. The development of solution methods to optimization problems has 

been of interest in mathematics and engineering for centuries [1]. 

Even though there are some well-established optimization methods, the truth is that 

there is no single method that outperforms all the others when several different optimi-

zation problems are considered. This is often referred to as the No Free Lunch (NFL) 
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theorem [2,3]. Consequentially, new optimization methods or new variants of existing 

ones are proposed on a regular basis [4–6]. When a new optimization method is proposed, 

the developers of the method usually choose a set of popular optimization problems (or 

objective functions) to test the algorithm on and also to serve as a basis for the comparison 

of the new algorithm with other, existing ones. The chosen objective functions for the test-

ing phase are known as benchmark functions and play a decisive role to determine 

whether the new proposed algorithm can be considered successful when its performance 

is better or at least similar to the ones of existing, established algorithms. 

Benchmark functions are usually defined in such a way that they can be computed 

in an arbitrarily chosen number of dimensions. As the number of dimensions increases, 

the complexity of the optimization task also increases. A certain optimization algorithm 

could perform very well for a small number of dimensions but poorly in higher dimen-

sional spaces. This is the so-called “Curse of Dimensionality”, a well-known problem in 

data science referring to various phenomena that arise when analyzing and organizing 

data in high-dimensional spaces that do not occur when low-dimensional settings are im-

plemented [7]. Additionally, the size of the search domain is another important variable. 

Benchmark functions based on explicit mathematics usually span infinitely, thereby, an 

appropriate size of the search space must be chosen a priori. As a result, choosing the 

benchmark functions, the number of dimensions, and the size of the search domain is not 

a trivial task when testing and comparing optimization algorithms. 

In this study, we investigate a total of 30 mathematical functions that can be used as 

optimization benchmark functions. There is no consensus among researchers on how an 

optimization problem should be properly tested or which benchmark functions should be 

particularly used. The goal of the present study is not to answer this question. Instead, the 

study aims at providing a compilation of ready-to-use functions of various complexities 

that are suited for benchmarking purposes. We investigate and assess the properties and 

complexity of these functions by observing and comparing the difficulties encountered by 

popular optimization algorithms when searching to find their respective optimum values. 

The selected methods used for these comparisons are: Genetic Algorithm (GA) [8–10], 

Particle Swarm Optimization (PSO) [11–15], and Sequential Quadratic Programming 

(SQP) [11,16,17]. Based on the obtained results, the complete set of the 30 functions can be 

used for checking the efficiency of any other optimization algorithm. 

Before the description of the implemented methodology, a brief introduction to the 

basic concepts, notation, and common search strategies used in optimization methods are 

described in the following Sections 1.2 and 1.3. 

1.2. Formulation of an Optimization Problem 

An optimization problem is usually written in terms of an objective function f(x) 

which needs to be minimized (or maximized), that denotes the purpose of the problem. 

The vector term x is known as the design vector, and it constitutes a candidate solution to 

the problem. It is composed of several design variables, x = {x1, …, xD}, that represent the 

unknown optimal parameters that are to be found. The number of design variables D is 

the number of dimensions of the design vector and the optimization problem in general. 

Design variables are expressed in various forms and can have binary, integer, or real val-

ues. In all cases, some sort of boundaries must be specified to restrict the search space to 

a realistic domain Ω (i.e., the lower and upper bounds, Ω = [lb, ub] where lbi ≤ xi ≤ ubi for 

every i ∈ {1, …, D} [18]. The optimization task is then described as the process of finding 

a design vector x* such that the following expression is fulfilled, for a minimization prob-

lem: 

*( ) ( ) for all ,f f x x x  (1)

The definition expressed through Equation (1) implies that there is no better solution 

to the optimization problem than the one denoted by the design vector x*. In that case, the 
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solution is known as the global optimum. However, in most practical optimization prob-

lems, an exact solution such as x* is difficult or practically impossible to obtain. Instead, 

an approximate solution of the actual global optimum, which is usually a local minimum, 

can be acceptable for practical purposes. Moreover, most optimization problems in prac-

tice are subjected to restrictions within their search space, meaning that some values of 

the domain Ω are not valid as solutions to the problem, due to the imposed constraints. 

These constraints can be expressed as equality functions, h(x) = 0, or more frequently as 

inequality functions, g(x) ≤ 0. When there are no constraints, other than the design variable 

bounds, the formal formulation of an optimization problem (for minimization) is simply: 

min ( )f
x

x  (2)

1.3. Optimization Search Strategies 

There are two general types of strategies that can be used to solve optimization prob-

lems. On the one hand, deterministic or exact methods are based on a solid mathematical 

formulation and are commonly used to solve simple optimization problems where the 

effort grows only polynomially with the problem size. However, if the problem is NP-

hard, the computational effort grows exponentially, and even small-sized problems can 

become unsolvable by these methods as they usually get trapped in local minima. In the 

present study, we use SQP as a mathematical (exact) method. 

Alternatively, metaheuristic optimization algorithms (MOAs) [19] are based on sto-

chastic search strategies that incorporate some form of randomness or probability that 

increases their robustness [4,20,21]. As a result, such algorithms are very effective in han-

dling hard or ill-conditioned optimization problems where the objective function may be 

nonconvex, nondifferentiable, and possibly discontinuous over a continuous, discrete, or 

mixed continuous–discrete domain. Furthermore, these algorithms often show good per-

formance for many NP-complete problems and are widely used in practical applications. 

Although MOAs usually provide good quality solutions, they can offer no guarantee that 

the optimal solution has been found. In the present study, we use two well-known MOAs, 

namely the GA and PSO, as explained in detail in Section 2.1. MOAs have been used to 

solve mathematical problems as well as more practical optimization problems in various 

scientific fields, including computer science, economics, operations research, engineering, 

and others. Other popular MOAs that have been successfully applied to a variety of prob-

lems in different disciplines are Evolution Strategies (ES) [22,23], Differential Evolution 

(DE) [24–28], and Ant Colony Optimization (ACO) [15,29], among others. 

2. Methodology 

A total of 30 objective functions that can serve for benchmarking purposes are inves-

tigated, denoted as F01 to F30. Their mathematical expressions as well as a 2-dimensional 

graphical visualization and other details are thoroughly described in Appendix A. The 

functions are chosen according to the following specific criteria so that they are well-

suited for benchmarking purposes: 

(i) They are scalable in terms of their number of dimensions, i.e., they can be defined for 

any number of dimensions D. 

(ii) They can be expressed explicitly in a clear mathematical form without any ambigui-

ties. 

(iii) All correspond to minimization problems. Therefore, a specific minimum value (and 

a corresponding solution vector) exists. 

(iv) All functions have a minimum value of zero, for consistency. This is not a limitation, 

as a constant number can be easily added to any function, making the minimum 

value whatever is desired. 
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All the objective functions are investigated in this study in multiple numbers of di-

mensions, namely: (i) D = 5, (ii) D = 10, (iii) D = 30, and (iv) D = 50. In other words, each 

problem is defined and investigated with 5, 10, 30, or 50 variables. Three different optimi-

zation algorithms are used to find the minimum value of every objective function, in each 

of the chosen dimensions. The chosen algorithms and their respective parameters are dis-

cussed in Section 2.1. 

Each of the optimization tasks is defined as an unconstrained optimization problem 

(see Equation (2)). All the tested objective functions are scalar-valued such as f: ℝD → ℝ, 

where D is the number of dimensions. The search space Ω ⊂ ℝD is box-shaped in the D-

dimensional space and it is defined by the lower and upper bounds vectors denoted as Ω 

= [lb, ub] where lbi ≤ xi ≤ ubi for every i ∈ [18]. A design vector x with design variables x = 

{x1, …, xD} is a candidate solution inside the search space x ∈ Ω (the adopted notation is 

introduced in Section 1.2). The obtained results are presented and compared in Section 3 

where the complexity and properties of the presented objective functions are discussed. 

All the simulations and the numerical work in this study have been completed in 

MATLAB. All the work is available with its source code (in a github repository), where 

any interested researcher can download the scripts, run the program, and reproduce the 

results on his/her own computer. This is particularly useful for researchers as they can (i) 

use the provided functions for their optimization and benchmarking work; (ii) use the 

provided optimizers for other optimization problems; and (iii) investigate the perfor-

mance and suitability of these algorithms in optimizing the provided functions in various 

dimensions, replicate, and validate the results of the present study. 

2.1. Optimization Algorithms Used 

We have chosen three well-known optimization algorithms to study the selected op-

timization functions: 

1. Genetic Algorithm (GA) [8–10]; 

2. Particle Swarm Optimization (PSO) [11,12,15]; 

3. Sequential Quadratic Programming (SQP) [11,16,17]. 

GA and PSO are metaheuristic methods that use a population of agents (or particles) 

at each generation (iteration). In addition, they are stochastic methods, which means that 

the final result of the optimization procedure will be different each time the method is 

run. For this reason, we run these two algorithms 50 times each and we process the results 

statistically in the end. On the other hand, SQP is a deterministic method which will give 

the very same result every time the algorithm is run, provided that the starting point of 

the search is the same. In this study, SQP is also run 50 times, starting from different ran-

dom points in the design space. After the results of 50 runs for each algorithm have been 

obtained, we calculate and report the average and the median objective function values, 

as well as the standard deviation, over the 50 runs, for each problem. In addition, we re-

port the median values of two useful evaluation metrics, Δx and Δf [30,31], that are defined 

in the domain space and the image space, respectively. Finally, we calculate the median 

value of a third final evaluation metric, Δt, which is a combination of the other two. The 

metrics are described in detail in Section 2.3. 

All three algorithms (GA, PSO, SQP) are based on MATLAB implementations and 

are executed using the MATLAB commands ga, particleswarm, and fmincon, respectively. 

GA uses the following default parameters: 

 ‘CrossoverFraction’, 0.8. The CrossoverFraction option specifies the fraction of each 

population, other than elite children, that are made up of crossover children; 

 ‘EliteCount’, 0.05*PopulationSize. EliteCount specifies the number of elite children; 

 ‘FunctionTolerance’, 10−6. 

For the MATLAB fmincon command, which is a mathematical optimizer, we also use 

the additional option ‘Algorithm’,’sqp’ to ensure that the SQP variant of the mathematical 

optimizer will be employed. 
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We use the maximum function evaluations as the only convergence criterion for GA 

and PSO, i.e., both algorithms will stop after a certain number of function evaluations is 

completed. In the case of SQP (fmincon MATLAB command), we use, additionally, the 

following parameters that can affect the convergence criterion: 

 ‘StepTolerance’, 10−30; 

 ‘ConstraintTolerance’, 10−30; 

 ‘OptimalityTolerance’, 10−30; 

 ‘MaxFunctionEvaluations’, NP*MaxIter. 

In fact, for the SQP case, we try to enforce very strict criteria for the tolerances, to try 

to ensure that the max. number of function evaluations will be reached so that the com-

parison is somehow fair between the three methods. Since the GA, PSO, and SQP are run 

50 times for each problem, the total number of optimization problems solved is 3 (meth-

ods) ∗ 4 (different dimensions) ∗ 30 (Problems) ∗ 50 (Runs) = 18,000. To maintain con-

sistency for all problems and all the different cases, for GA and PSO the population size 

is set to NP = 10∙D and the maximum number of iterations (or generations) is set to MaxIter 

= 20∙D − 50. Then, the max. number of function evaluations can be calculated as MaxFE = 

NP∙MaxIter. Table 1 shows the population size, max. number of generations/iterations, 

and the max. number of function evaluations for each category of problems, based on the 

number of dimensions. 

Table 1. Optimization parameters and convergence criteria used for each category of problems 

based on the number of dimensions. 

No of Dimensions, D D = 5 D = 10 D = 30 D = 50 

Population size NP  

NP = 10∙D 
50 100 300 500 

Max. iterations MaxIter  

MaxIter = 20∙D – 50 
50 150 550 950 

Max. obj. function evaluations MaxFE  

MaxFE = NP∙MaxIter 
2500 15,000 165,000 475,000 

2.2. Objective Functions 

The selected objective functions together with their suggested search range and the 

location of the global optimum x* in the design space are briefly presented in Table 2. For 

uniformity reasons, the optimum (minimum) value of all functions is zero, in all cases 

(fi(x*) = 0, for all i = 1, 2, …, 30). However, the location of the minimum, x*, varies with the 

problems. It is at x* = {0, 0, …, 0} in 24 of the functions (80% of them), while it is different 

in 6 of them, namely, F04, F11, F12, F13, F17, and F21. 

At this point, it is worth noting that some algorithms, such as PSO, tend to converge, 

at least for their free response of the associated dynamical system to the {0, 0, ..., 0} point 

and this can cause a bias in the procedure, favoring these algorithms in cases where the 

optimum lies at {0, 0, …, 0} or near that. For a fair and more general comparison, it would 

be advisable to shift and rotate the functions using proper transformations, before using 

them. On the other hand, the direct comparison of the performance of the different algo-

rithms is not the main purpose of the present study, and to keep things simple and con-

sistent we will use these functions in their original form in the paper and the MATLAB 

code implementation. 

Table 2. The 30 objective functions used in the study, search range, and location of the optimum. 

ID Function Name File Name Search Range 
Location of the Optimum 

f(x*) = 0 1 

F01 Sphere sphere_func [−100, 100]D x* = {0, 0, …, 0} 

F02 Ellipsoid ellipsoid_func [−100, 100]D x* = {0, 0, …, 0} 

F03 Sum of Different Powers sumpow_func [−10, 10]D x* = {0, 0, …, 0} 
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F04 Quintic quintic_func [−20, 20]D x* = {−1,−1, …,−1} or x* = {2,2, …,2} 

F05 Drop-Wave drop_wave_func [−5.12, 5.12]D x* = {0, 0, …, 0} 

F06 Weierstrass weierstrass_func [−0.5, 0.5]D x* = {0, 0, …, 0} 

F07 Alpine 1 alpine1_func [−10, 10]D x* = {0, 0, …, 0} 

F08 Ackley’s ackley_func [−32.768, 32.768]D x* = {0, 0, …, 0} 

F09 Griewank’s griewank_func [−100, 100]D x* = {0, 0, …, 0} 

F10 Rastrigin’s rastrigin_func [−5.12, 5.12]D x* = {0, 0, …, 0} 

F11 HappyCat happycat_func [−20, 20]D x* = {−1, −1, …, −1} 

F12 HGBat hgbat_func [−15, 15]D x* = {−1, −1, …, −1} 

F13 Rosenbrock’s rosenbrock_func [−10, 10]D x* = {1, 1, …, 1} 

F14 High Conditioned Elliptic ellipt_func [−100, 100]D x* = {0, 0, …, 0} 

F15 Discus discus_func [−100, 100]D x* = {0, 0, …, 0} 

F16 Bent Cigar bent_cigar_func [−100, 100]D x* = {0, 0, …, 0} 

F17 Perm D, Beta permdb_func [−D, D]D generally 2 x* = {1, 2, …, D} 

F18 Schaffer’s F7  schafferf7_func [−100, 100]D x* = {0, 0, …, 0} 

F19 Expanded Schaffer’s F6  expschafferf6_func [−100, 100]D x* = {0, 0, …, 0} 

F20 Rotated Hyper-ellipsoid rothellipsoid_func [−100, 100]D x* = {0, 0, …, 0} 

F21 Schwefel schwefel_func [−500, 500]D x* = {c, c, …, c} 3 

F22 Sum of Different Powers 2 sumpow2_func [−10, 10]D x* = {0, 0, …, 0} 

F23 Xin-She Yang’s 1 xinsheyang1_func [−2π, 2π]D x* = {0, 0, …, 0} 

F24 Schwefel 2.21 schwefel221_func [−100, 100]D x* = {0, 0, …, 0} 

F25 Schwefel 2.22 schwefel222_func [−100, 100]D x* = {0, 0, …, 0} 

F26 Salomon salomon_func [−20, 20]D x* = {0, 0, …, 0} 

F27 Modified Ridge modridge_func [−100, 100]D x* = {0, 0, …, 0} 

F28 Zakharov zakharov_func [−10, 10]D x* = {0, 0, …, 0} 

F29 Modified Xin-She Yang’s 3 modxinsyang3_func [−20, 20]D x* = {0, 0, …, 0} 

F30 Modified Xin-She Yang’s 5 modxinsyang5_func [−100, 100]D x* = {0, 0, …, 0} 
1 The optimum value of the objective function if f(x*) = 0, for all cases. 2 The search range [−50, 50]D 

has been used in this study for uniformity, for all numbers of dimension, since Dmax = 50. 3 Where c 

= 420.968746359982025, see also Appendix B. 

The properties, mathematical formulation, suggested search space, and the location 

of the global minimum for each function are given in detail in Appendix A, together with 

figures visualizing the functions in the simple two-dimensional (D = 2) case. The mathe-

matical functions have been implemented in MATLAB and their code has been optimized 

to achieve a faster execution time. Wherever possible, the use of “for-loops” is avoided 

and replaced with vectorized operations, as it is known that MATLAB is slow when pro-

cessing for-loops, while it is very fast and efficient in handling vectors and matrices. Only 

3 of the functions, namely F06-Weierstrass, F17-Perm D, Beta, and F19-Expanded Schaf-

fer’s F6, use some limited for-loops in their code, while the other functions use only vec-

torized operations without any for-loops. Most functions are very fast to calculate using a 

modern computer, with the exceptions of F06 (Weierstrass function) and F17 (Perm D, 

Beta function), which require relatively more time, especially for the higher dimension 

cases. 

2.3. Evaluation Metrics 

Various metrics can be used for the evaluation of the performance of an optimization 

algorithm in optimizing an objective function. In this study, we first use the average value 

of the objective function, the median value, and the standard deviation over 50 runs. Alt-

hough these can provide some information on the performance of each algorithm in each 

problem, they are not normalized metrics and they cannot be comparable among different 

functions. The functions are defined in various ranges, in different dimensions, while their 

values within the multidimensional search space also vary. For this reason, we use three 

additional normalized evaluation metrics, Δx, Δf, and Δt [30,31], in particular their median 

values over 50 runs. ∆x is the root mean square of the normalized Euclidean distance (in 
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the domain space) between the optimizer-found optimum location x and the location of 

the global optimum x*. ∆f is the associated normalized distance in the image space. The 

first two metrics are defined as follows: 

2
*

1

1 D
i i

x
i i

x x

D R




 
  

 
  (3)

*
min min min
* * *
max min max

f

f f f

f f f



 


 (4)

where Ri is the range of the i-th variable, i.e., Ri = ubi − lbi, fmin is the final objective function 

value found by an optimizer, f*min = 0 is the global optimum which is zero for all functions 

in the present study, and f*max is the maximum value of the objective function in the search 

space. The third metric, Δt, is a combination of the other two, as shown in Equation (5), 

which gives an overall evaluation of the quality of the final result. 

2 2

2

x f

t

 



  (5)

Again, the final value of the Δt evaluation metric reported in this study is the median 

value over 50 runs. Equation (5) should not be applied on the final median values of Δx 

and Δf to obtain Δt in a single step, but rather on the individual values of Δx and Δf for each 

optimization run and then take the median value of Δt over the 50 runs. 

It should be noted that the exact value of f*max for every function (for a given number 

of dimensions, D) is not known a priori. For this reason, we perform a Monte Carlo Sim-

ulation to approximate the f*max value. For every function and every number of dimen-

sions (5, 10, 30, 50), we generate 10,000 sample points in the search space, and we calculate 

the corresponding objective function values for all of them. Then, we take the maximum 

value as the f*max to apply it to Equation (4). 

3. Results 

3.1. Obtained Objective Function Values 

For all 30 objective functions, the minimum (target) value of the objective function is 

zero, as shown in Table 2. In our case, we run each algorithm 50 times, for each problem. 

The total number of optimization runs is therefore 3 × 4 × 30 × 50 = 18,000. Considering 

that the full convergence history of each individual run is recorded, together with the final 

optimum, the execution time, and other important parameters, it is obvious that the gen-

erated amount of data is massive, and it is not easy to present all these results in a simple, 

compact, and comprehensive way. 

For comparison purposes, we present in the figures: (i) the median values of the final 

optimum, over 50 runs; (ii) the median of Δf metric; (iii) the median of Δx metric; and (iv) 

the median of Δt metric, for each problem and each optimization algorithm. In case a prob-

lem has two global optima (the case of F04, Quintic function), we take into account the 

minimum Δx and Δt metrics. The results are presented in Figure 1 (for the case D = 5), 

Figure 2 (D = 10), Figure 3 (D = 30), and Figure 4 (D = 50). In all four figures, the y-axis is 

in logarithmic scale for the first subfigure which has to do with the objective function 

value, and it has been limited to the value of 105 for all cases. For the Δf, Δx, and Δt metrics 

(2nd, 3rd, and 4th subfigures), the y-axis is in normal scale with automatic min/max values. 
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Figure 1. Results (over 50 runs), for the 3 optimizers, for D = 5, for all 30 objective functions. 

 

Figure 2. Results (over 50 runs), for the 3 optimizers, for D = 10, for all 30 objective functions. 
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Figure 3. Results (over 50 runs), for the 3 optimizers, for D = 30, for all 30 objective functions. 
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More detailed results are presented in table format in Appendix C, where Table A1 

shows the results obtained from the three optimizers for the cases D = 5 and D = 10, as 

averages over 50 runs, and Table A2 shows the corresponding average results for the cases 

D = 30 and D = 50. Table A3 (cases D = 5 and D = 10) and Table A4 (cases D = 30 and D = 

50) show the results obtained from the three optimizers as median values. Tables A5 and 

A6 show the standard deviation of the results, for each algorithm and each dimension 

case. In addition, Tables A7 and A8 show the median values of the Δx metric, Tables A9 

and A10 show the median values of the Δf metric, and last, Tables A11 and A12 show the 

median values of the combined Δt metric. 

As expected, the SQP shows the least variance of the results (lowest values of the 

standard deviation), in most cases, and this is particularly true for higher dimensions. The 

SQP seems to specialize in some specific problems, such as F01, F02, F13, F14, F15, F16, 

F20, F24, and F28, where it manages to get very close to the optimum solution, in compar-

ison to the GA and PSO. The values of the Δf and Δx metrics provide a good indication of 

the performance of the algorithms and which problem is hard to solve. According to the 

Δf metric, the functions F05, F06, F08, F10, F18, F19, F21, F24, F26, F29, and F30 are hard to 

optimize, with F29 and F30 being the hardest. 

3.2. Convergence History for Each Problem and Each Optimization Algorithm 

The convergence histories for each problem and each optimization algorithm for the 

various numbers of dimensions are presented in the following figures as follows: D = 5 

(Figures 5 and 6), D = 10 (Figures 7 and 8), D = 30 (Figures 9 and 10), and D = 50 (Figures 

11 and 12), as the median values over 50 runs, for each case. The median is the 0.5 quantile 

of a data set, i.e., the middle number in a sorted list of numbers. The presentation of these 

results using the median curve is more descriptive than the one using the average curve, 

as the median is not affected by the existence of any outliers, in contrast with the average. 

It should be noted that in these convergence history plots, the y-axis (median of objective 

function values) is in the logarithmic scale, while the x-axis (number of iterations) remains 

in the normal scale. 

Although the median curve is presented in these figures, there is variation among 

the 50 independent runs of the algorithms, and it is worth also investigating the spread of 

these results. For this purpose, at the end of each optimization case (i.e., 50 runs) we cal-

culate the 0.1 quantile, Q0.1 and the 0.9 quantile, Q0.9. The 0.1 quantile is the 10th percentile, 

i.e., the point where 10% percent of the data have values less than this number. Similarly, 

the 0.9 quantile is the 90th percentile, i.e., the point where 90% percent of the data have 

values less than this number. In our case, with 50 elements (50 runs), these two correspond 

to the average of the 5th and the 6th elements (Q0.1), and the average of the 45th and the 

46th elements (Q0.9) of the ordered list containing, in ascending order, the values of the 

objective function (50 elements in total). Within this range [Q0.1, Q0.9], there are 80% of the 

values of the objective function (i.e., 40 values in our case). 

We see that in some cases this vertical line is long, i.e., there is a large spread of the 

results above and below the median value, while in other cases the line is barely drawn 

or it is not drawn at all, i.e., the spread of the results is small. Again, it should be empha-

sized that this vertical line is drawn along an axis which is presented in a logarithmic 

scale, and for this reason its top part (the part above the median) would be drawn shorter 

in length, in comparison to the bottom part (below the median), in a case where the two 

actually have the same length in absolute values. 
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Figure 5. Convergence histories of the various optimizers for 5 dimensions (D = 5), for the first 15 

objective functions, F01 to F15 (median of 50 runs). 
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Figure 6. Convergence histories of the various optimizers for 5 dimensions (D = 5), for the objective 

functions F16 to F30 (median of 50 runs). 
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Figure 7. Convergence histories of the various optimizers for 10 dimensions (D = 10), for the first 15 

objective functions, F01 to F15 (median of 50 runs). 
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Figure 8. Convergence histories of the various optimizers for 10 dimensions (D = 10), for the objec-

tive functions F16 to F30 (median of 50 runs). 

0 2000 4000 6000

100

O
b

j. 
fu

n
.

F16 - BentCigar

0 2000 4000 6000
1010

1020

1030

F17 - PermFunctionDBeta

0 2000 4000 6000
10-5

10
0

F18 - Schaffer’sF7

GA

PSO

SQP

0 2000 4000 6000

2

2.5

3

3.5

4

4.5

O
b

j. 
fu

n
.

F19 - ExpandedSchaffer’sF6

0 2000 4000 6000

10
-10

100

10
10

F20 - RotatedHyper-ellipsoid

0 2000 4000 6000

10
3

F21 - Schwefel

0 2000 4000 6000
10-20

10-10

100

10
10

O
b

j. 
fu

n
.

F22 - SumOfDifferentPowers2

0 2000 4000 6000
10-4

10-2

100

10
2
F23 - Xin-SheYang’s1

0 2000 4000 6000

10
-5

100

F24 - Schwefel2.21

0 2000 4000 6000

10
0

10
10

10
20

O
b

j. 
fu

n
.

F25 - Schwefel2.22

0 2000 4000 6000
10-1

100

10
1

F26 - Salomon

0 2000 4000 6000
10-2

10
0

10
2

F27 - ModifiedRidge

0 2000 4000 6000

Function evaluations

10
-10

100

1010

O
b

j. 
fu

n
.

F28 - Zakharov

0 2000 4000 6000

Function evaluations

1

1.00000000002

1.00000000004

1.00000000006

1.00000000008

10
4F29 - MdXSY’s3

0 2000 4000 6000

Function evaluations

1.02

1.04

1.06

1.08

1.1

1.12

10
4F30 - MdXSY’s5

Number of dimensions D=10, Functions F16-F30



Data 2022, 7, 46 15 of 52 
 

 

 

Figure 9. Convergence histories of the various optimizers for 30 dimensions (D = 30), for the first 15 

objective functions, F01 to F15 (median of 50 runs). 
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Figure 10. Convergence histories of the various optimizers for 30 dimensions (D = 30), for the objec-

tive functions F16 to F30 (median of 50 runs). 
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Figure 11. Convergence histories of the various optimizers for 50 dimensions (D = 50), for the first 

15 objective functions, F01 to F15 (median of 50 runs). 
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Figure 12. Convergence histories of the various optimizers for 50 dimensions (D = 50), for the objec-

tive functions F16 to F30 (median of 50 runs). 
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4. Discussion and Conclusions 

There are plenty of data to be analyzed from the total number of 18,000 optimization 

problems that are solved. The number of unique problems is in fact 360, since each prob-

lem is solved 50 times, to compute the average, the median, and other statistical quantities 

and evaluation metrics for every algorithm and every problem. The presented results and 

the convergence histories show both the relevant difficulty of each optimization problem, 

in the given range of dimensions, and also a comparison of the performance of the differ-

ent optimization algorithms in each problem. 

Every function has its own unique characteristics, and every optimization algorithm 

has its own special features, advantages, and drawbacks. Some functions are easily opti-

mized by all algorithms, while others pose a real challenge to some (or even all) of the 

optimizers. It appears to be impossible to establish a single criterion to determine the com-

plexity of the functions; however, we will try to provide a general overview by identifying 

some common patterns found in the results. In the following, we will use the labels “low”, 

“middle”, and “high” to estimate the function’s complexity relative to the challenge that 

they pose to each optimizer. 

The convergence history plots shown in Figures 5–12 provide an overall picture on 

how easy or difficult the process of finding the minimum value for an optimization algo-

rithm is, for each problem. If the curve shows a steady decrease towards the zero value 

early in the process, it means that the algorithm is working as intended for the specific 

problem, and it is a sign of good performance. When the curve is horizontal at a point 

above zero, it means that the algorithm is trapped in a local minimum, and it cannot move 

further. Note that the results presented as convergence history plots are median values 

over 50 runs, for all three algorithms, the GA, PSO, and SQP. The combined Δt metric can 

also give us a good indication of the success of each algorithm in each problem. 

The first major pattern found is with functions that appear to be easily solvable by 

the deterministic SQP approach but much more difficult for the GA or the PSO metaheu-

ristics. These functions are, namely: F01, F02, F04, F11, F12, F13, F14, F15, F16, F20, F24, 

F27, and F28. Such an observation is not a surprise, as these functions are convex and/or 

unimodal and pure mathematical methods usually excel in such problems, taking ad-

vantage of gradient information. Nevertheless, in most of these cases, it appears that in-

creasing the number of iterations may improve the result for the GA or PSO. These func-

tions are classified as a low level of complexity for the SQP and between the low to middle 

level for the GA and PSO. 

The next distinction is made for problems that show a good convergence history 

curve (i.e., steady decrease towards zero) in all the tested dimensions, but are considered 

only for the metaheuristics, i.e., the GA or the PSO algorithms. In other words, they are 

relatively easily solvable by at least one of the tested metaheuristic approaches. The SQP 

is not considered here to avoid comparing results based on algorithms that serve very 

different purposes. The identified functions with this characteristic are: F01, F02, F03, F04, 

F07, F09, F10, F14, F16, F20, F22, F23, F26, and F27. These functions are classified as a low 

to middle level of complexity for optimizers that are based on metaheuristic approaches. 

Functions with a high level of complexity are considered as the ones where none of 

the algorithms considered seem to have found a satisfactory solution that lays close to the 

global minimum in at least one of the tested dimensions. Functions with such properties 

are: F05, F06, F08, F17, F18, F19, F21, F23, F25, F29, and F30. Some of these functions are 

difficult only in higher dimensions (i.e., D = 30 or D = 50), while others, such as F05, F17, 

F29, and F30 are very challenging in all the tested dimensions, even for the simplest D = 5 

case. Most of these functions are nonconvex and multimodal and the optimizers get 

trapped in local minima quite often. For the last two functions, F29 and F30, although the 

optimum point is clearly visible in the 2D case, as shown in Figures A30 and A31, respec-

tively, it is extremely difficult to locate it in practice using optimization procedures. Due 

to the presence of numerous local minima and the isolation of the global minimum, these 

two problems represent difficult “needle in a haystack” optimization cases that are 
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extremely hard to optimize effectively. In both problems F29 and F30, all three optimizers 

fail to reach objective function values lower than 10,000 in all dimension cases, even for 

the simplest D = 5 case. Based on some additional tests that were performed, it appears 

that the task is very challenging even when only two dimensions are considered (case D 

= 2). 

The three optimizers, GA, PSO, and SQP, in their MATLAB implementations require 

different computational times to end up to the optimum solutions. In general, the PSO 

was found to be the fastest algorithm in all the examined problems. In most cases, the SQP 

was the slowest algorithm, requiring more time than the GA, especially when low-dimen-

sional spaces were examined (D = 5 or D = 10 cases). The needed time for each algorithm 

and each problem is recorded by the program and the relevant results are available in the 

github repository hosting the source code of the project. 

5. User Notes 

A dedicated github repository, freely available at https://github.com/vplevris/Collec-

tion30Functions (accessed on 24 February 2022), has been made for this project, where the 

interested reader can download the code, run it, and reproduce all the results and the data 

of the paper, including tables, figures, etc. A detailed instruction file is also provided in 

Word format on how to run the different modules of the code. 
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Appendix A. Detailed Description of the 30 Functions 

The properties, mathematical formulation, suggested search space, and the location 

of the global minimum are given in detail for each function in this appendix. In addition, 

the 30 functions are plotted for the simple two-dimensional case (D = 2), to provide a vis-

ual idea of their shapes and complexities. For each function, there are two plots. The one 

on the right (b) provides a general overview as the plotting area is set to the suggested 

search range according to Table 2. The plot on the left (a) is a closer look (or a zoom-in) 

into the search area by a factor of ×10 (in other words, the plot range is limited to 1/10 of 

the suggested search range). 

1. Sphere function (sphere_func) 

The Sphere function [32], also known as De Jong’s function [33] is one of the simplest 

optimization test functions, probably the simplest, easiest, and most commonly used con-

tinuous domain search problem. It is continuous, convex, unimodal, differentiable, sepa-

rable, highly symmetric, and rotationally invariant. The suggested search area is the hy-

percube [−100, 100]D. The global minimum is f01(x*) = 0 at x* = {0, 0, …, 0}. The general 

formulation of the function is: 



Data 2022, 7, 46 21 of 52 
 

 

2
01
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( )
D

i
i

f x


x  (A1)

Figure A1 depicts the function in the 2D case (D = 2). In this case, the function is 

simplified as: 

2 2
01 1 2 1 2( , )f x x x x   (A2)

 

 

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A1. F01—Sphere function in two dimensions. 

2. Ellipsoid function (ellipsoid_func) 

The Ellipsoid function [32], or Hyper-ellipsoid function or Axis Parallel Hyper-ellipsoid 

function, is similar to the sphere function and it is also known as the Weighted sphere func-

tion [33]. It is continuous, convex, differentiable, separable, and unimodal. The suggested 

search area is the hypercube [−100, 100]D. The global minimum is f02(x*) = 0 at x* = {0, 0, …, 

0}. The general formulation of the function is: 

2
02

1

( )
D

i
i

f i x


 x  (A3)

Figure A2 depicts the function in the 2D case (D = 2). In this case, the formula is: 

2 2
02 1 2 1 2( , ) 2f x x x x   (A4)

3. Sum of Different Powers function (sumpow_func) 

The Sum of Different Powers function [33] is a commonly used unimodal test function. 

The suggested search area is the hypercube [−10, 10]D. The global minimum is f03(x*) = 0 at 

x* = {0, 0, …, 0}. The general formulation of the function is: 

1

03
1

( )
D

i

i
i

f x




x  (A5)

Figure A3 depicts the function in the 2D case (D = 2). In this case, the formula is: 

2 3

03 1 2 1 2( , )f x x x x   (A6)
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(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A2. F02—Ellipsoid function in two dimensions. 

 

(a) x ∈ [−1, 1]2 (b) x ∈ [−10, 10]2 

Figure A3. F03—Sum of Different Powers function in two dimensions. 

4. Quintic function (quintic_func) 

The Quintic function has the following general formulation: 

5 4 3 2
04

1

( ) 3 4 2 10 4
D

i i i i i
i

f x x x x x


     x  (A7)

The suggested search area is the hypercube [−20, 20]D. The function has two distinct 

global minima with f04(x*) = 0 at x* = {−1, −1, …, −1} or x* = {2, 2, …, 2}. 

Figure A4 depicts the function in the 2D case (D = 2). In this case, the formula is: 

5 4 3 2 5 4 3 2
04 1 2 1 1 1 1 1 2 2 2 2 2( , ) 3 4 2 10 4 3 4 2 10 4f x x x x x x x x x x x x             (A8)
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(a) x ∈ [−2, 2]2 (b) x ∈ [−20, 20]2 

Figure A4. F04—Quintic function in two dimensions. 

5. Drop-Wave function (drop_wave_func) 

The Drop-Wave function is a multimodal function with high complexity. The sug-

gested search area is the hypercube [−5.12, 5.12]D. The global minimum is f05(x*) = 0 at x* = 

{0, 0, …, 0}. The general formulation of the function is: 

2

1

05
2

1

1 cos 12

( ) 1

0.5 2

D

i
i

D

i
i

x

f

x





 
   

  






x  (A9)

Figure A5 depicts the function in the 2D case (D = 2). In this case, the formula is: 

 
 

2 2
1 2

05 1 2 2 2
1 2

1 cos 12
( , ) 1

0.5 2

x x
f x x

x x

 
 

 
 (A10)

 

 

(a) x ∈ [−0.512, 0.512]2 (b) x ∈ [−5.12, 5.12]2 

Figure A5. F05—Drop-Wave function in two dimensions. 
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6. Weierstrass function (weierstrass_func) 

The Weierstrass function [32] is multimodal and it is continuous everywhere but only 

differentiable on a set of points. It is a computationally expensive function. The suggested 

search area is the hypercube [−0.5, 0.5]D. In this search area, the global minimum is unique, 

and it is f06(x*) = 0 at x* = {0, 0, …, 0}. Note that if a larger search area is considered, then 

there might be multiple global optima as the function is periodic. For this reason, it is 

strongly suggested to use the previously mentioned search area of [−0.5, 0.5]D. The general 

formulation of the function is: 

      06
1 0 0

( ) cos 2 0.5 cos

0.5, 3, 20

D kmax kmax
k k k k

i
i k k

f a b x D a b

a b kmax

 
  

 
   

 

  

  x
 (A11)

Figure A6 depicts the function in the 2D case (D = 2). In this case, the formula is: 

   

      

06 1 2 1
0

2
0 0

( , ) cos 2 0.5

cos 2 0.5 2 cos

0.5, 3, 20

kmax
k k

k

kmax kmax
k k k k

k k

f x x a b x

a b x a b

a b kmax



 



 

  

 

  



   
(A12)

 

 
(a) x ∈ [−0.05, 0.05]2 (b) x ∈ [−0.5, 0.5]2 

Figure A6. F06—Weierstrass function in two dimensions. 

7. Alpine 1 function (alpine1_func) 

The Alpine 1 function is a non-convex multimodal differentiable function. The sug-

gested search area is the hypercube [−10, 10]D. The global minimum is f07(x*) = 0 at x* = {0, 

0, …, 0}. The general formulation of the function is: 

 07
1

( ) sin 0.1
D

i i i
i

f x x x


 x  (A13)

Figure A7 depicts the function in the 2D case (D = 2). In this case, the formula is: 

   07 1 2 1 1 1 2 2 2( , ) sin 0.1 sin 0.1f x x x x x x x x     (A14)
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(a) x ∈ [−1, 1]2 (b) x ∈ [−10, 10]2 

Figure A7. F07—Alpine 1 function in two dimensions. 

8. Ackley’s function (ackley_func) 

The Ackley’s function [32–34] is non-convex and multimodal, having many local op-

tima with the global optimum located in a very small basin. The suggested search area is 

the hypercube [−32.768, 32.768]D. The global minimum is f08(x*) = 0 at x* = {0, 0, …, 0}. The 

general formulation of the function is: 

 2
08

1 1

1 1
( ) 20exp 0.2 exp cos 2 20

D D

i i
i i

f x x e
D D


 

   
            

 x  (A15)

Figure A8 depicts the function in the 2D case (D = 2). In this case, the formula is: 

     2 2
08 1 2 1 2 1 2( , ) 20exp 0.2 0.5 exp 0.5 cos(2 ) cos(2 ) 20f x x x x x x e          (A16)

 

 

(a) x ∈ [−3.2768, 3.2768]2 (b) x ∈ [−32.768, 32.768]2 

Figure A8. F08—Ackley’s function in two dimensions. 
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9. Griewank’s function (griewank_func) 

The Griewank’s function [32,33] is a multimodal function which has many regularly 

distributed local minima. The suggested search area is the hypercube [−100, 100]D. The 

global minimum is f09(x*) = 0 at x* = {0, 0, …, 0}. The general formulation of the function is: 

2
09

1 1

1
( ) cos 1

4000

DD
i

i
i i

x
f x

i 

 
   

 
 x  (A17)

Figure A9 depicts the function in the 2D case (D = 2). In this case, the formula is: 

 
2 2
1 2 2

09 1 2 1( , ) cos cos 1
4000 2

x x x
f x x x

  
    

 
 (A18)

 

 

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A9. F09—Griewank’s function in two dimensions. 

10. Rastrigin’s function (rastrigin_func) 

Rastrigin’s function [32–34] is highly multimodal, with many regularly distributed lo-

cal optima (roughly 10D local optima). The suggested search area is the hypercube [−5.12, 

5.12]D. The global minimum is f10(x*) = 0 at x* = {0, 0, …, 0}. The general formulation of the 

function is: 

  2
10

1

( ) 10cos 2 10
D

i i
i

f x x D


   x  (A19)

Figure A10 depicts the function in the 2D case (D = 2). In this case, the formula is: 

   2 2
10 1 2 1 2 1 2( , ) 10cos 2 10cos 2 20f x x x x x x       (A20)
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(a) x ∈ [−0.512, 0.512]2 (b) x ∈ [−5.12, 5.12]2 

Figure A10. F10—Rastrigin’s function in two dimensions. 

11. HappyCat function (happycat_func) 

The HappyCat function [32] is multimodal, with the global minimum located in curved 

narrow valley. The suggested search area is the hypercube [−20, 20]D. The global minimum 

is f11(x*) = 0 at x* = {−1, −1, …, −1}. The general formulation of the function is: 

2
1/4

2 1 1
11

1

0.5

( ) 0.5

D D

i iD
i i

i
i

x x

f x D
D

 





   
 

x  
(A21)

Figure A11 depicts the function in the 2D case (D = 2). In this case, the formula is: 

   
1/ 42 2 2 2

11 1 2 1 2 1 2 1 2( , ) 2 0.25 0.5 0.5f x x x x x x x x         (A22)

 

 

(a) x ∈ [−2, 2]2 (b) x ∈ [−20, 20]2 

Figure A11. F11—HappyCat function in two dimensions. 
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12. HGBat function (hgbat_func) 

The HGBat function [32] is similar to HappyCat function but it is even more complex. 

It is a multimodal function. The suggested search area is the hypercube [−15, 15]D. The 

global minimum is f12(x*) = 0 at x* = {−1, −1, …, −1}. The general formulation of the function 

is: 

21/22 2

2 1 1
12

1 1

0.5

( ) 0.5

D D

i iD D
i i

i i
i i

x x

f x x
D

 

 


   

      
   

 
 x  

(A23)

Figure A12 depicts the function in the 2D case (D = 2). In this case, the formula is: 

       
1/22 22 2 2 2

12 1 2 1 2 1 2 1 2 1 2( , ) 0.25 0.5 0.5f x x x x x x x x x x          (A24)

 

 
(a) x ∈ [−1.5, 1.5]2 (b) x ∈ [−15, 15]2 

Figure A12. F12—HGBat function in two dimensions. 

13. Rosenbrock’s function (rosenbrock_func) 

The Rosenbrock’s function [33] is a classic optimization problem also known as Rosen-

brock’s valley or Banana function. The global optimum lays inside a long, narrow, parabolic 

shaped flat valley. Finding the valley is trivial, but convergence to the global optimum is 

difficult. The suggested search area is the hypercube [−10, 10]D. The global minimum is 

f13(x*) = 0 at x* = {1, 1, …, 1}. The general formulation of the function is: 

    
1

2 22
13 1

1

( ) 100 1
D

i i i
i

f x x x





   x  (A25)

Figure A13 depicts the function in the 2D case (D = 2). In this case, the formula is: 

   
2 22

13 1 2 2 1 1( , ) 100 1f x x x x x     (A26)
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(a) x ∈ [−1, 1]2 (b) x ∈ [−10, 10]2 

Figure A13. F13—Rosenbrock’s function in two dimensions. 

14. High Conditioned Elliptic function (ellipt_func) 

The High Conditioned Elliptic function [32] is a unimodal, globally quadratic, and ill-

conditioned function with smooth local irregularities. The suggested search area is the 

hypercube [−100, 100]D. The global minimum is f14(x*) = 0 at x* = {0, 0, …, 0}. The general 

formulation of the function is: 

1
6 21

14
1

( ) (10 )
iD
D

i
i

f x






 
  

 
x  (A27)

Figure A14 depicts the function in the 2D case (D = 2). In this case, the formula is: 

2 6 2
14 1 2 1 2( , ) 10f x x x x    (A28)

 

 

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A14. F14—High Conditioned Elliptic function in two dimensions. 
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15. Discus function (discus_func) 

The Discus function is a globally quadratic unimodal function with smooth local ir-

regularities where a single direction in the search space is thousands of times more sensi-

tive than all others (conditioning is about 106). The suggested search area is the hypercube 

[−100, 100]D. The global minimum is f15(x*) = 0 at x* = {0, 0, …, 0}. The general formulation 

of the function is: 

6 2 2
15 1

2

( ) 10
D

i
i

f x x


 x  (A29)

Figure A15 depicts the function in the 2D case (D = 2). In this case, the formula is: 

6 2 2
15 1 2 1 2( , ) 10f x x x x   (A30)

 

 

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A15. F15—Discus function in two dimensions. 

16. Bent Cigar function (bent_cigar_func) 

The Bent Cigar function is unimodal and nonseparable, with the optimum located in 

a smooth, but very narrow valley. The suggested search area is the hypercube [−100, 100]D. 

The global minimum is f16(x*) = 0 at x* = {0, 0, …, 0}. The general formulation of the function 

is: 

2 6 2
16 1

2

( ) 10
D

i
i

f x x


  x  (A31)

Figure A16 depicts the function in the 2D case (D = 2). In this case, the formula is: 

2 6 2
16 1 2 1 2( , ) 10f x x x x   (A32)

We notice that in the 2D case, functions f14, f15, and f16 give essentially the same opti-

mization problem, but for D > 2 this is not the case. 
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(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A16. F16—Bent Cigar function in two dimensions. 

17. Perm D, Beta function (permdb_func) 

The Perm D, Beta function is a unimodal function. The suggested search area is the 

hypercube [−D, D]D. This is because the global minimum f17(x*) = 0 is at x* = {1, 2, …, D}, 

to ensure that it will always lie inside the search area. In the present study, since D = 50 is 

the max. number of dimensions considered, and to keep things consistent, we will use the 

search range [−50, 50]D for all the cases considered (for all dimensions). 

The general formulation of the function is: 

 
2

17
1 1

( ) 1

0.5

i
D D

ji

i j

x
f j

j




 

   
          



 x
 (A33)

Figure A17 depicts the function in the 2D case (D = 2) for the search range considered 

[−50, 50]2 and the zoomed case [−5, 5]2. In this case, the formula is: 

      

      

2

17 1 2 1 2

2
2 2
1 2

( , ) 1 1 2 0.5 1

1 1 4 0.25 1

0.5

f x x x x

x x

 

 



      

    



 
(A34)

By setting β = 0.5 in the 2D case, we obtain: 

   
22 2 2

17 1 2 1 2 1 2( , ) 1.5 1.25 4 1.5 1.125 6f x x x x x x       (A35)
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(a) x ∈ [−5, 5]2 (b) x ∈ [−50, 50]2 

Figure A17. F17—Perm D, Beta function in two dimensions. 

For illustration purposes, Figure A18 depicts the same 2D function in the range [−20, 

20]2 and the zoomed case [−2, 2]2. 

 

(a) x ∈ [−2, 2]2 (b) x ∈ [−20, 20]2 

Figure A18. F17—Perm D, Beta function in two dimensions (closer look). 

18. Schaffer’s F7 function (schafferf7_func) 

The Schaffer’s F7 function [32,34] is multimodal and nonseparable. The suggested 

search area is the hypercube [−100, 100]D. The global minimum is f18(x*) = 0 at x* = {0, 0, …, 

0}. The general formulation of the function is: 

 
21

2 1/5
18

1

2 2
1

1
( ) sin (50 )

1

D

i i i
i

i i i

f s s s
D

s x x







 
   

 

x
 (A36)

Figure A19 depicts the function in the 2D case (D = 2). In this case, the formula is: 
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 
2

2 1/5
18 1 2 1 1 1

2 2
1 1 2

1
( , ) sin (50 )

1
f x x s s s

D

s x x

 
  

 

 

 (A37)

 

 

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A19. F18—Schaffer’s F7 function in two dimensions. 

19. Expanded Schaffer’s F6 function (expschafferf6_func) 

The Expanded Schaffer’s F6 function is a multidimensional function based on the Schaf-

fer’s F6 function [34]. It is multimodal and nonseparable. The suggested search area is the 

hypercube [−100, 100]D. The global minimum is f19(x*) = 0 at x* = {0, 0, …, 0}. The general 

formulation of the function is: 

 

 
 

1

19 1 1
1

2 2 2

22 2

( ) ( , ) ( , )

sin 0.5
( , ) 0.5

1 0.001( )

D

i i D
i

f g x x g x x

x y
g x y

x y






 

 
 

 

x

 (A38)

Figure A20 depicts the function in the 2D case (D = 2). In this case, the formula is: 

 
 

2 2 2
1 2

19 1 2 22 2
1 2

2 sin 1
( , ) 1

1 0.001( )

x x
f x x

x x

 
 

 
 (A39)
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(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A20. F19—Expanded Schaffer’s F6 function in two dimensions. 

20. Rotated Hyper-ellipsoid function (rothellipsoid_func) 

The Rotated Hyper-ellipsoid function is similar to the Ellipsoid function. It is continu-

ous, convex, and unimodal. The suggested search area is the hypercube [−100, 100]D. The 

global minimum is f20(x*) = 0 at x* = {0, 0, …, 0}. The general formulation of the function is: 

 2 2
20

1 1 1

( ) 1
D i D

j i
i j i

f x D i x
  

    x  (A40)

Figure A21 depicts the function in the 2D case (D = 2). In this case, the formula is: 

2 2
20 1 2 1 2( , ) 2f x x x x   (A41)

 

 

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A21. F20—Rotated Hyper-ellipsoid function in two dimensions. 
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21. Schwefel function (schwefel_func) 

The Schwefel function [33,34] is quite complex, with multiple local minima. The sug-

gested search area is the hypercube [−500, 500]D. The global minimum is f21(x*) = 0 at x* = 

{c, c, …, c}, where c = 420.968746359982025. The general formulation of the function is: 

 21
1

( ) sin 418.9828872724337
D

i i
i

f x x D


   x  (A42)

In the literature, the function is also found with the constant value 418.9829∙D where 

the optimum location is reported with c = 420.9687 [34]. This formulation is not very pre-

cise. For details on this and a relevant detailed investigation of the function, please see 

Appendix B. 

Figure A22 depicts the function in the 2D case (D = 2). In this case, the formula is: 

   21 1 2 1 1 2 2( , ) sin sin 837.9657745448674f x x x x x x    (A43)

 

 

(a) x ∈ [−50, 50]2 (b) x ∈ [−500, 500]2 

Figure A22. F21—Schwefel function in two dimensions. 

22. Sum of Different Powers 2 function (sumpow2_func) 

The Sum of Different Powers 2 function [32] is similar to the Sum of Different Powers 

function, but its formulation is slightly different. It is unimodal and nonseparable, with 

different sensitives for the various design variables. The suggested search area is again 

the hypercube [−10, 10]D. The global minimum is f22(x*) = 0 at x* = {0, 0, …, 0}. The general 

formulation of the function is: 

1
2 4

1
22

1

( )
D i

D
i

i

f x







 x  (A44)

Figure A23 depicts the function in the 2D case (D = 2). In this case, the formula is: 

2 6

22 1 2 1 2( , )f x x x x   (A45)
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(a) x ∈ [−1, 1]2 (b) x ∈ [−10, 10]2 

Figure A23. F22—Sum of Different Powers 2 function in two dimensions. 

23. Xin-She Yang’s 1 function (xinsheyang1_func) 

The Xin-She Yang’s 1 function [33] is nonconvex and nonseparable. The function is not 

smooth, and its derivatives are not well-defined at the optimum. The suggested search 

area is the hypercube [−2π, 2π]D. The global minimum is f23(x*) = 0 at x* = {0, 0, …, 0}. The 

general formulation of the function is: 

2
23

1 1

( ) exp sin( )
D D

i i
i i

f x x
 

   
     
   
 x  (A46)

Figure A24 depicts the function in the 2D case (D = 2). In this case, the formula is: 

   2 2
23 1 2 1 2 1 2( , ) exp sin( ) sin( )f x x x x x x      (A47)

 

 

(a) x ∈ [−π/5, π/5]2 (b) x ∈ [−2π, 2π]2 

Figure A24. F23—Xin-She Yang’s 1 function in two dimensions. 
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24. Schwefel 2.21 function (schwefel221_func) 

The Schwefel 2.21 function is convex, continuous, and unimodal. The suggested search 

area is the hypercube [−100, 100]D. The global minimum is f24(x*) = 0 at x* = {0, 0, …, 0}. The 

general formulation of the function is: 

24
1, ,

( ) max i
i D

f x





x  (A48)

Figure A25 depicts the function in the 2D case (D = 2). In this case, the formula is: 

 24 1 2 1 2( , ) max ,f x x x x  (A49)

 

 

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A25. F24—Schwefel 2.21 function in two dimensions. 

25. Schwefel 2.22 function (schwefel222_func) 

The Schwefel 2.22 function is convex, continuous, separable, and unimodal. The sug-

gested search area is the hypercube [−100, 100]D. The global minimum is f25(x*) = 0 at x* = 

{0, 0, …, 0}. The general formulation of the function is: 

25
1 1

( )
DD

i i
i i

f x x
 

  x  (A50)

Figure A26 depicts the function in the 2D case (D = 2). In this case, the formula is: 

25 1 2 1 2 1 2( , )f x x x x x x     (A51)
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(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A26. F25—Schwefel 2.22 function in two dimensions. 

26. Salomon function (salomon_func) 

The Salomon function is nonconvex, continuous, multimodal, and nonseparable. The 

suggested search area is the hypercube [−20, 20]D. The global minimum is f26(x*) = 0 at x* = 

{0, 0, …, 0}. The general formulation of the function is: 

2 2
26

1 1

( ) 1 cos 2 0.1
D D

i i
i i

f x x
 

 
    

 
 x  (A52)

Figure A27 depicts the function in the 2D case (D = 2). In this case, the formula is: 

 2 2 2 2
26 1 2 1 2 1 2( , ) 1 cos 2 0.1f x x x x x x      (A53)

 

 

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A27. F26—Salomon function in two dimensions. 
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27. Modified Ridge function (modridge_func) 

The original Ridge function has the form 

2
1

2

( )

aD

Ridge i
i

f x d x


 
   

 
x  (A54)

In this formula, d and a are constants and are usually set to d = 1, a = 0.1. Other values 

(d = 2, a = 0.5, etc) can be also found in the literature. The Modified Ridge function pro-

posed in this study has the form: 

0.1

2
27 1

2

( ) 2
D

i
i

f x x


 
    

 
x  (A55)

The suggested search area is the hypercube [−100, 100]D. The global minimum is 

f27(x*) = 0 at x* = {0, 0, …, 0}. 

Figure A28 depicts the function in the 2D case (D = 2). In this case, the formula is: 

0.2
27 1 2 1 2( , ) 2f x x x x    (A56)

 

 

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A28. F27—Ridge function in two dimensions. 

28. Zakharov function (zakharov_func) 

The Zakharov function is continuous and unimodal. The suggested search area is the 

hypercube [−10, 10]D. The global minimum is f28(x*) = 0 at x* = {0, 0, …, 0}. The general 

formulation of the function is: 

2 4

2
28

1 1 1

( ) 0.5 0.5
D D D

i i i
i i i

f x i x i x
  

   
         

   
  x  (A57)

The suggested search area is the hypercube [−10, 10]D. The global minimum is f28(x*) 

= 0 at x* = {0, 0, …, 0}. 

Figure A29 depicts the function in the 2D case (D = 2). In this case, the formula is: 

   
2 42 2

28 1 2 1 2 1 2 1 2( , ) 0.5 0.5f x x x x x x x x         (A58)
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(a) x ∈ [−1, 1]2 (b) x ∈ [−10, 10]2 

Figure A29. F28—Zakharov function in two dimensions. 

29. Modified Xin-She Yang’s 3 function (modxinsyang3_func) 

The original Xin-She Yang’s 3 function is the third function proposed in the excellent 

work by Xin-She Yang [33]. The Modified Xin-She Yang’s 3 function proposed in this study 

is based on that, with some modifications. It is a standing-wave function with a defect, 

which is nonconvex and nonseparable, with multiple local minima, and a unique global 

minimum. The suggested search area is the hypercube [−20, 20]D. The global minimum is 

f29(x*) = 0 at x* = {0, 0, …, 0}. The general formulation of the function is: 

10

4 2 2
29

1 1 1

( ) 10 1 exp 2 exp cos ( )
15

DD D
i

i i
i i i

x
f x x

  

                           
  x (A59)

Figure A30 depicts the function in the 2D case (D = 2). The function is simplified as: 

   
10 10

4 2 2 2 21 2
29 1 2 1 2 1 2( , ) 10 1 exp 2 exp cos ( ) cos ( )

15 15

x x
f x x x x x x

                              

 (A60)
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(a) x ∈ [−2, 2]2 (b) x ∈ [−20, 20]2 

Figure A30. F29—Modified Xin-She Yang’s 3 function in two dimensions. 

30. Modified Xin-She Yang’s 5 function (modxinsyang5_func) 

The original Xin-She Yang’s 5 function is the fifth function proposed in the work by 

Xin-She Yang [33]. The Modified Xin-She Yang’s 5 function proposed in this study is based 

on that, with some minor modifications. The suggested search area is the hypercube [−100, 

100]D. The global minimum is f30(x*) = 0 at x* = {0, 0, …, 0}. The general formulation of the 

function is: 

 4 2 2 2
30

1 1 1

( ) 10 1 sin ( ) exp exp sin
D D D

i i i
i i i

f x x x
  

     
          

     
  x  (A61)

The function has multiple local minima, but the global minimum is unique. Figure 

A31 depicts the function in the 2D case (D = 2) where its landscape looks like a wonderful 

candlestick [33]. The function is simplified as: 

       4 2 2 2 2 2 2
30 1 2 1 2 1 2 1 2( , ) 10 1 sin ( ) sin ( ) exp exp sin sinf x x x x x x x x         

  
 (A62)

 

 

(a) x ∈ [−10, 10]2 (b) x ∈ [−100, 100]2 

Figure A31. F30—Modified Xin-She Yang’s 5 function in two dimensions. 
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Appendix B. Investigation of the Schwefel Function (F21) 

In the literature [33,34], the Schwefel function (F21 in this study) is usually found 

with the value 418.9829∙D in its formula and the optimum location is reported with c = 

420.9687. This formulation is not very precise, compared to the formulation described here 

in the description of the function. Indeed, to find the correct values, one can take the one-

dimensional case (D = 1) and find the minimum of the function 

siny x x   (A63)

in the search area [−500, 500]. A plot of the function of Equation (A63) is presented in 

Figure A32. 

 

Figure A32. Plot of the function siny x x   for −500 < x < 500. 

As shown in the figure, the minimum is obviously within the range [400, 500] for x. 

To find the exact location of the minimum, we can omit the absolute term (since x > 0 in 

this range) and find the value of x ∈ [400, 500] that makes the derivative of the function 

equal to zero. In this case, we have: 

( ) sin for 0

cos( )
( ) sin for 0

2

y x x x x

x x
y x x x

  

    
 (A64)

By using MATLAB and the function “vpasolve”, we can numerically find the root of 

y’(x) for x ∈ [400, 500] as follows (code in MATLAB): 

syms x y 

y = -x*sin(sqrt(x)); 

yd = diff(y,x); 

s = vpasolve(yd = = 0, x, [400 500]) 

Then we obtain the result: 

s = 420.96874635998202731184436501869 

We substitute the above s value in the function (as x), to find the minimum value of 

f, as follows: 

fmin = subs(f,x,s) 

and we obtain 

fmin(x) = −418.9828872724337062747864351956 

-500 -400 -300 -200 -100 0 100 200 300 400 500

x

-400

-300

-200

-100

0

100

200

300

400
-x sin(abs(x)

1/2
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Practically, there is no need to take into account so many decimal places. In the for-

mulation proposed in this study, the formula for f20 is the following 

 21
1

( ) sin 418.9828872724337
D

i i
i

f x x D


   x  (A65)

For the above function, the global minimum is f21(x*) = 0 at x* = {c, c, …, c}, where c = 

420.968746359982025. 

Appendix C. Tables with the Numerical Results 

Table A1. Average values (over 50 runs) of the optimum results, for the 3 optimizers, for dimensions 

D = 5 and D = 10. 

ID Function Name 
D = 5 D = 10 

GA PSO SQP GA PSO SQP 

F01 Sphere 7.59E-04 7.37E-03 1.38E-14 2.52E-04 5.65E-08 1.05E-15 

F02 Ellipsoid 1.02E-03 2.86E-02 9.16E-14 1.00E-03 2.49E-07 1.44E-13 

F03 Sum of Different Powers 4.25E-05 2.70E-07 5.68E-11 1.85E-06 1.52E-14 2.64E-08 

F04 Quintic 2.12E-01 2.42E-01 3.78E-06 1.43E-01 2.47E-03 2.27E-06 

F05 Drop-Wave 1.86E-01 6.38E-02 8.61E-01 4.61E-01 1.45E-01 9.18E-01 

F06 Weierstrass 3.21E-01 4.78E-02 5.89E+00 7.41E-01 1.13E-01 1.20E+01 

F07 Alpine 1 8.21E-03 2.32E-02 2.52E-06 1.67E-03 8.92E-04 1.58E-06 

F08 Ackley’s 2.60E-01 3.21E-02 1.89E+01 1.48E-01 4.63E-02 1.95E+01 

F09 Griewank’s 1.48E-02 1.58E-01 3.35E+00 1.10E-02 1.46E-01 6.38E-01 

F10 Rastrigin’s 5.93E-01 3.49E+00 2.55E+01 1.10E+00 1.10E+01 6.77E+01 

F11 HappyCat 4.66E-01 1.89E-01 4.18E-02 9.48E-01 2.39E-01 1.56E-01 

F12 HGBat 5.27E-01 2.65E-01 4.90E-01 8.87E-01 4.04E-01 5.20E-01 

F13 Rosenbrock’s 2.57E+00 2.54E+00 5.50E-01 6.50E+00 1.35E+01 4.78E-01 

F14 High Cond. Elliptic 7.39E+01 6.00E+01 3.50E-11 4.88E+01 5.44E+03 3.57E-11 

F15 Discus 5.80E+02 1.86E+02 1.50E-11 1.92E+03 7.16E-06 7.18E-12 

F16 Bent Cigar 7.71E+02 2.42E+03 1.16E-10 9.10E+01 3.15E+01 9.83E-11 

F17 Perm D, Beta 3.86E+03 7.69E+02 7.81E+01 4.77E+15 9.91E+14 8.35E+15 

F18 Schaffer’s F7  3.08E-01 1.01E-01 7.12E+01 3.76E-01 1.50E-01 7.24E+01 

F19 Expanded Schaffer’s F6  9.11E-01 7.40E-01 2.32E+00 2.40E+00 2.76E+00 4.64E+00 

F20 Rotated Hyper-ellipsoid 2.03E-03 9.91E-03 6.24E-14 6.20E-04 1.30E-07 8.83E-14 

F21 Schwefel 2.58E+02 2.84E+02 9.63E+02 5.80E+02 9.50E+02 1.83E+03 

F22 Sum of Dif. Powers 2 5.61E-05 8.71E-07 9.31E-13 1.54E-06 7.59E-14 1.91E-10 

F23 Xin-She Yang’s 1 4.84E-02 9.07E-02 1.68E-01 8.94E-04 2.60E-03 2.56E-03 

F24 Schwefel 2.21 4.13E-01 6.92E-02 2.81E-07 1.26E+00 2.60E-02 2.59E-07 

F25 Schwefel 2.22 2.24E-02 2.51E-01 5.09E+00 5.87E-02 4.81E-04 6.53E+01 

F26 Salomon 2.50E-01 1.06E-01 2.16E+00 3.08E-01 2.10E-01 3.11E+00 

F27 Modified Ridge 8.25E-01 1.09E+00 6.08E-02 7.40E-01 3.32E-01 8.00E-02 

F28 Zakharov 2.50E-01 2.54E-03 6.01E-14 1.95E+00 2.03E+00 8.05E-14 

F29 Mod. Xin-She Yang’s 3 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 

F30 Mod. Xin-She Yang’s 5 9.61E+03 1.00E+04 1.15E+04 1.00E+04 1.00E+04 1.03E+04 
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Table A2. Average values (over 50 runs) of the optimum results, for the 3 optimizers, for dimensions 

D = 30 and D = 50. 

ID Function Name 
D = 30 D = 50 

GA PSO SQP GA PSO SQP 

F01 Sphere 1.77E-02 3.43E-10 3.38E-15 2.34E-01 3.46E-06 6.00E-15 

F02 Ellipsoid 2.63E-01 9.61E-09 3.26E-13 5.35E+00 1.12E-04 2.87E-13 

F03 Sum of Different Powers 1.30E-07 2.33E-11 1.93E+10 6.21E-06 1.98E+00 3.64E+25 

F04 Quintic 5.76E+00 3.20E-03 6.61E-06 2.06E+01 1.89E-01 1.76E-05 

F05 Drop-Wave 8.67E-01 7.27E-01 9.85E-01 9.30E-01 9.10E-01 9.72E-01 

F06 Weierstrass 7.89E+00 4.47E+00 3.60E+01 1.88E+01 1.45E+01 5.70E+01 

F07 Alpine 1 3.81E-02 2.05E-06 4.47E-06 2.59E-01 2.72E-04 7.77E-06 

F08 Ackley’s 9.51E-01 2.02E+00 1.95E+01 1.52E+00 5.37E+00 1.95E+01 

F09 Griewank’s 4.43E-03 1.50E-02 1.48E-14 9.88E-03 3.86E-02 1.06E-14 

F10 Rastrigin’s 8.32E+00 8.37E+01 1.78E+02 2.44E+01 1.51E+02 2.84E+02 

F11 HappyCat 1.07E+00 4.86E-01 7.18E-02 1.12E+00 5.81E-01 6.50E-02 

F12 HGBat 1.18E+00 6.06E-01 5.00E-01 1.25E+00 5.86E-01 5.00E-01 

F13 Rosenbrock’s 3.88E+01 5.27E+01 1.36E+00 9.74E+01 9.53E+01 7.97E-01 

F14 High Cond. Elliptic 1.72E+02 5.10E+01 1.46E-11 1.05E+03 5.90E+02 7.28E-12 

F15 Discus 1.03E+03 2.00E+02 5.12E-12 2.24E+03 3.03E-07 6.01E-13 

F16 Bent Cigar 1.26E+04 1.10E-03 1.62E-10 2.08E+05 3.48E-01 5.71E-10 

F17 Perm D, Beta 7.45E+86 7.19E+82 1.10E+80 8.96E+161 6.44E+162 2.34E+168 

F18 Schaffer’s F7  5.36E-01 7.84E+00 7.59E+01 6.83E-01 1.80E+01 7.56E+01 

F19 Expanded Schaffer’s F6  1.08E+01 1.17E+01 1.39E+01 1.94E+01 2.10E+01 2.33E+01 

F20 Rotated Hyper-ellipsoid 3.74E-01 4.43E-09 2.14E-13 6.73E+00 2.53E-05 3.00E-13 

F21 Schwefel 3.42E+03 4.07E+03 5.77E+03 7.10E+03 7.20E+03 9.96E+03 

F22 Sum of Dif. Powers 2 3.01E-04 1.70E-14 1.05E-06 1.33E-02 7.21E-11 1.01E-04 

F23 Xin-She Yang’s 1 7.13E-12 2.56E-11 7.03E-10 2.47E-20 1.35E-19 1.02E-10 

F24 Schwefel 2.21 2.03E+00 1.34E+01 4.81E-07 2.17E+00 3.34E+01 8.34E-07 

F25 Schwefel 2.22 1.10E+00 2.20E+00 1.12E+08 5.80E+00 7.00E+00 5.61E+55 

F26 Salomon 5.78E-01 1.05E+00 5.85E+00 7.54E-01 2.11E+00 7.31E+00 

F27 Modified Ridge 1.34E+00 2.18E-01 8.87E-02 1.73E+00 4.57E-01 1.59E-01 

F28 Zakharov 2.48E+02 2.41E+02 1.35E-13 8.32E+02 6.12E+02 1.40E-12 

F29 Mod. Xin-She Yang’s 3 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 

F30 Mod. Xin-She Yang’s 5 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 

Table A3. Median values (over 50 runs) of the optimum results, for the 3 optimizers, for dimensions 

D = 5 and D = 10. 

ID Function Name 
D = 5 D = 10 

GA PSO SQP GA PSO SQP 

F01 Sphere 3.48E-04 6.70E-04 3.77E-16 7.29E-05 1.95E-08 6.72E-16 

F02 Ellipsoid 4.27E-04 3.72E-03 1.59E-14 2.46E-04 2.40E-08 4.64E-14 

F03 Sum of Different Powers 1.23E-05 7.91E-09 1.71E-15 1.59E-07 1.72E-17 1.78E-12 

F04 Quintic 1.56E-01 1.27E-01 1.02E-06 7.70E-02 3.41E-04 2.02E-06 

F05 Drop-Wave 2.14E-01 6.38E-02 9.08E-01 5.22E-01 2.14E-01 9.57E-01 

F06 Weierstrass 2.59E-01 3.78E-02 5.68E+00 6.27E-01 1.48E-03 1.19E+01 

F07 Alpine 1 2.89E-03 8.94E-04 7.31E-07 8.03E-04 5.09E-06 1.35E-06 

F08 Ackley’s 2.80E-02 1.35E-02 1.92E+01 1.04E-02 4.93E-05 1.96E+01 

F09 Griewank’s 9.05E-05 1.41E-01 3.29E+00 6.29E-06 8.27E-02 6.52E-02 

F10 Rastrigin’s 6.30E-02 2.93E+00 2.24E+01 9.95E-01 8.95E+00 6.57E+01 

F11 HappyCat 3.67E-01 1.73E-01 3.72E-02 1.00E+00 2.42E-01 1.29E-01 

F12 HGBat 4.29E-01 2.43E-01 4.99E-01 8.92E-01 3.88E-01 5.00E-01 
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F13 Rosenbrock’s 2.07E+00 1.88E+00 5.29E-11 4.05E+00 6.03E+00 6.02E-11 

F14 High Cond. Elliptic 1.58E+01 1.46E+00 4.69E-11 1.69E+00 3.23E-04 2.03E-11 

F15 Discus 6.04E+00 4.27E-02 1.18E-12 5.51E-01 1.81E-07 3.50E-13 

F16 Bent Cigar 2.31E+02 2.78E+02 5.35E-11 1.84E+01 1.14E-02 1.61E-11 

F17 Perm D, Beta 7.01E+02 1.60E+02 1.13E-01 1.37E+15 1.60E+14 5.98E+14 

F18 Schaffer’s F7  1.12E-01 2.62E-02 7.55E+01 1.92E-01 4.29E-03 7.61E+01 

F19 Expanded Schaffer’s F6  9.48E-01 7.07E-01 2.43E+00 2.46E+00 2.78E+00 4.73E+00 

F20 Rotated Hyper-ellipsoid 7.04E-04 2.34E-03 1.18E-14 2.37E-04 4.37E-08 3.27E-14 

F21 Schwefel 2.47E+02 2.38E+02 9.98E+02 5.83E+02 9.51E+02 1.83E+03 

F22 Sum of Dif. Powers 2 9.14E-06 8.51E-09 9.93E-16 2.93E-07 2.00E-15 4.16E-14 

F23 Xin-She Yang’s 1 4.18E-02 9.14E-02 2.09E-01 8.53E-04 2.62E-03 2.62E-03 

F24 Schwefel 2.21 1.56E-01 4.51E-02 2.77E-07 1.13E+00 1.74E-02 2.32E-07 

F25 Schwefel 2.22 1.93E-02 4.86E-02 1.09E-01 1.24E-02 1.88E-04 5.64E+01 

F26 Salomon 2.00E-01 9.99E-02 2.50E+00 3.00E-01 2.00E-01 3.25E+00 

F27 Modified Ridge 8.25E-01 1.08E+00 4.80E-02 7.30E-01 3.17E-01 6.13E-02 

F28 Zakharov 5.72E-03 3.89E-04 4.06E-14 2.44E-01 1.84E-03 6.49E-14 

F29 Mod. Xin-She Yang’s 3 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 

F30 Mod. Xin-She Yang’s 5 1.00E+04 1.00E+04 1.13E+04 1.00E+04 1.00E+04 1.00E+04 

Table A4. Median values (over 50 runs) of the optimum results, for the 3 optimizers, for dimensions 

D = 30 and D = 50. 

ID Function Name 
D = 30 D = 50 

GA PSO SQP GA PSO SQP 

F01 Sphere 1.41E-02 5.30E-11 2.84E-15 1.84E-01 7.70E-09 2.55E-15 

F02 Ellipsoid 1.64E-01 6.66E-10 7.86E-14 3.75E+00 2.69E-07 1.48E-13 

F03 Sum of Different Powers 1.63E-08 1.84E-17 4.73E+07 7.15E-08 9.87E-08 1.44E+22 

F04 Quintic 3.77E+00 1.09E-04 6.30E-06 2.05E+01 3.78E-03 1.14E-05 

F05 Drop-Wave 8.73E-01 7.70E-01 9.85E-01 9.31E-01 9.20E-01 9.91E-01 

F06 Weierstrass 7.52E+00 4.24E+00 3.62E+01 1.86E+01 1.43E+01 5.71E+01 

F07 Alpine 1 2.34E-02 3.99E-07 4.41E-06 2.30E-01 1.53E-05 7.75E-06 

F08 Ackley’s 1.06E+00 2.01E+00 1.96E+01 1.58E+00 4.67E+00 1.96E+01 

F09 Griewank’s 7.26E-04 9.86E-03 1.49E-14 7.64E-03 9.86E-03 1.05E-14 

F10 Rastrigin’s 6.73E+00 7.21E+01 1.73E+02 2.25E+01 1.38E+02 2.70E+02 

F11 HappyCat 1.06E+00 4.46E-01 5.49E-02 1.12E+00 5.69E-01 5.54E-02 

F12 HGBat 1.18E+00 5.24E-01 5.00E-01 1.27E+00 4.10E-01 5.00E-01 

F13 Rosenbrock’s 1.52E+01 2.94E+01 6.33E-11 9.95E+01 9.42E+01 6.59E-11 

F14 High Cond. Elliptic 3.79E+01 3.47E-06 5.14E-12 5.98E+02 6.28E-04 3.86E-12 

F15 Discus 1.25E-01 7.42E-10 4.47E-13 7.54E-01 5.49E-08 2.65E-13 

F16 Bent Cigar 8.42E+03 8.94E-05 4.46E-11 1.50E+05 1.20E-02 5.15E-11 

F17 Perm D, Beta 6.98E+82 6.14E+82 7.92E+78 3.62E+160 2.62E+162 1.88E+160 

F18 Schaffer’s F7  4.97E-01 6.93E+00 7.67E+01 6.67E-01 1.83E+01 7.56E+01 

F19 Expanded Schaffer’s F6  1.10E+01 1.20E+01 1.40E+01 1.96E+01 2.11E+01 2.33E+01 

F20 Rotated Hyper-ellipsoid 1.89E-01 8.18E-10 1.49E-13 5.87E+00 4.16E-07 1.19E-13 

F21 Schwefel 3.48E+03 4.16E+03 5.93E+03 6.91E+03 7.10E+03 9.99E+03 

F22 Sum of Dif. Powers 2 1.28E-04 1.68E-15 4.37E-07 5.83E-03 1.98E-12 7.28E-05 

F23 Xin-She Yang’s 1 6.75E-12 2.53E-11 4.41E-10 2.35E-20 1.36E-19 3.38E-12 

F24 Schwefel 2.21 2.00E+00 1.28E+01 2.86E-07 2.19E+00 3.38E+01 6.43E-07 

F25 Schwefel 2.22 9.57E-01 1.54E-04 3.49E+04 5.71E+00 2.96E-02 4.97E+23 

F26 Salomon 6.00E-01 1.10E+00 6.10E+00 7.00E-01 2.10E+00 7.85E+00 

F27 Modified Ridge 1.33E+00 2.06E-01 6.10E-02 1.72E+00 3.51E-01 1.23E-01 

F28 Zakharov 2.38E+02 2.52E+02 8.77E-14 8.52E+02 5.98E+02 1.70E-13 
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F29 Mod. Xin-She Yang’s 3 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 

F30 Mod. Xin-She Yang’s 5 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 1.00E+04 

Table A5. Standard deviation (over 50 runs) of the optimum results, for the 3 optimizers, for dimen-

sions D = 5 and D = 10. 

ID Function Name 
D = 5 D = 10 

GA PSO SQP GA PSO SQP 

F01 Sphere 1.10E-03 1.94E-02 4.00E-14 5.12E-04 1.29E-07 2.15E-15 

F02 Ellipsoid 1.43E-03 9.20E-02 1.65E-13 2.56E-03 5.30E-07 1.88E-13 

F03 Sum of Different Powers 6.83E-05 1.01E-06 2.80E-10 5.03E-06 7.80E-14 1.22E-07 

F04 Quintic 1.46E-01 2.93E-01 1.48E-05 2.28E-01 7.64E-03 1.20E-06 

F05 Drop-Wave 1.17E-01 7.59E-07 1.57E-01 1.40E-01 8.17E-02 1.61E-01 

F06 Weierstrass 2.32E-01 4.01E-02 1.22E+00 6.43E-01 3.62E-01 2.38E+00 

F07 Alpine 1 1.33E-02 8.67E-02 7.94E-06 2.23E-03 5.87E-03 1.30E-06 

F08 Ackley’s 7.18E-01 4.49E-02 1.64E+00 3.72E-01 2.26E-01 3.44E-01 

F09 Griewank’s 3.78E-02 8.99E-02 1.93E+00 3.79E-02 1.61E-01 1.50E+00 

F10 Rastrigin’s 9.86E-01 2.70E+00 1.79E+01 1.42E+00 7.93E+00 2.41E+01 

F11 HappyCat 3.15E-01 7.90E-02 1.97E-02 3.53E-01 8.77E-02 1.03E-01 

F12 HGBat 3.42E-01 1.06E-01 8.07E-02 3.39E-01 1.38E-01 1.45E-01 

F13 Rosenbrock’s 4.00E+00 2.23E+00 1.36E+00 1.26E+01 2.65E+01 1.30E+00 

F14 High Cond. Elliptic 1.49E+02 2.08E+02 2.89E-11 2.56E+02 3.07E+04 3.68E-11 

F15 Discus 2.31E+03 1.30E+03 2.39E-11 6.68E+03 3.32E-05 1.72E-11 

F16 Bent Cigar 1.65E+03 3.71E+03 1.35E-10 1.95E+02 1.93E+02 1.69E-10 

F17 Perm D, Beta 9.50E+03 1.47E+03 2.54E+02 6.62E+15 2.43E+15 3.01E+16 

F18 Schaffer’s F7  4.03E-01 2.21E-01 2.19E+01 4.61E-01 3.38E-01 1.43E+01 

F19 Expanded Schaffer’s F6  5.12E-01 3.73E-01 2.65E-01 5.87E-01 5.36E-01 2.83E-01 

F20 Rotated Hyper-ellipsoid 4.67E-03 1.82E-02 1.05E-13 1.04E-03 2.66E-07 1.24E-13 

F21 Schwefel 1.49E+02 1.62E+02 2.92E+02 2.40E+02 3.07E+02 4.08E+02 

F22 Sum of Dif. Powers 2 1.30E-04 4.42E-06 3.74E-12 3.07E-06 3.22E-13 8.59E-10 

F23 Xin-She Yang’s 1 1.24E-02 2.85E-02 5.73E-02 2.39E-04 1.65E-04 7.09E-04 

F24 Schwefel 2.21 4.96E-01 6.56E-02 1.42E-07 6.22E-01 2.90E-02 1.05E-07 

F25 Schwefel 2.22 1.50E-02 1.23E+00 1.37E+01 1.75E-01 1.10E-03 3.79E+01 

F26 Salomon 1.60E-01 2.37E-02 8.83E-01 8.45E-02 8.06E-02 1.17E+00 

F27 Modified Ridge 1.54E-01 2.57E-01 4.52E-02 1.41E-01 1.13E-01 5.38E-02 

F28 Zakharov 1.52E+00 5.37E-03 6.91E-14 4.86E+00 7.22E+00 5.77E-14 

F29 Mod. Xin-She Yang’s 3 0.00E+00 0.00E+00 9.51E-08 0.00E+00 0.00E+00 1.49E-07 

F30 Mod. Xin-She Yang’s 5 1.91E+03 2.58E+01 1.36E+03 2.47E-04 2.03E+00 4.86E+02 

Table A6. Standard deviation (over 50 runs) of the optimum results, for the 3 optimizers, for dimen-

sions D = 30 and D = 50. 

ID Function Name 
D = 30 D = 50 

GA PSO SQP GA PSO SQP 

F01 Sphere 1.27E-02 8.88E-10 3.80E-15 1.60E-01 2.37E-05 1.47E-14 

F02 Ellipsoid 3.37E-01 3.08E-08 5.48E-13 3.99E+00 7.44E-04 4.77E-13 

F03 Sum of Different Powers 3.28E-07 1.43E-10 1.21E+11 3.22E-05 1.38E+01 2.42E+26 

F04 Quintic 5.37E+00 1.09E-02 1.54E-06 7.07E+00 1.07E+00 2.24E-05 

F05 Drop-Wave 5.42E-02 9.40E-02 2.48E-03 2.13E-02 3.37E-02 1.30E-01 

F06 Weierstrass 2.41E+00 2.33E+00 4.32E+00 3.29E+00 3.64E+00 5.26E+00 

F07 Alpine 1 4.78E-02 5.63E-06 1.92E-06 1.49E-01 8.96E-04 2.63E-06 

F08 Ackley’s 5.34E-01 1.24E+00 1.73E-01 3.14E-01 2.45E+00 1.19E-01 

F09 Griewank’s 1.32E-02 1.81E-02 5.24E-15 6.62E-03 8.21E-02 3.31E-15 
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F10 Rastrigin’s 5.49E+00 4.09E+01 5.48E+01 8.06E+00 4.78E+01 6.88E+01 

F11 HappyCat 1.96E-01 1.43E-01 7.90E-02 1.55E-01 1.28E-01 5.26E-02 

F12 HGBat 1.81E-01 2.83E-01 8.52E-04 1.19E-01 2.80E-01 3.84E-04 

F13 Rosenbrock’s 4.17E+01 3.13E+01 1.89E+00 5.96E+01 3.75E+01 1.59E+00 

F14 High Cond. Elliptic 6.12E+02 3.56E+02 2.72E-11 1.31E+03 2.81E+03 9.63E-12 

F15 Discus 2.72E+03 1.40E+03 1.46E-11 4.01E+03 8.91E-07 7.70E-13 

F16 Bent Cigar 1.24E+04 4.03E-03 4.07E-10 1.75E+05 1.28E+00 2.44E-09 

F17 Perm D, Beta 4.07E+87 7.41E+82 2.63E+80 Inf Inf Inf 

F18 Schaffer’s F7  1.88E-01 5.98E+00 8.63E+00 1.81E-01 6.34E+00 7.13E+00 

F19 Expanded Schaffer’s F6  1.22E+00 1.05E+00 5.40E-01 1.39E+00 1.35E+00 6.00E-01 

F20 Rotated Hyper-ellipsoid 7.17E-01 1.17E-08 2.18E-13 3.89E+00 1.32E-04 6.49E-13 

F21 Schwefel 5.33E+02 7.89E+02 7.26E+02 8.93E+02 9.33E+02 9.12E+02 

F22 Sum of Dif. Powers 2 4.40E-04 4.27E-14 1.64E-06 2.73E-02 2.33E-10 8.72E-05 

F23 Xin-She Yang’s 1 1.44E-12 1.84E-12 1.19E-09 6.26E-21 1.06E-20 2.30E-10 

F24 Schwefel 2.21 4.52E-01 5.58E+00 9.71E-07 4.29E-01 5.64E+00 7.09E-07 

F25 Schwefel 2.22 7.75E-01 1.40E+01 4.45E+08 2.27E+00 2.33E+01 3.93E+56 

F26 Salomon 8.07E-02 2.78E-01 1.23E+00 8.30E-02 4.63E-01 1.89E+00 

F27 Modified Ridge 1.61E-01 6.81E-02 7.34E-02 1.24E-01 6.57E-01 9.51E-02 

F28 Zakharov 1.24E+02 1.51E+02 1.60E-13 2.88E+02 2.82E+02 3.04E-12 

F29 Mod. Xin-She Yang’s 3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F30 Mod. Xin-She Yang’s 5 1.54E-09 6.42E-09 3.70E-03 5.14E-13 0.00E+00 3.29E-05 

Table A7. Median Δx metric values (over 50 runs), for the 3 optimizers, for dimensions D = 5 and D 

= 10. 

ID Function Name 
D = 5 D = 10 

GA PSO SQP GA PSO SQP 

F01 Sphere 4.17E-05 5.79E-05 4.34E-11 1.35E-05 2.21E-07 4.10E-11 

F02 Ellipsoid 2.90E-05 7.83E-05 2.20E-10 1.23E-05 1.31E-07 1.71E-10 

F03 Sum of Different Powers 1.02E-03 5.37E-04 6.45E-05 6.05E-04 3.61E-04 1.45E-03 

F04 Quintic 3.54E-02 3.54E-02 4.18E-02 3.91E-02 3.55E-02 4.24E-02 

F05 Drop-Wave 4.55E-02 2.27E-02 2.74E-01 6.45E-02 3.22E-02 2.91E-01 

F06 Weierstrass 1.01E-03 4.46E-05 1.96E-01 6.73E-03 1.11E-07 1.88E-01 

F07 Alpine 1 6.80E-02 4.46E-03 2.11E-01 5.13E-02 7.15E-02 2.10E-01 

F08 Ackley’s 9.83E-05 4.93E-05 2.46E-01 3.82E-05 1.88E-07 2.92E-01 

F09 Griewank’s 4.63E-05 4.35E-02 2.56E-01 1.39E-05 2.78E-02 2.54E-02 

F10 Rastrigin’s 7.78E-04 6.28E-02 2.06E-01 3.07E-02 8.69E-02 2.50E-01 

F11 HappyCat 2.05E-02 1.06E-02 3.04E-03 3.52E-02 1.50E-02 1.08E-02 

F12 HGBat 3.08E-02 2.24E-02 3.33E-02 4.45E-02 2.87E-02 3.33E-02 

F13 Rosenbrock’s 3.95E-02 3.86E-02 3.26E-07 3.37E-02 4.19E-02 2.44E-07 

F14 High Cond. Elliptic 1.55E-04 8.67E-04 3.84E-10 1.89E-04 7.21E-06 3.37E-10 

F15 Discus 6.10E-05 4.30E-04 3.43E-10 5.05E-05 6.09E-07 3.74E-10 

F16 Bent Cigar 8.64E-05 1.12E-02 2.01E-10 4.44E-05 4.65E-05 2.77E-10 

F17 Perm D, Beta 2.55E-02 2.62E-02 2.12E-02 4.45E-02 7.01E-02 7.28E-02 

F18 Schaffer’s F7  5.51E-04 7.66E-05 2.82E-01 1.61E-03 5.43E-05 2.91E-01 

F19 Expanded Schaffer’s F6  6.07E-02 3.53E-02 2.95E-01 1.09E-01 1.76E-01 2.96E-01 

F20 Rotated Hyper-ellipsoid 3.67E-05 7.00E-05 1.53E-10 1.23E-05 1.55E-07 1.44E-10 

F21 Schwefel 3.24E-01 4.58E-01 5.28E-01 3.34E-01 5.99E-01 5.07E-01 

F22 Sum of Dif. Powers 2 7.99E-04 5.23E-04 6.67E-05 4.26E-04 3.27E-05 9.37E-05 

F23 Xin-She Yang’s 1 9.77E-02 2.39E-01 4.95E-01 1.84E-01 4.22E-01 4.74E-01 

F24 Schwefel 2.21 5.48E-04 1.52E-04 8.23E-10 3.55E-03 5.72E-05 6.30E-10 

F25 Schwefel 2.22 2.27E-05 5.88E-05 2.10E-04 1.12E-05 1.24E-07 5.75E-02 
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F26 Salomon 2.23E-02 1.12E-02 2.79E-01 2.37E-02 1.58E-02 2.57E-01 

F27 Modified Ridge 3.25E-05 1.59E-04 5.89E-05 1.20E-05 6.64E-06 6.25E-05 

F28 Zakharov 1.58E-03 4.14E-04 3.74E-09 7.67E-03 6.42E-04 3.93E-09 

F29 Mod. Xin-She Yang’s 3 3.87E-01 4.46E-01 3.34E-01 3.25E-01 4.04E-01 2.88E-01 

F30 Mod. Xin-She Yang’s 5 2.21E-01 2.28E-01 4.72E-01 2.46E-01 2.51E-01 3.34E-01 

Table A8. Median Δx metric values (over 50 runs), for the 3 optimizers, for dimensions D = 30 and 

D = 50. 

ID Function Name 
D = 30 D = 50 

GA PSO SQP GA PSO SQP 

F01 Sphere 1.08E-04 6.64E-09 4.86E-11 3.03E-04 6.21E-08 3.57E-11 

F02 Ellipsoid 1.53E-04 7.93E-09 1.16E-10 5.28E-04 1.02E-07 8.89E-11 

F03 Sum of Different Powers 4.91E-03 4.86E-03 1.62E-01 1.17E-02 1.67E-02 2.11E-01 

F04 Quintic 4.48E-02 4.46E-02 4.45E-02 4.67E-02 4.46E-02 4.42E-02 

F05 Drop-Wave 9.33E-02 6.52E-02 2.89E-01 1.01E-01 9.40E-02 2.89E-01 

F06 Weierstrass 5.69E-02 6.36E-02 1.58E-01 7.72E-02 9.53E-02 1.42E-01 

F07 Alpine 1 5.88E-02 1.54E-01 2.21E-01 5.14E-02 1.59E-01 2.24E-01 

F08 Ackley’s 3.85E-03 7.80E-03 2.89E-01 5.91E-03 2.01E-02 2.89E-01 

F09 Griewank’s 1.38E-04 5.73E-03 6.40E-10 4.71E-04 4.44E-03 4.99E-10 

F10 Rastrigin’s 4.37E-02 1.51E-01 2.34E-01 6.13E-02 1.62E-01 2.26E-01 

F11 HappyCat 3.61E-02 2.35E-02 4.33E-03 3.73E-02 2.66E-02 4.41E-03 

F12 HGBat 5.12E-02 3.39E-02 3.33E-02 5.30E-02 3.02E-02 3.33E-02 

F13 Rosenbrock’s 1.77E-02 4.53E-02 1.41E-07 1.46E-02 4.05E-02 1.09E-07 

F14 High Cond. Elliptic 1.47E-03 4.09E-07 2.55E-10 2.71E-03 4.11E-06 2.24E-10 

F15 Discus 1.98E-04 2.46E-08 1.73E-10 6.03E-04 1.47E-07 1.47E-10 

F16 Bent Cigar 2.48E-04 8.43E-07 2.67E-10 4.11E-04 4.91E-06 1.73E-10 

F17 Perm D, Beta 1.50E-01 2.27E-01 2.53E-01 3.50E-01 3.71E-01 4.17E-01 

F18 Schaffer’s F7  3.73E-03 7.05E-02 2.89E-01 4.08E-03 1.24E-01 2.86E-01 

F19 Expanded Schaffer’s F6  2.18E-01 2.41E-01 2.90E-01 2.34E-01 2.59E-01 2.88E-01 

F20 Rotated Hyper-ellipsoid 1.57E-04 9.11E-09 1.33E-10 6.36E-04 1.22E-07 7.98E-11 

F21 Schwefel 4.19E-01 6.12E-01 4.99E-01 4.29E-01 5.86E-01 5.09E-01 

F22 Sum of Dif. Powers 2 2.15E-03 2.45E-05 1.12E-03 4.27E-03 8.26E-05 2.68E-03 

F23 Xin-She Yang’s 1 2.29E-01 4.84E-01 3.69E-01 2.24E-01 4.90E-01 3.21E-01 

F24 Schwefel 2.21 5.06E-03 4.28E-02 7.09E-10 5.10E-03 1.08E-01 1.56E-09 

F25 Schwefel 2.22 4.13E-04 3.82E-08 1.39E-01 1.37E-03 7.59E-06 1.39E-01 

F26 Salomon 2.74E-02 5.02E-02 2.78E-01 2.47E-02 7.42E-02 2.78E-01 

F27 Modified Ridge 1.19E-04 7.29E-07 4.34E-05 3.37E-04 3.27E-07 5.47E-05 

F28 Zakharov 1.41E-01 1.45E-01 2.69E-09 2.06E-01 1.73E-01 2.92E-09 

F29 Mod. Xin-She Yang’s 3 2.76E-01 2.85E-01 2.86E-01 2.45E-02 2.85E-01 2.80E-01 

F30 Mod. Xin-She Yang’s 5 2.35E-01 2.47E-01 2.81E-01 2.40E-01 2.59E-01 2.90E-01 

Table A9. Median Δf metric values (over 50 runs), for the 3 optimizers, for dimensions D = 5 and D 

= 10. 

ID Function Name 
D = 5 D = 10 

GA PSO SQP GA PSO SQP 

F01 Sphere 8.43E-09 1.63E-08 9.16E-21 1.03E-09 2.76E-13 9.48E-21 

F02 Ellipsoid 3.19E-09 2.78E-08 1.19E-19 6.26E-10 6.11E-14 1.18E-19 

F03 Sum of Different Powers 1.13E-11 7.22E-15 1.56E-21 1.51E-18 1.63E-28 1.68E-23 

F04 Quintic 1.31E-08 1.07E-08 8.61E-14 3.95E-09 1.75E-11 1.04E-13 

F05 Drop-Wave 2.14E-01 6.38E-02 9.08E-01 5.22E-01 2.14E-01 9.57E-01 

F06 Weierstrass 1.50E-02 2.19E-03 3.30E-01 2.06E-02 4.87E-05 3.93E-01 
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F07 Alpine 1 8.11E-05 2.51E-05 2.05E-08 1.25E-05 7.94E-08 2.11E-08 

F08 Ackley’s 1.26E-03 6.07E-04 8.64E-01 4.68E-04 2.23E-06 8.85E-01 

F09 Griewank’s 7.32E-06 1.14E-02 2.66E-01 3.37E-07 4.43E-03 3.50E-03 

F10 Rastrigin’s 3.66E-04 1.70E-02 1.30E-01 3.10E-03 2.79E-02 2.05E-01 

F11 HappyCat 2.09E-03 9.84E-04 2.12E-04 6.58E-03 1.58E-03 8.46E-04 

F12 HGBat 4.04E-04 2.29E-04 4.70E-04 5.56E-04 2.41E-04 3.11E-04 

F13 Rosenbrock’s 5.59E-07 5.09E-07 1.43E-17 7.01E-07 1.04E-06 1.04E-17 

F14 High Cond. Elliptic 1.54E-09 1.42E-10 4.55E-21 1.39E-10 2.65E-14 1.67E-21 

F15 Discus 6.04E-10 4.27E-12 1.18E-22 5.52E-11 1.81E-17 3.50E-23 

F16 Bent Cigar 6.46E-09 7.78E-09 1.50E-21 2.72E-10 1.69E-13 2.37E-22 

F17 Perm D, Beta 5.85E-16 1.33E-16 9.41E-20 5.51E-21 6.46E-22 2.41E-21 

F18 Schaffer’s F7  2.53E-04 5.91E-05 1.70E-01 5.42E-04 1.21E-05 2.15E-01 

F19 Expanded Schaffer’s F6  2.69E-01 2.01E-01 6.89E-01 3.99E-01 4.53E-01 7.70E-01 

F20 Rotated Hyper-ellipsoid 5.35E-09 1.78E-08 8.97E-20 5.84E-10 1.08E-13 8.07E-20 

F21 Schwefel 6.64E-02 6.41E-02 2.69E-01 9.19E-02 1.50E-01 2.88E-01 

F22 Sum of Dif. Powers 2 8.35E-12 7.78E-15 9.08E-22 2.07E-13 1.42E-21 2.95E-20 

F23 Xin-She Yang’s 1 1.45E-05 3.18E-05 7.28E-05 3.08E-08 9.47E-08 9.46E-08 

F24 Schwefel 2.21 1.56E-03 4.51E-04 2.77E-09 1.13E-02 1.74E-04 2.32E-09 

F25 Schwefel 2.22 3.31E-12 8.34E-12 1.87E-11 7.77E-22 1.18E-23 3.54E-18 

F26 Salomon 3.33E-02 1.67E-02 4.17E-01 4.00E-02 2.67E-02 4.34E-01 

F27 Modified Ridge 7.82E-03 1.02E-02 4.55E-04 6.90E-03 2.99E-03 5.80E-04 

F28 Zakharov 3.50E-10 2.38E-11 2.48E-21 1.65E-10 1.24E-12 4.40E-23 

F29 Mod. Xin-She Yang’s 3 5.33E-01 5.33E-01 5.33E-01 9.65E-01 9.65E-01 9.65E-01 

F30 Mod. Xin-She Yang’s 5 2.40E-01 2.40E-01 2.72E-01 2.37E-01 2.37E-01 2.37E-01 

Table A10. Median Δf metric values (over 50 runs), for the 3 optimizers, for dimensions D = 30 and 

D = 50. 

ID Function Name 
D = 30 D = 50 

GA PSO SQP GA PSO SQP 

F01 Sphere 8.77E-08 3.30E-16 1.77E-20 7.49E-07 3.13E-14 1.04E-20 

F02 Ellipsoid 5.80E-08 2.36E-16 2.78E-20 5.70E-07 4.10E-14 2.25E-20 

F03 Sum of Different Powers 1.59E-39 1.80E-48 4.62E-24 7.06E-59 9.75E-59 1.42E-29 

F04 Quintic 1.03E-07 2.98E-12 1.72E-13 3.44E-07 6.31E-11 1.90E-13 

F05 Drop-Wave 8.73E-01 7.70E-01 9.85E-01 9.31E-01 9.20E-01 9.91E-01 

F06 Weierstrass 9.88E-02 5.57E-02 4.75E-01 1.54E-01 1.19E-01 4.73E-01 

F07 Alpine 1 1.69E-04 2.89E-09 3.19E-08 1.03E-03 6.87E-08 3.48E-08 

F08 Ackley’s 4.85E-02 9.24E-02 8.99E-01 7.27E-02 2.15E-01 9.02E-01 

F09 Griewank’s 1.71E-05 2.33E-04 3.52E-16 1.20E-04 1.55E-04 1.64E-16 

F10 Rastrigin’s 8.56E-03 9.18E-02 2.20E-01 1.82E-02 1.12E-01 2.18E-01 

F11 HappyCat 9.16E-03 3.86E-03 4.76E-04 9.90E-03 5.03E-03 4.90E-04 

F12 HGBat 3.25E-04 1.44E-04 1.38E-04 2.14E-04 6.93E-05 8.44E-05 

F13 Rosenbrock’s 1.22E-06 2.36E-06 5.08E-18 4.79E-06 4.53E-06 3.17E-18 

F14 High Cond. Elliptic 1.65E-09 1.51E-16 2.24E-22 1.99E-08 2.09E-14 1.29E-22 

F15 Discus 1.25E-11 7.42E-20 4.47E-23 7.54E-11 5.49E-18 2.65E-23 

F16 Bent Cigar 5.36E-08 5.68E-16 2.83E-22 6.13E-07 4.92E-14 2.10E-22 

F17 Perm D, Beta 3.35E-21 2.95E-21 3.80E-25 4.54E-11 3.29E-09 2.36E-11 

F18 Schaffer’s F7  1.88E-03 2.62E-02 2.90E-01 2.70E-03 7.41E-02 3.06E-01 

F19 Expanded Schaffer’s F6  6.61E-01 7.17E-01 8.37E-01 7.33E-01 7.91E-01 8.71E-01 

F20 Rotated Hyper-ellipsoid 6.49E-08 2.80E-16 5.09E-20 8.70E-07 6.17E-14 1.77E-20 

F21 Schwefel 2.08E-01 2.49E-01 3.54E-01 2.65E-01 2.73E-01 3.84E-01 

F22 Sum of Dif. Powers 2 5.36E-11 7.07E-22 1.84E-13 2.31E-09 7.83E-19 2.89E-11 
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F23 Xin-She Yang’s 1 1.26E-18 4.71E-18 8.20E-17 2.53E-29 1.46E-28 3.64E-21 

F24 Schwefel 2.21 2.00E-02 1.28E-01 2.86E-09 2.19E-02 3.38E-01 6.43E-09 

F25 Schwefel 2.22 3.47E-55 5.58E-59 1.27E-50 1.95E-89 1.01E-91 1.70E-66 

F26 Salomon 5.96E-02 1.09E-01 6.06E-01 5.91E-02 1.77E-01 6.63E-01 

F27 Modified Ridge 1.25E-02 1.94E-03 5.73E-04 1.62E-02 3.29E-03 1.16E-03 

F28 Zakharov 2.18E-10 2.31E-10 8.05E-26 1.76E-11 1.23E-11 3.51E-27 

F29 Mod. Xin-She Yang’s 3 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 

F30 Mod. Xin-She Yang’s 5 9.83E-01 9.83E-01 9.83E-01 1.00E+00 1.00E+00 1.00E+00 

Table A11. Median Δt metric values (over 50 runs), for the 3 optimizers, for dimensions D = 5 and 

D = 10. 

ID Function Name 
D = 5 D = 10 

GA PSO SQP GA PSO SQP 

F01 Sphere 2.95E-05 4.09E-05 3.07E-11 9.54E-06 1.56E-07 2.90E-11 

F02 Ellipsoid 2.05E-05 5.54E-05 1.55E-10 8.68E-06 9.30E-08 1.21E-10 

F03 Sum of Different Powers 7.23E-04 3.80E-04 4.56E-05 4.28E-04 2.55E-04 1.03E-03 

F04 Quintic 2.51E-02 2.50E-02 2.95E-02 2.77E-02 2.51E-02 3.00E-02 

F05 Drop-Wave 1.55E-01 4.79E-02 6.71E-01 3.72E-01 1.53E-01 7.07E-01 

F06 Weierstrass 1.06E-02 1.55E-03 2.74E-01 1.61E-02 3.45E-05 3.02E-01 

F07 Alpine 1 4.81E-02 3.16E-03 1.49E-01 3.63E-02 5.05E-02 1.49E-01 

F08 Ackley’s 8.92E-04 4.30E-04 6.35E-01 3.32E-04 1.58E-06 6.59E-01 

F09 Griewank’s 3.33E-05 3.15E-02 2.61E-01 9.86E-06 2.02E-02 1.81E-02 

F10 Rastrigin’s 6.08E-04 4.94E-02 1.72E-01 2.18E-02 6.39E-02 2.28E-01 

F11 HappyCat 1.46E-02 7.54E-03 2.15E-03 2.53E-02 1.06E-02 7.69E-03 

F12 HGBat 2.18E-02 1.58E-02 2.35E-02 3.15E-02 2.03E-02 2.36E-02 

F13 Rosenbrock’s 2.79E-02 2.73E-02 2.30E-07 2.38E-02 2.96E-02 1.72E-07 

F14 High Cond. Elliptic 1.10E-04 6.13E-04 2.71E-10 1.34E-04 5.10E-06 2.38E-10 

F15 Discus 4.31E-05 3.04E-04 2.43E-10 3.57E-05 4.31E-07 2.64E-10 

F16 Bent Cigar 6.11E-05 7.89E-03 1.42E-10 3.14E-05 3.29E-05 1.96E-10 

F17 Perm D, Beta 1.80E-02 1.85E-02 1.50E-02 3.14E-02 4.96E-02 5.15E-02 

F18 Schaffer’s F7  4.29E-04 6.98E-05 2.31E-01 1.34E-03 3.97E-05 2.56E-01 

F19 Expanded Schaffer’s F6  1.96E-01 1.44E-01 5.29E-01 2.91E-01 3.43E-01 5.83E-01 

F20 Rotated Hyper-ellipsoid 2.59E-05 4.95E-05 1.08E-10 8.72E-06 1.10E-07 1.02E-10 

F21 Schwefel 2.32E-01 3.27E-01 4.14E-01 2.44E-01 4.37E-01 4.14E-01 

F22 Sum of Dif. Powers 2 5.65E-04 3.70E-04 4.72E-05 3.01E-04 2.31E-05 6.62E-05 

F23 Xin-She Yang’s 1 6.91E-02 1.69E-01 3.50E-01 1.30E-01 2.98E-01 3.35E-01 

F24 Schwefel 2.21 1.17E-03 3.34E-04 2.04E-09 8.38E-03 1.29E-04 1.73E-09 

F25 Schwefel 2.22 1.60E-05 4.16E-05 1.49E-04 7.92E-06 8.75E-08 4.07E-02 

F26 Salomon 2.84E-02 1.42E-02 3.55E-01 3.29E-02 2.19E-02 3.56E-01 

F27 Modified Ridge 5.53E-03 7.22E-03 3.27E-04 4.88E-03 2.12E-03 4.12E-04 

F28 Zakharov 1.12E-03 2.93E-04 2.64E-09 5.42E-03 4.54E-04 2.78E-09 

F29 Mod. Xin-She Yang’s 3 4.66E-01 4.91E-01 4.45E-01 7.20E-01 7.40E-01 7.12E-01 

F30 Mod. Xin-She Yang’s 5 2.31E-01 2.34E-01 3.85E-01 2.41E-01 2.44E-01 2.90E-01 

Table A12. Median Δt metric values (over 50 runs), for the 3 optimizers, for dimensions D = 30 and 

D = 50. 

ID Function Name 
D = 30 D = 50 

GA PSO SQP GA PSO SQP 

F01 Sphere 7.66E-05 4.70E-09 3.44E-11 2.15E-04 4.39E-08 2.53E-11 

F02 Ellipsoid 1.08E-04 5.60E-09 8.19E-11 3.74E-04 7.24E-08 6.28E-11 

F03 Sum of Different Powers 3.47E-03 3.43E-03 1.14E-01 8.26E-03 1.18E-02 1.49E-01 
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F04 Quintic 3.17E-02 3.15E-02 3.15E-02 3.30E-02 3.15E-02 3.12E-02 

F05 Drop-Wave 6.21E-01 5.47E-01 7.26E-01 6.62E-01 6.54E-01 7.30E-01 

F06 Weierstrass 8.12E-02 6.75E-02 3.58E-01 1.25E-01 1.08E-01 3.50E-01 

F07 Alpine 1 4.16E-02 1.09E-01 1.56E-01 3.64E-02 1.12E-01 1.58E-01 

F08 Ackley’s 3.44E-02 6.56E-02 6.67E-01 5.15E-02 1.53E-01 6.70E-01 

F09 Griewank’s 9.82E-05 4.05E-03 4.53E-10 3.41E-04 3.14E-03 3.53E-10 

F10 Rastrigin’s 3.16E-02 1.25E-01 2.27E-01 4.53E-02 1.39E-01 2.22E-01 

F11 HappyCat 2.63E-02 1.68E-02 3.08E-03 2.73E-02 1.92E-02 3.15E-03 

F12 HGBat 3.62E-02 2.40E-02 2.36E-02 3.75E-02 2.14E-02 2.36E-02 

F13 Rosenbrock’s 1.25E-02 3.20E-02 9.99E-08 1.04E-02 2.86E-02 7.72E-08 

F14 High Cond. Elliptic 1.04E-03 2.89E-07 1.81E-10 1.92E-03 2.91E-06 1.58E-10 

F15 Discus 1.40E-04 1.74E-08 1.23E-10 4.26E-04 1.04E-07 1.04E-10 

F16 Bent Cigar 1.76E-04 5.96E-07 1.89E-10 2.91E-04 3.47E-06 1.22E-10 

F17 Perm D, Beta 1.06E-01 1.61E-01 1.79E-01 2.47E-01 2.62E-01 2.95E-01 

F18 Schaffer’s F7  3.06E-03 5.31E-02 2.91E-01 3.43E-03 1.01E-01 2.96E-01 

F19 Expanded Schaffer’s F6  4.97E-01 5.37E-01 6.23E-01 5.43E-01 5.89E-01 6.46E-01 

F20 Rotated Hyper-ellipsoid 1.11E-04 6.45E-09 9.44E-11 4.50E-04 8.65E-08 5.64E-11 

F21 Schwefel 3.31E-01 4.71E-01 4.33E-01 3.51E-01 4.57E-01 4.50E-01 

F22 Sum of Dif. Powers 2 1.52E-03 1.74E-05 7.92E-04 3.02E-03 5.84E-05 1.90E-03 

F23 Xin-She Yang’s 1 1.62E-01 3.42E-01 2.61E-01 1.58E-01 3.47E-01 2.27E-01 

F24 Schwefel 2.21 1.47E-02 9.55E-02 2.11E-09 1.59E-02 2.52E-01 4.68E-09 

F25 Schwefel 2.22 2.92E-04 2.70E-08 9.84E-02 9.70E-04 5.36E-06 9.82E-02 

F26 Salomon 4.64E-02 8.50E-02 4.72E-01 4.53E-02 1.36E-01 5.08E-01 

F27 Modified Ridge 8.84E-03 1.37E-03 4.07E-04 1.14E-02 2.32E-03 8.19E-04 

F28 Zakharov 9.94E-02 1.02E-01 1.90E-09 1.46E-01 1.22E-01 2.06E-09 

F29 Mod. Xin-She Yang’s 3 7.34E-01 7.35E-01 7.35E-01 7.07E-01 7.35E-01 7.34E-01 

F30 Mod. Xin-She Yang’s 5 7.14E-01 7.16E-01 7.23E-01 7.27E-01 7.30E-01 7.36E-01 
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