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Abstract: Inertial measurement units (IMUs) enable easy to operate and low-cost data recording for
gait analysis. When combined with treadmill walking, a large number of steps can be collected in a
controlled environment without the need of a dedicated gait analysis laboratory. In order to evaluate
existing and novel IMU-based gait analysis algorithms for treadmill walking, a reference dataset
that includes IMU data as well as reliable ground truth measurements for multiple participants and
walking speeds is needed. This article provides a reference dataset consisting of 15 healthy young
adults who walked on a treadmill at three different speeds. Data were acquired using seven IMUs
placed on the lower body, two different reference systems (Zebris FDMT-HQ and OptoGait), and two
RGB cameras. Additionally, in order to validate an existing IMU-based gait analysis algorithm using
the dataset, an adaptable modular data analysis pipeline was built. Our results show agreement
between the pressure-sensitive Zebris and the photoelectric OptoGait system (r = 0.99), demonstrating
the quality of our reference data. As a use case, the performance of an algorithm originally designed
for overground walking was tested on treadmill data using the data pipeline. The accuracy of stride
length and stride time estimations was comparable to that reported in other studies with overground
data, indicating that the algorithm is equally applicable to treadmill data. The Python source code of
the data pipeline is publicly available, and the dataset will be provided by the authors upon request,
enabling future evaluations of IMU gait analysis algorithms without the need of recording new data.

Keywords: inertial measurement unit; gait analysis algorithm; OptoGait; Zebris; data pipeline;
public dataset

1. Introduction

Human motion tracking, and human gait analysis in particular, constitute well-
established methods in sports biomechanics and rehabilitation. Athletes and coaches use
gait analysis to increase or maintain performance (i.e., return to sport), whereas clinicians
and patients use it to evaluate the severity of neurological or orthopedic conditions (e.g.,
Parkinson’s disease) [1]. Gait analysis can involve overground as well as treadmill walking.
Overground walking is more common in daily life. However, due to the constraints of
gold-standard measurement systems, such as instrumented walkways or multi-camera
setups, data collection is limited to a small number of consecutive steps. Furthermore,
installation of safety measures for the participant or patient during overground walking
can be cumbersome [2]. It is well known that the biomechanics of treadmill walking differ
from that of overground walking [3]. Since treadmill walking is common in sports and
rehabilitation, reliable gait analysis data from treadmill walking are needed. Treadmill
walking offers the opportunity to record a large number of consecutive steps in a single

Data 2021, 6, 95. https://doi.org/10.3390/data6090095 https://www.mdpi.com/journal/data

https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0001-9717-3925
https://orcid.org/0000-0001-9916-3878
https://orcid.org/0000-0002-3069-5523
https://orcid.org/0000-0002-7532-8428
https://orcid.org/0000-0001-7632-7067
https://orcid.org/0000-0002-7095-813X
https://orcid.org/0000-0001-8380-7667
https://doi.org/10.3390/data6090095
https://doi.org/10.3390/data6090095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/data6090095
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data6090095?type=check_update&version=1


Data 2021, 6, 95 2 of 19

trial while maintaining controlled conditions of walking speed and inclination. Individuals
are kept within a constrained observation volume, and weight-support safety mechanisms
can be routinely installed.

Gait analysis tools often rely on camera setups with multiple cameras and reflective
markers (e.g., Vicon® motion capture systems) or instrumented walkways (e.g., GAITRite®

pressure-sensitive walkway) [4]. While these systems have been widely used for conven-
tional gait analysis, they are expensive, bulky or hard to set up [5]. In contrast, inertial
measurement units (IMUs) potentially provide the same level of accuracy for spatiotempo-
ral gait parameters at a much lower cost and with less effort to install and operate it and
therefore represent an ecologically valid alternative to conventional gait analysis systems.

IMUs usually consist of a triaxial accelerometer and a triaxial gyroscope in a small
casing. They can be effortlessly attached to any body segment to conveniently and unob-
trusively measure an individual’s movements. They are commercially available in large
varieties at reasonable prices [6]. Given these advantages, IMU-based motion analysis of
the lower limbs and gait analysis has gained popularity over the past years [7]. Numerous
approaches have been proposed to obtain gait parameters via 3D-trajectories of the foot
and lower limbs by means of numerical integration combined with zero-velocity updates
(ZUPT) applied during the stance phase [8–10]. In addition, several commercially available
software tools, such as the GaitUp LAB (Gait Up, Lausanne, Switzerland) or RehaGait®

(Hasomed GmbH, Magdeburg, Germany) [11], can provide gait parameters derived from
IMU data but lack detailed algorithm disclosure. In the context of treadmill walking, previ-
ous studies have evaluated the validity of IMUs for gait analysis based on comparisons of
features directly derived from angular velocity and linear acceleration [12–14], whereas
methods that estimate 3D trajectories from IMU data recorded on a treadmill and use them
to estimate gait parameters have received less attention.

Previous studies have demonstrated that a treadmill does not represent an ideal in-
ertial frame of reference since energy is exchanged between the treadmill belt and the
participant in various amounts, depending on the treadmill power, speed, gait phase, par-
ticipants’ body mass and other factors [15–17]. Therefore, trajectory estimation algorithms
that have been developed for overground walking and implicitly rely on a perfect inertial
frame of reference and zero velocity during the stance phase may potentially exhibit worse
performance when used with IMU data that have been recorded on a treadmill. How-
ever, to the best of our knowledge, there exists no publicly available dataset and software
framework that could be used to evaluate the performance of such algorithms with data
acquired on a treadmill. As shown in Table 1, prior research has recorded IMU data on a
treadmill but either lacks a reliable reference system [8,18], did not estimate the 3D foot
trajectories [12,19] or did not make the data available for research [8,11].

In order to address these limitations, this article presents a dataset called TRIPOD—
Treadmill, IMU, Pedobarographic and Photoelectric Dataset—that is available upon re-
quest, consisting of treadmill walking data collected from 15 young healthy adults. More
specifically, the dataset contains IMU data recorded from the lower body, as well as refer-
ence data from a pressure distribution measurement system and a photoelectric gait analy-
sis system. As a use case, the performance of a foot trajectory estimation algorithm from the
literature [9] was implemented and evaluated using a modular and extendable data process-
ing pipeline. The Python code for loading the dataset and example implementations of the
used algorithms are made available on GitHub (https://github.com/HPI-CH/TRIPOD).
The participants’ consent requires accessing the data only with legitimate scientific interest;
therefore, the dataset is available upon request for scientific use via a contact form on
Zenodo (https://doi.org/10.5281/zenodo.5070771).

https://github.com/HPI-CH/TRIPOD
https://doi.org/10.5281/zenodo.5070771
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Table 1. Related work.

Study Study Cohort IMU
Location Reference Data 3D

Trajectories
Publicly

Available

[12] 17 patients with
Parkinson’s disease in out-sole Vicon No Yes

[11] 22 healthy
participants

lateral
aspect Zebris unknown No

[8] 11 healthy
participants instep reflective markers

and GoPro HD2 Yes No

[19] 13 healthy
participants

thigh and
shank

instrumented
treadmill
and Vicon

No Upon
request

[18] 108 healthy
participants

foot, shank,
thigh and pelvis

no reference
system Yes Yes

This
study

15 healthy
participants

instep, heel,
shank and sacrum

OptoGait
and Zebris Yes Upon

request

2. Materials and Methods
2.1. Participants

The study cohort consisted of 15 young and healthy participants (8 males, 7 females).
The sample characteristics are described in Table 2. The eligibility for this study was
determined by using the Physical Activity Readiness Questionnaire (PAR-Q) [20], and
the level of recent physical activity was assessed by the International Physical Activity
Questionnaires (IPAQ). The demographic and anthropometric data is provided in the
MetaInfo.csv file. Participants were asked to avoid strenuous exercise in the 24 h prior to
data collection and to bring their own comfortable footwear and clothes. All participants
provided written informed consent after the experimental procedures were explained.
The study was approved by the ethics committee of the University of Potsdam (63/2020),
and all experiments were conducted according to the latest revision of the declaration
of Helsinki.

Table 2. Sample characteristics. (SD: standard deviation, PWS: preferred walking speed on the treadmill).

Minimum Mean ± SD Maximum

Age (yr) 20 26.4 ± 3.7 34
Mass (kg) 53.5 69.7 ± 12.1 103

Height (cm) 157.5 176.2 ± 8.8 190
Leg length (cm) 76 86.2 ± 4.3 95

PWS (km/h) 3.1 3.9 ± 0.5 4.9

2.2. Recording Devices

The reference data were recorded with an OptoGait system (Microgate, Bolzano, Italy)
and a FDM-THQ pressure distribution measurement system (zebris Medical GmbH, Isny,
Germany), subsequently referred to as the “Zebris system”, that were both integrated in
a quasar® med treadmill (h/p/cosmos sports and medical GmbH, Nussdorf-Traunstein,
Germany). The Zebris system consists of 10,240 closely aligned capacitive force sensors
at a density of 1.4 sensors/cm2, which are integrated in the treadmill right underneath
the treadmill belt [21]. The OptoGait system consists of a transmitting and a receiving bar
of infrared LEDs, which are integrated into the foot boards of the treadmill at a length of
125 cm. During data acquisition, the LED sensors measure contact times and positions
with a resolution of 1.041 cm at up to 1000 Hz [22].
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Both recording devices, as well as the treadmill itself, were connected to a com-
puter running the respective recording and control software. Raw sensor data, as well
as calculated gait parameters, were saved after each recording session. More specifically,
the OptoGait software provides spatiotemporal gait parameters, such as stride length,
stride time, swing time and stance time, automatically after data acquisition. The Zebris
software is designed for pedobarographic analysis and only provides data for stance time.
Other gait parameters are only available as the mean and standard deviation for a selected
number of steps as part of the gait analysis report that can be produced by the Zebris soft-
ware. This does not allow a comparison of individual strides. Therefore, in our study, other
gait parameters were calculated subsequently from raw sensor data. Detailed descriptions
of the Zebris data can be found in Appendix B. Nonetheless, the gait reports obtained from
the Zebris system were generated and included in the dataset for potential future use cases.

IMU data were recorded using seven Physilog®5 IMUs (Gait Up, Lausanne, Switzer-
land). The IMU sensors are factory-calibrated, and the raw data quality has been confirmed
in previous studies [6]. Therefore, no further custom calibrations were performed in this
study. Data were stored locally on an internal SD card in the IMU device, transferred to
a computer via USB and converted from the device’s binary format using the Physilog®

Research Toolkit. Recordings were started and stopped synchronously on all sensors by
connecting the sensors via Bluetooth to the GaitUp smartphone app [23]. The sensors
were attached with Velcro straps to the outer shank, attached to the shoelaces at an instep
position and attached on the heel of the shoe on each leg. Additionally, one sensor was
placed at the sacrum on the back of a hip belt. IMU positions are shown in Figure 1.

The Zebris system and the IMUs were configured to record at 128 Hz, and the Opto-
Gait system was configured to record at 1000 Hz. The gyroscope range was 1000°/s, and
the acceleration range was initially set to 8 g according to pilot recordings. However, the ac-
celeration range had to be increased to 16 g after some participants exhibited unexpectedly
large accelerations during the heel strike.

Additionally, two RGB cameras were used to record the lower body of the participants
in frontal and sagittal planes in order to document the experiment.

Figure 1. Experimental setup. IMU positions are highlighted in orange.

2.3. Experimental Protocol

Each participant performed three treadmill walking trials in a randomized sequence
at their (i) preferred walking speed, (ii) 20% faster and (iii) 20% slower [24]. Each walking
trial lasted for two minutes. The following protocol was implemented to prepare for data
collection:

1. The participant received an explanation of the study from the instructor, signed the
consent form and filled in the IPAQ and PAR-Q.

2. Body height, mass and leg length (between greater trochanter and lateral malleolus)
were measured, and the IMU sensors were attached to the participant.

3. The participant was asked to walk for 6 min on the treadmill at a self-selected speed
in order to get familiarized with treadmill walking [25].
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4. The preferred walking speed (PWS) was determined by slowly increasing the treadmill
speed until the participant reported that he/she was walking at their PWS. Then,
the speed was substantially increased and lowered step by step until the participant
reported PWS again. The final PWS was obtained by taking the average of the two
reported PWS [24].

5. A 20% faster and 20% slower speed than PWS was calculated, and a random order of
the three trials was determined.

6. All measurement systems were calibrated.

Subsequently, the following recording protocol was repeated three times for each par-
ticipant:

1. The participant was asked to stand with legs apart on the foot boards of the treadmill.
2. The measurement systems were started, and the treadmill was set to the selected trial

speed (PWS, PWS + 20%, or PWS − 20%).
3. The participant was asked to hold on the hand rails, step on the treadmill with the

right foot first and release the handrails as soon as he/she felt comfortable. Stepping
with the right foot is particularly important in order to obtain a well-identifiable signal
for the initial contact from the IMUs and the reference systems that can be used to
synchronize the different measuring systems.

4. The participants were asked to continue walking for two minutes from the moment of
initial contact [26].

5. After two minutes, the treadmill was slowed down until it stopped, and the measure-
ment systems were stopped.

6. If needed, participants were allowed to rest before reiterating the recording protocol
for the remaining walking speed conditions.

3. Data
3.1. Preprocessing

The recorded data were exported from the respective recording tools and converted
to manufacturer-independent open file formats. For the IMU and OptoGait data, the CSV
format was chosen since the data can be well represented in a table. For the Zebris data,
gzip compressed JSON files were chosen as the file format because of the nested structure
of the data. The IMU data from the different sensors were synchronized using Physilog’s
built-in Bluetooth synchronization. All personal data, such as date and time of recording,
were stripped from the files, and visible faces in the video recordings were blurred in order
to preserve maximum anonymity for the participants and experimenters.

Since the data recording of the different measurement systems was started and stopped
independently, all timestamps needed to be synchronized in order to match individual
strides. The timestamp of initial contact with the treadmill belt can be directly obtained from
the OptoGait and Zebris data since it is simply the first sample that is not null. However,
determining the initial contact for the IMU data is more challenging because it does not
correspond to the initial data sample but the first significant peak in the acceleration data
from the right foot. When examining the raw data from different participants, it became
apparent that a fixed threshold for the peak prominence cannot properly identify the
initial contact for all participants. Therefore, a semi-automatic approach was implemented,
in which the first significant peak in the acceleration data was identified automatically,
and subsequently, the data plot was displayed to the user to allow manual correction.
The resulting timestamps were written to the separate SyncInfo.csv file that is included
in the dataset and can be used for synchronization.

3.2. Dataset

The dataset was organized according to participant, trial and measurement system,
as shown in Figure 2. All data from one participant were stored in a folder named by a
randomly generated, unique alias for the participant. Inside of the participant’s folder,
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the three trials were stored in three different folders containing sub-folders for each mea-
surement system.

TRIPOD
|   MetaInfo.csv
|   SyncInfo.csv
|
+---Sub_AL
|   +---PWS
|   |   +---IMU
|   |   | LF.csv
|   |   | LH.csv
|   |   | LS.csv
|   |   | RF.csv
|   |   | RH.csv
|   |   | RS.csv
|   |   | SA.csv
|   |   |
|   |   +---OptoGait
|   |   | optogait.csv
|   |   |
|   |   \---Zebris
|   |       |     zebris_raw.json.gz
|   |       | zebris_steps.json.gz
|   |       |
|   |       \---gait_report
|   |             parameters.csv
|   |              ...
|   |
|   +---PWS+20
|   |   + ...
|   |
|   \---PWS-20
| + ...
|
+---Sub_BK
|   + ...
|
+ ...

Figure 2. Folder structure of the dataset.

Inside the IMU folder, there is one CSV file for each sensor (LF: left foot (instep), LS:
left shank, LH: left heel, RF: right foot (instep), RS: right shank, RH: right heel, SA: sacrum).
The Zebris folder contains two data files that correspond to the raw data export from the
Zebris software and an aggregated data output that contains detailed information about
each rollover cycle such as the time of initial contact and a maximum pressure distribution
image. Additionally, the folder gait_report inside the Zebris folder contains the gait
report as a collection of CSV files as exported from the Zebris software.

Aggregated gait parameters can be found in the parameters.csv file, and the doc-
umentation of the remaining files is available in the Zebris manual [21]. The OptoGait
folder contains one CSV file that contains all the calculated gait parameters of the OptoGait
software for each step.

The videos were organized in a separate folder tree of the same structure with one file
for the side and one file for front view for each participant and trial, respectively, allowing
the IMU and reference system dataset to remain small in size and independently usable
from the videos. One participant was not included in the video dataset since permission
for publication was denied.

Additionally, the root directory contains two CSV files with meta information such as
participant characteristics, the order of trials and the questionnaire responses, as well as
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one synchronization file that contains the timestamp of initial contacts in the IMU data for
each participant and trial. The detailed file structure of JSON files containing the Zebris
data is explained in Appendix B.

3.3. Data Processing Pipeline

A modular data processing pipeline was implemented in Python 3.7 to process the
acquired data and evaluate the performance of existing trajectory estimation algorithms.
The object-oriented design allows an easy exchange of the individual algorithm parts,
making it convenient to combine trajectory estimation and gait event detection algorithms
as well as different reference systems. The IMU data are first processed independently
by a trajectory estimation algorithm and a gait event detection algorithm. Subsequently,
the results are merged and matched stride by stride to the reference system’s data. Finally,
an evaluation part allows to generate correlation plots of the gait parameters from the IMU
data and the reference system. Figure 3 shows an overview of the data processing pipeline.

Data LoaderIMU
Data Loader

Data LoaderGait Event 
Detector

Data LoaderTrajectory 
Estimator

Data LoaderReference
Data Loader

Gait Parameter 
Calculator

Evaluator

Figure 3. Data pipeline components and data flow. The data loader, reference loader, gait event detector and trajectory
estimator were implemented as exchangeable classes, allowing the future implementation of multiple different algorithms
and compatibility with different data formats.

As a use case, specific to the dataset, data loaders for Physilog IMU data and Zebris
and OptoGait reference data were implemented. For the gait event detection and trajectory
estimation, algorithms developed by Tunca et al. [9] were reimplemented. Tunca’s gait
event detection is based on an initial segmentation of the recording into strides based on
minimal gyroscope energy, as presented by Skog et al. [27]. Within one stride, the foot’s tilt
angle reaches a minimum shortly after the foot leaves the ground and reaches a maximum
shortly before it touches the ground. These two moments can subsequently be used as
boundaries of search regions for the initial contact and foot off event. The foot off event is
defined as the minimum of angular velocity of the foot prior to the the respective search
region boundary, and the initial contact is defined as the first notable negative peak of
angular velocity after the the respective search region boundary. The trajectory estimation
algorithm from Tunca et al. is based on an error-state Kalman filter with zero-velocity
updates during the stance phase and a following RTS smoother. During the swing phase,
the position, velocity and orientation of the sensor is estimated using a dead reckoning
approach, and during the stance phase, zero velocity of the foot is assumed, and the
estimation is corrected, respectively, using a Kalman filter.

A Gait Parameter Calculator, as shown in Figure 3, is employed in order to calculate
stride time, stride length, swing time and stance time from the estimated trajectory and
the gait events. As shown in Figure 4, stride time, stance time and swing time can be
directly inferred from the gait event detection in the top graph. In order to retrieve the
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stride length, the timestamps of the initial contact events are used to identify the respective
points of initial contact on the estimated trajectory in the bottom graph. Subsequently, the
stride length is defined as the horizontal distance between the points corresponding to
two subsequent initial contacts. Additional parameters, such as clearance, could not be
validated due to vertical kinematic data not being present in the reference data.

Stride
Length

20

Stride Time

Stance Time
Swing
Time

Stride Length

Figure 4. The estimation of gait parameters based on the combination of gait events and estimated
3D trajectory.

Spatial gait parameters were extracted from the Zebris raw data by displacing each
pressure reading by the distance that results from the integration of the treadmill velocity
up to the concerning sample and subsequently overlaying all of these pressure readings.
The resulting pressure matrix represents the rollover imprints as if they were recorded on a
stationary force plate and not on a treadmill.

Now, classical image processing techniques can be used to identify clusters. Figure 5
shows the tracking of foot prints over time. The actual imprint is color coded depending on
the actual force on the belt. The displacement of each treadmill belt reading according to
the integral of treadmill speed up to the respective point in time and the subsequent overlay
of all samples leads to the data shown at the very right in Figure 5, leaving a trace of foot
prints. Here, the lower edge of each cluster is detected, which is equivalent to detecting the
very back end of the heel. The detected heel positions are attributed alternating to the right
and left foot, illustrated by the green and blue lines.

In contrast to the Zebris system, OptoGait directly provides per stride gait parameters,
requiring no raw data processing.
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Figure 5. The evolution of Zebris readings over time and final heel detection. Green and blue lines:
heel positions detected for the left and right foot, respectively.

4. Evaluation

Following the data acquisition, the performance of the reference systems as well as
the trajectory estimation and gait detection algorithms was investigated.

In order to compare the results from the IMUs and the reference system for each
individual stride, data from both sources need to be matched according to their timestamps.
Even though all the systems are synchronized, the timestamp for each stride may be biased
due to not perfect synchronization as well as subject to individual errors for each stride
due to incorrect identification of the stride by either the reference system or the IMU
algorithms. Thus, a nearest neighbor matching with a usual stride time as tolerance is
employed. If strides cannot be matched with their counterpart in the other system, they
are excluded from the analysis.

Subsequently, outliers were detected and excluded from further analysis. This is done
by calculating a z-score (i.e., number of standard deviations above or below the mean value
in a normal distribution) on the absolute difference between the corresponding values
from the IMUs and the reference system and dropping all data records with a z-score
greater than 3 (i.e., data that shows a greater difference between IMU and reference system
than 99.7% of the data points). For individual test participants with very high standard
deviation in the recorded data, filtering by z-score did not remove outliers sufficiently.
Therefore, the data were filtered by a maximum difference between IMU and the reference
system. Since the goal of the current analysis is to compare IMU data with reference data,
it makes sense to filter outliers using the differences between the two data sources. In other
use cases where only a single data source is available, alternative filtering techniques could
be applied. For instance, in our IMU data, the main sources of error are merged or skipped
strides, which result in extremely long (multiples of a normal stride) or short strides (close
to zero), which could be filtered out using a z-score on the absolute values from the IMU
system only.

The filtered data of all participants, trials and feet were merged and statistically
analyzed. An ordinary least squares linear regression analysis was performed, yielding the
parameters of the linear regression line, Pearson’s r and the root-mean-square error. These
parameters were subsequently used for the creation of correlation plots and Bland–Altman
plots, as these plots allow assessing the inter-rater reliability between the IMU data and
algorithms and the reference system.
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4.1. Evaluation of the Reference Systems

As an initial data analysis step, the data from the OptoGait and Zebris system were
evaluated against each other in the same way as IMU and reference data in order to
validate their accuracy. By doing so, the results from previous studies could be replicated,
indicating the correct functioning of both reference systems [28]. Figure 6 shows excellent
agreement between the reference systems for stride length and stride time, indicating
high-quality data for these gait parameters. However, Figure 7 shows significant bias
between the two reference systems for stance and swing times. OptoGait measures notably
longer stance phases and shorter swing phases compared to the Zebris system. This is a
known issue inherent to the measurement systems that has been analyzed by Lee et al. [28].
The actual sensor placements of the OptoGait and the Zebris system are slightly above and
below the treadmill belt, respectively, which causes the detected initial contact and foot
off moments to deviate from the actual events and produce inaccurate stance and swing
phases. Without a third accurate data source, the individual deviation of the Zebris and
OptoGait system cannot be corrected. Therefore, in the following, only stride length and
stride time are evaluated.
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Figure 6. A comparison of stride length (left) and stride time (right) measured with the OptoGait and Zebris system.
The different colors represent different participants.
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Figure 7. A comparison of stance time (left) and swing time (right) measured with the OptoGait and Zebris systems.
The two measurement systems differ substantially due to different sensor placement—one above and one below the
treadmill belt. The different colors represent different participants.
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4.2. Evaluation of the IMU Gait Analysis Algorithms

The trajectory algorithm and gait event detection from Tunca et al. [9] were imple-
mented and used to determine basic stride parameters from the IMU data of the right and
left instep sensors. Since these algorithms were created for sensor data derived from instep
sensors, only these were considered. However, data from different sensor placements
are available in the dataset and could be used by other algorithms. The threshold that is
required by the algorithms for determining stance phases from the gyroscope magnitude
was selected by hand for each participant and trial. When comparing stride length and
stride time estimates of the algorithm implemented in this study to the Zebris reference
data, it is shown that the stride length estimation from the IMU data becomes less accurate
as strides become large. In comparison, close agreement exists between the IMU gait event
detection algorithm and the reference system, see Figure 8. This is probably due to the fact
that larger steps are associated with larger absolute acceleration and gyroscope readings,
which results in larger absolute errors in the raw data as well as in the processed data.
As shown in Figure A1, the limits of agreement (LoA) between estimated and reference
gait parameters are comparable to those reported for overground walking [9].
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Figure 8. Comparison of the estimated and measured stride length (left) and stride time (right) from IMU data and the
Zebris system. The different colors represent different trials.

When comparing stride length and stride time estimates to the measurements obtained
by the OptoGait system, the aforementioned larger deviation for smaller strides cannot be
observed (Figure 9). Instead, a slight bias over the range of stride lengths can be observed.
Additionally, stride time estimation loses accuracy compared to the Zebris data. The 96%
limit of agreement (LoA), as shown in Figure A2, is slightly lower for OptoGait than Zebris
but still comparable to the data collected during overground walking. Tables 3 and 4
provide a direct comparison of the parameters shown in their respective plots.

Table 3. The quality of the estimated stride length. (RMSE: Root-mean-squared error, LoA: 96% Limit
of Agreement).

This Study Tunca et al.
Reference System Zebris OptoGait Kinect v2

Slope 1.03 1.00 0.97
Bias −0.05 −0.02 0.02

RMSE (m) 0.04 0.05 0.05
LoA (m) 0.08 0.09 0.09



Data 2021, 6, 95 12 of 19

Table 4. The quality of the estimated stride time. (* swing time was evaluated in this study) (RMSE:
Root-mean-squared error, LoA: 96% Limit of Agreement).

This Study Tunca et al. *
Reference System Zebris OptoGait Slow-Mo Camera

Slope 1.00 0.99 1.00
Bias 0.00 0.02 0.00

RMSE (s) 0.01 0.02 0.02
LoA (s) 0.03 0.04 0.04
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Figure 9. A comparison of the estimated and measured stride length (left) and stride time (right) from IMU data and the
OptoGait system. The different colors represent different trials.

A comparative study with 22 participants by Tunca et al. [9] compared the performance
of their respective algorithms to gait parameters obtained from a Microsoft Kinect v2
camera and a slow-motion camera for overground walking. The agreement between the
reference system and the gait parameters estimates is comparable to the results of this study
(RMSE = 0.05 m, r2 = 0.98, LoA = 0.09 m for stride length, RMSE = 0.02 s, r2 = 0.95,
LoA = 0.04 s for swing time).

5. Discussion

This study presents a comprehensive dataset of IMU data, two reference systems,
video data and meta data of 15 participants. We hypothesized that outcomes of the IMU
gait analysis algorithm might suffer from the imperfect inertial frame on the treadmill.
The results from this study were not in agreement with this hypothesis as the trajectory
estimation algorithm and gait event detection algorithm used in this study produced simi-
larly high-quality results for both treadmill and overground walking data (Tables 3 and 4).
These results are also comparable to other state-of-the-art IMU gait analysis studies with
respect to the LoA in stride length and time [10,29]. Consequently, the non-optimal inertial
frame of a treadmill did not reduce the accuracy of the spatio-temporal gait parameter
estimates for this particular algorithm. Nevertheless, other algorithms could potentially be
more vulnerable when applied to treadmill IMU data.

Despite the high accuracy of stride time and stride length from the IMU system, we
expected little agreement between the IMU system and either reference system for stance
and swing time, since these two parameters differ significantly between the photoelectric
OptoGait and pressure-sensitive Zebris system. When comparing these gait parameters
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from the IMU system with both reference systems, as shown in Figures 10 and 11, it can be
observed that the IMU system underestimates stance time and overestimates stride time.
This was expected for the OptoGait system since it is installed above the treadmill belt
and therefore detects contact with the belt slightly too early. The same trend was observed
for the Zebris system because the sensors are installed underneath the treadmill belt and
therefore detect contacts slightly too late. However, a slight delay in initial contact detection
also exists for IMUs: given that the IMU analysis method needs a certain acceleration and
change in angular velocity to detect a contact, this can only happen after the foot has
touched the treadmill belt, and therefore, any detection of contact is also slightly delayed.
The results show that this delay of the IMU system is larger than the delay of the Zebris
system caused by the placement of the force sensors, explaining the underestimation of
stance time by the IMU system. Consequently, deriving gait parameters from two different
kind of gait events (e.g., swing and stance time from initial contact and foot off event) is not
as reliable as when deriving gait parameters from gait events of the same kind (e.g., stride
length and stride time from two consecutive initial contact events).

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Zebris stance time [s]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

IM
U 

st
an

ce
 ti

m
e 

[s
]

n = 8733
r = 0.97

RMSE = 0.02
y = 0.93x 0.03

unity slope
regression line

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Zebris swing time [s]

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70
IM

U 
sw

in
g 

tim
e 

[s
]

n = 8768
r = 0.90

RMSE = 0.02
y = 1.13x + 0.02

unity slope
regression line

Figure 10. A comparison of the estimated and measured stance time (left) and swing time (right) from IMU data and the Zebris
system. The different colors represent different trials.

The cohort of this study only included healthy individuals. Thus, it remains unclear if
our methods produce similar results for individuals with pathological gait on the same
treadmill setup. Nevertheless, Tunca et al. [9] showed that the algorithm performs well on
data from overground pathological gait. If the conclusions can be transferred to treadmill
walking, progress of rehabilitation or training could be tracked using IMU data and the
study’s data processing pipeline.

It is worth emphasizing that while the components of the data processing pipeline
are easily exchangeable, the overall structure of the pipeline is fixed and limited to the
present building blocks illustrated in Figure 3. Algorithms that rely on a different workflow
(e.g., perform a combined estimation of trajectories and gait events or data-driven machine
learning prediction of gait parameters) cannot be easily tested using this pipeline. However,
the building blocks for data loading and evaluation could be potentially reused in a wide
variety of pipeline design.
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Figure 11. A comparison of the estimated and measured stance time (left) and swing time (right) from IMU data and the OptoGait
system. The different colors represent different trials.

Furthermore, the presented dataset contains a multitude of data points that have not
been analyzed in this study, such as data collected with IMUs placed on locations other than
the instep, the raw pedobarographic data, various metadata, and videos. In this respect,
our dataset presents a valuable resource for future research in the field of gait analysis.
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Appendix A. Additional Evaluation Plots
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Figure A1. Bland–Altman plots of the estimated and measured stride length (left) and stride time (right) from IMU data
and the Zebris system. The different colors represent different trials.
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Figure A2. Bland–Altman plots of the estimated and measured stride length (left) and stride time (right) from IMU data
and the OptoGait system. The different colors represent different trials.

Appendix B. JSON Data Format of Zebris Files

The content of the Zebris JSON file with raw data, as shown in Figure A3, contains
the the following top-level keywords:

• cell_count: number of sensors along each axis of the device
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• cell_size: size of each sensor in mm
• frequency: sampling frequency in Hz
• pressure_unit: literal of pressure unit
• time_unit: literal of time unit
• velocity_unit: literal of velocity unit
• sample_count: number of samples in the recording
• begin: timestamp of first sample (timestamps do not always start at zero)
• samples: list of all samples

The cell_count and cell_size members contain a x and y member, representing the
respective coordinates.

The samples member consists of a list of objects. Each of these sample objects contains
the following keywords:

• origin: origin of the data cell
• size: size of the data cell
• pressure: list of pressure values
• velocity: treadmill velocity

Since most of the time, the majority of pressure values are zero, the data are simply
compressed by only providing data for the minimum rectangular area where values are
not zero, as illustrated in Figure A4. These areas are defined by their origin and size.
The origin and size members contain an x and y member that represents the respective
coordinates. The list of pressure values is a flattened array in column-major (FORTRAN-
style) order of the two-dimensional pressure data. In case all data are zero, the coordinates
of the origin are null, the size is 0, and the value of pressure is an empty array ([]).

 

 

{ 
"cell_count": { 

  "x": 64, 
  "y": 160 

}, 
"cell_size": { 

  "x": 8.469, 
  "y": 8.469 

}, 
"frequency": 128, 
"pressure_unit": "N/cm\u00b2", 
"time_unit": "s", 
"velocity_unit": "m/s", 
"sample_count": 20947, 
"begin": 8.469, 
"samples": [ 

 { 
 "origin": { 
 "x": 37, 
 "y": 93 
 }, 
 "size": { 
 "x": 4, 
 "y": 5 
 }, 
 "pressure": [ 
 0.0, 2.2, 2.2, 0.0, 
 0.0, 3.8, 4.3, 1.6, 
 1.6, 6.5, 5.9, 3.2, 
 2.2, 3.8, 2.2, 0.0, 
 0.0, 1.1, 0.0, 0.0 
 ], 
 "velocity": 1.29 
 }, 
 ... 
 ] 
} 
 

 Figure A3. An example file structure of a .json.gz files with Zebris data.
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Figure A4. Illustration of pedobarographic data format for two particular data samples.

The content of the Zebris JSON file with aggregated data contains the maximum
pressure distribution and rollover samples for each rollover cycle. This is referred to as
event. The Zebris software calculates the rollover samples presumably by shifting and
overlaying raw data samples according to the treadmill speed. The keywords cell_count,
cell_size and frequency are equivalent to their counterpart in the raw data file. The
remaining keywords are:

• unit: literal of pressure unit
• event_count: number of rollover cycles
• events: list of event objects

Each event object represents one rollover. It contains the following keys:

• begin: timestamp of first contact
• end: timestamp of last contact
• side: “left” or “right” indicating the considered foot
• heel: heel position with x and y member
• toe: toe position with x and y member
• maximum: maximum pressure distribution, analogue to one sample in the raw data file
• rollover: rollover object

A rollover object contains a series of samples that are analogous to the samples in the
raw data file. However, since the frame for a rollover is not the sensor array but a dynamic
window that encloses the footprint, the frame size is defined via the keyword size, and
the number of samples during rollover is provided by the keyword sample_count.
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