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Abstract: Deepfake and manipulated digital photos and videos are being increasingly used in a
myriad of cybercrimes. Ransomware, the dissemination of fake news, and digital kidnapping-related
crimes are the most recurrent, in which tampered multimedia content has been the primordial
disseminating vehicle. Digital forensic analysis tools are being widely used by criminal investigations
to automate the identification of digital evidence in seized electronic equipment. The number of
files to be processed and the complexity of the crimes under analysis have highlighted the need to
employ efficient digital forensics techniques grounded on state-of-the-art technologies. Machine
Learning (ML) researchers have been challenged to apply techniques and methods to improve the
automatic detection of manipulated multimedia content. However, the implementation of such
methods have not yet been massively incorporated into digital forensic tools, mostly due to the
lack of realistic and well-structured datasets of photos and videos. The diversity and richness of
the datasets are crucial to benchmark the ML models and to evaluate their appropriateness to be
applied in real-world digital forensics applications. An example is the development of third-party
modules for the widely used Autopsy digital forensic application. This paper presents a dataset
obtained by extracting a set of simple features from genuine and manipulated photos and videos,
which are part of state-of-the-art existing datasets. The resulting dataset is balanced, and each entry
comprises a label and a vector of numeric values corresponding to the features extracted through
a Discrete Fourier Transform (DFT). The dataset is available in a GitHub repository, and the total
amount of photos and video frames is 40, 588 and 12, 400, respectively. The dataset was validated
and benchmarked with deep learning Convolutional Neural Networks (CNN) and Support Vector
Machines (SVM) methods; however, a plethora of other existing ones can be applied. Generically,
the results show a better F1-score for CNN when comparing with SVM, both for photos and videos
processing. CNN achieved an F1-score of 0.9968 and 0.8415 for photos and videos, respectively.
Regarding SVM, the results obtained with 5-fold cross-validation are 0.9953 and 0.7955, respectively,
for photos and videos processing. A set of methods written in Python is available for the researchers,
namely to preprocess and extract the features from the original photos and videos files and to build
the training and testing sets. Additional methods are also available to convert the original PKL files
into CSV and TXT, which gives more flexibility for the ML researchers to use the dataset on existing
ML frameworks and tools.

Dataset: https://github.com/saraferreirascf/Photos-Videos-Manipulations-Dataset

Dataset License: MIT License

Keywords: digital forensics; machine learning; photos and videos manipulation; Discrete Fourier
Transform; tampered multimedia; deepfake
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1. Background and Summary

The manipulation of multimedia content is increasingly appealing, mostly due to its
direct influence in the spreading of fake news, defacing, deepfake, and digital kidnap cy-
bercrime activities. The techniques used to manipulate digital photos and videos have been
improved considerably and are mostly automated and supported by artificial intelligence
methods. The resulting manipulated multimedia content is becoming harder to recognize.

The widespread techniques used to manipulate multimedia files can be broadly
classified into the following main types: copy-move, splicing, deepfake, and resampling.
Copy-move consists of rearranging the components of a photo by copying or moving them
to different places on the same photo. The overall idea is to deceive the observer by giving
the illusion of having more elements on the photo than those originally present. Splicing
consists of overlapping different regions of two or more different photos into a new one.
Resampling consists of changing the scale or even the position of an element in a photo.
This type of manipulation can be used to recover old photos or even improve the visibility
of photos in general. Figure 1 depicts an example of copy-move, while Figure 2 illustrates
the use of splicing.

Deepfake photos and videos have been improved in recent years and have leveraged
powerful ML techniques to improve the manipulation of the contents. Deep learning,
more specifically, the training of generative neural networks such as auto-encoders or
Generative Adversarial Networks (GANs) [1], is the most common ML method used to
improve deepfake.

The detection of manipulated multimedia content has gained enthusiasts, especially
in the digital forensics context, as the most recurrent today’s crimes resort to tampered
photos and videos. The Difference of Gaussians (DoG) and Oriented Rotated Brief (ORB)
are techniques used to detect copy-move in manipulated photos [2]. DoG applies corners
detection with the Sobel algorithm, features extraction with DoG and ORB, and features
correspondence. These methods combine detection techniques based on blocks and key
points in a single model. A match is found between two points of interest if the distance is
less than a predetermined threshold.

(a) Original image. (b) Manipulated image.

Figure 1. Copy-move manipulation.
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(a) Original image. (b) Original image. (c) Manipulated image.

Figure 2. Splicing manipulation.

Deepfake is the most known type of splicing, in which a person’s face in a photo or
video is swiped by another person’s face [3]. A wide set of cybercrime activities is usually
associated with this manipulation technique, being digital kidnapping in its various shapes
the most common and those which may cause more damages to the victims. Figure 3
depicts an example of deepfake, where it is possible to observe that a new face was attached
to the original torso.

(a) Original image. (b) Manipulated image.

Figure 3. Example of deepfake manipulation extracted from a video of Celeb-DF dataset [4].

Extracting features from photos with the Discrete Fourier Transform (DFT) method is
described in [3]. It is based on a classical frequency domain analysis with DFT, in which the
frequency characteristics of a photo is analyzed in a space defined by a Fourier transform,
namely by applying a spectral decomposition of the input data, which corresponds to the
way a signal’s energy is distributed over a range of frequencies. DFT is a mathematical
technique to decompose a discrete signal into a set of sinusoidal components of various
frequencies ranging from 0 (constant frequency, corresponding to the image mean value)
up to the maximum of the admissible frequency, given by the spatial resolution [5,6]. The
frequency-domain representation of a signal, namely its amplitude and phase at each
frequency, is calculated by Equation (1):

Xk,l =
N−1

∑
n=0

M−1

∑
0

xn,m · e(−
i2π
N kn) · e(−

−i2π
M lm) (1)
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Convolutional Neural Networks (CNN), also known as ConvNet, is a deep learning
algorithm comprised of neurons that self-optimize through learning. Each neuron receives
an input and performs an operation, such as a scalar product, followed by a non-linear
function [7]. Technically, in CNN, each input photo will pass through a series of layers,
in order to train and test the model. There are three types of layers: convolutional layers,
pooling layers, and fully connected layers. CNN processing takes an input photo, processes
it, and classifies it under certain pre-defined categories, such as fake or genuine. The input
photo is seen as an array of pixels, and it depends on the photo resolution.

Jafar et al. [8] applied a CNN-based method to detect deepfake by using DFT in previ-
ously extracted mouth features (DFT-MF). Deepfake videos extraction is made by moviePy
tool and takes into account the occurrences of certain words. By using the identified face
landmarks, the frames in which the person has their mouth closed are removed.

Several surveys on the use of deep learning methods for digital forensics have been
published recently [9,10]. The results obtained with CNN on image forensics are impressive
and outperform those obtained with other machine learning methods. However, the
processing time and the computational resources allocated are far beyond the admissible
for standalone digital forensic stations [5].

Support Vector Machines (SVM) is an ML kernel-based method and has been suc-
cessfully used in a wide set of classification problems, namely those applied to a binary
classification between two distinct classes. It has been employed on manipulated photos
and videos detection with promising results and reduced processing times [3].

ML methods are being incorporated into real-world digital forensics applications, as
standalone applications or as third-party modules in widely used tools, such as Autopsy.
When properly automated, ML classification and detection tasks can have a great impact on
the daily routine of criminal investigation, namely on cybercrimes involving the detection
of tampered photos and videos. However, realistic datasets should be made available to
benchmark and challenge ML methods to detect tampered multimedia content.

The aim of this paper is to describe a compound dataset of photos and videos built on
top of already published state-of-the-art datasets. It is a realistic and up-to-date dataset
composed of about 52,000 examples of genuine and manipulated photos and videos, which
incorporates the most common manipulation techniques. The dataset is available at a
GitHub repository under an MIT license, and the researchers have at their disposal a set of
scripts written in Python to preprocess, extract the features from the original multimedia
files, and process the dataset files with ML methods through already existing frameworks.
The dataset was evaluated with SVM by extracting 50 simple features with DFT, and with
a CNN-based method, by applying a set of scripts that are also available for that purpose.

The remaining of the paper is organized as follows. Section 2 describes the data that
is contained in the dataset, its format, and how it can be read and interpreted. Section 3
details the methods developed to preprocess and process the dataset, as well as how the
data can be reused. Section 4 describes the technical validation of the dataset, namely by
using SVM and CNN-based methods.

2. Data Description

The dataset presented in this paper is a compilation of genuine and manipulated
photos and videos already published and available in state-of-the-art datasets. These
datasets have been used to benchmark ML methods for classification and manipulation
detection purposes. Table 1 summarizes the original datasets that were gathered in the
resulting dataset and are described in this Section. The proposed dataset incorporates
both objects and people’s faces, being possible to detect distinct types of manipulations
aside deepfake.
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Table 1. Composition of the dataset.

Name Fake Real Content Manipulation Type Source

CelebA-HQ dataset - 10,000 photos - [3,11]
Flickr-Faces-HQ dataset - 10,000 photos - [3,12]
“100K Facesproject” 10,000 - photos Deepfake [13]
“this person does not exist” 10,000 - photos Deepfake [14]
COVERAGE dataset 97 97 photos Copy-move [15]
Columbia Image Splicing Dataset 180 183 photos Splicing [16]
Created by us 14 14 photos Copy-move [17]
Celeb-DFv1 795 158 videos Deepfake [4]

21,086 20,452

Several works have already processed a compound dataset [3], namely by compiling
photos available in CelebA-HQ dataset [11], Flickr-Faces-HQ dataset [12], “100K Faces
project” (https://generated.photos, accessed on 4 August 2021) and “this person does not exist”
project (https://thispersondoesnotexist.com, accessed on 4 August 2021). The datasets
described on Table 1 were tested and benchmarked individually in a wide set of published
research works [2–4,8]. Notwithstanding the richness of the published datasets, some of
them only have deepfake-based manipulations examples. To overcome this limitation,
datasets with distinct manipulations types, such as copy-move, were added. To do this,
additional datasets that contain not only faces but also everyday objects were added.
COVERAGE dataset [15] is a copy-move forgery database with similar but genuine objects
that contains 97 legitimate photos and 97 manipulated ones.

Columbia Uncompressed Image Splicing Detection Evaluation Dataset [16] was also
added, which consists of high-resolution images, 183 authentic (taken using just one camera
and not manipulated), and 180 spliced photos. Additional 14 legitimate and 14 fake ad hoc
photos were also added, containing splicing and copy-move manipulations. In [18], the
authors proposed a technique that utilizes a fully convolutional network (FCN) to localize
image splicing attacks training with the Columbia dataset.

Celeb-DF [4] has 795 fake and 158 real videos, extracted from Youtube. To combine
these videos with the rest of the dataset, three frames per second were extracted from
each video, in a total of 6200 extracted frames from real videos, and 31,551 from fake ones.
In [19], the authors proposed a method to edit physiological signals in facial videos, and
the experiments were conducted using the Celeb-DF dataset.

The final dataset is balanced, as more machine learning models could be used to train
and test the models. To achieve that, if at some point there are more real photos than
fake ones, only a minimum amount between them is used. To be more specific, as there
are 31,551 fake frames extracted from videos and 6200 real ones, there will only be used
6200 photos from the fake ones, totaling 12,400 photos extracted from videos.

Therefore, the compound dataset proposed in this paper has a similar number of
examples for both fake and genuine photos and videos. It is composed of 52,988 examples,
which corresponds to 40,588 photos and 12,400 videos, as detailed in Table 2.

Table 2. Number of examples available on the compound dataset.

Number of Examples

Photos 40,588

Videos 12,400

Total 52,988

https://generated.photos
https://thispersondoesnotexist.com


Data 2021, 6, 87 6 of 15

Figure 4 illustrates a manipulated photo (Figure 4a) and its original version (Figure 4c),
as well as the corresponding power spectrum obtained by DFT method described on
Section 1 (Figure 4b,d). It is possible to identify the variations of the power spectrum
between both photos.

(a) Manipulated photo submitted for testing. (b) DFT power spectrum.

(c) Real photo submitted for testing. (d) DFT power spectrum.

Figure 4. Photo features extraction by using DFT [4].

Figure 5 illustrates an entry of the resulting uni-dimensional vector. Each entry starts
with the classification label, followed by a list of numeric values, which corresponds to the
features extracted from the photo through DFT. The label can have two values, namely 0
and 1, which correspond to a genuine or manipulated photo, respectively. The following
values are obtained applying an azimuthal averaging to compute a robust one-dimensional
representation of the DFT power spectrum. It can be seen as a compression, gathering and
averaging similar frequency components into a vector of features.

The dataset was validated (Section 4) with 50 simple features extracted through the
DFT method. Different features sets can be extracted, being their length intrinsically
related with CPU/memory configuration and processing time required. Researchers can
preprocess the dataset with different features sets, as described in Section 3.
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Figure 5. Photo features extraction by using DFT.

3. Methods

This Section describes the methods available to preprocess and process the dataset.
The experimental setup pipeline is depicted in Figure 6.

Figure 6. The pipeline of the experimental setup of the dataset.

The overall architecture is comprised of three main phases, namely preprocessing and
features extraction (Section 3.1), processing (Section 3.2) and results analysis (Section 3.3).
Two complementary methods were developed to convert the datasets to other formats,
namely CSV and TXT (Section 3.4).

The dataset files and the developed methods to preprocess and process the pho-
tos and videos are available on the following GitHub repository: https://github.com/
saraferreirascf/Photos-Videos-Manipulations-Dataset (accessed on 4 August 2021) . The
software development and experiments were conducted on a PC with Windows 10, 8 GB
RAM, and AMD Ryzen 52,600. The following software applications are required: Python
version 3.9.2, Python module NumPy version 1.19.4, OpenCV version 4.4.0.46, Matplotlib
version 3.3.3, SciPy version 1.5.4, and SciKit-learn version 0.23.2.

3.1. Preprocessing and Features Extraction Phase

The preprocessing phase aims to transform the original photos and video frames into
a labeled dataset. The files are converted into a uni-dimensional array, which is the result
of the DFT simple features extraction. Regarding video files, three frames per second were
extracted, which corresponds to an admissible and common value used in digital forensics.
The features extraction and the setup of training and testing sets are implemented by the
following corresponding scripts:

./create_train_file.py <dir> <features> <max_files> <output_filename>

./create_test_file.py <dir> <features> <max_files> <output_filename>

Where:

• <dir> corresponds to the directory containing the original dataset, which has the
sub-directories fake and real, respectively, for tampered and genuine photos;

• <features> is the number of simple features to extract from each file by applying the
DFT method;

• <max_files> is the maximum number of files used for the classes fake and real;
• <output_filename> is the output filename for the training or testing dataset.

https://github.com/saraferreirascf/Photos-Videos-Manipulations-Dataset
https://github.com/saraferreirascf/Photos-Videos-Manipulations-Dataset
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The output of the scripts is a PKL file, which is created by the Python module named
“pickle” (https://docs.python.org/3/library/pickle.html, accessed on 2 July 2021). The PKL
file contains a byte stream that represents the serialized objects, which can be deserialized
back into the runtime Python program. Each PKL file record has a label and a numeric array
composed of a set of simple features extracted by DFT.

3.2. Processing Phase

A set of ML methods can be used by the researchers to process and benchmark the
proposed dataset. A Python script is available on GitHub (directory Scripts) to automate
the dataset processing with an SVM-based method. The script is able to process an input
file or split the dataset into a K-fold (5 or 10) or 67% for training and 33% for testing.

./svm_model.py <training_file> <testing_file> <run_mode>

Where:

• <training_file> receives the training input file to train the SVM model;
• <testing_file> receives the testing file, namely those that should be classified;
• <run_mode> receives a numeric value with the mode to process the SVM model.

The parameter <run-mode> can have one of the following values:

• −1: classifies each entry in the <testing_file>;
• 0: splits the dataset into two parts: 67% for training and 33% for testing;
• 5: splits the dataset to be used in a 5-fold cross validation;
• 10: splits the dataset to be used in a 10-fold cross validation;

The script cnn_model.py is also available to process the dataset with CNN. It uses
tensorflow and keras and can be used as described below:

./cnn_model.py <training_folder> <testing_folder> <run_mode>

Where:

• <training_folder> receives the folder containing files to train the CNN model. This
folder must have two sub-directories: “fake” and “real”;

• <testing_folder> receives the folder containing the files to be classified. This folder
needs to have one sub-directory named “predict”;

• <run_mode> can be one of the following two values: 0 to test with 10% of the files into
the training folder; 1 to test with the files that are in the testing folder.

3.3. Results Analysis

The performance evaluation is made by calculating a set of classification metrics. The
metrics used to evaluate the results obtained during the dataset validation (Section 4)
were Precision (P), Recall (R), F1-score, and Accuracy (A). Table 3 depicts the confusion
matrix [20], which inputs the calculations of the evaluation metrics summarized in Table 4.

Table 3. The confusion matrix.

Positive Negative

Positive TP FP

Negative FN TN

Precision measures the number of photos and videos predicted as manipulated that
actually were manipulated. The recall is the percentage of manipulated examples that were
predicted from the total number of manipulated examples. Accuracy measures the rate of
correct classifications out of all the examples in the dataset. Finally, F1-score is a weighted

https://docs.python.org/3/library/pickle.html
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average of Precision and Recall. It ranges between [0, 1] and measures the preciseness and
robustness of the classifier.

Table 4. Metrics used to evaluate the dataset.

Metric Equation

Precision P = TP
(TP+FP)

Recall R = TP
(TP+FN)

F1 F1 = 2 ∗ P∗R
(P+R)

Accuracy A = TP+TN
TP+TN+FP+FN

The scripts developed to calculate the evaluation metrics takes advantage of the
scikit-learn library for Python (https://scikit-learn.org/stable/, accessed on 23 June
2021). By observing the Listing 1, with the y_test from the testing set and x_pred from the
predictions given by the SVM model, it is possible to get the evaluation metrics, namely
precision, recall, F1-score, and the resulting confusion matrix.

Listing 1: Python code to calculate the evaluation metrics.

from sk learn . metr i cs import c l a s s i f i c a t i o n _ r e p o r t , confusion_matr ix
print ( c l a s s i f i c a t i o n _ r e p o r t ( y_ tes t , x_pred ) )

print ( " confusion matrix " )
print ( confusion_matr ix ( y_ tes t , x_pred ) )

print ( " True P o s i t i v e s : " , confusion_matr ix ( y_ tes t , x_pred ) [ 0 ] [ 0 ] )
print ( " Fa l se Negatives : " , confusion_matr ix ( y_ tes t , x_pred ) [ 0 ] [ 1 ] )
print ( " Fa l se P o s i t i v e s : " , confusion_matr ix ( y_ tes t , x_pred ) [ 1 ] [ 0 ] )
print ( " True Negatives : " , confusion_matr ix ( y_ tes t , x_pred ) [ 1 ] [ 1 ] )

Listing 1 is an excerpt of the script used to calculate the performance obtained by
processing the testing dataset against the SVM model learned with the training dataset.

3.4. Complementary Methods

A set of complementary functions was developed to give researchers the flexibility to
process the files into different formats. The training and testing files are originally in PKL
format. Two distinct scripts were made available to convert PKL to CSV and TXT files formats.
The conversion of a PKL file to CSV format is obtained by executing the following script:

./pkl_to_csv.py <pkl_file> <csv_file>

Where:

• <pkl_file> receives a pkl file to be converted to a CSV format;
• <csv_file> is the output and corresponds to a file in the CSV format.

This script creates two different files in CSV format: one with the features and one with
the corresponding labels.

Regarding TXT format, the conversion of a PKL input file is obtained through the
execution of the following script:

./pkl_to_txt.py <pkl_file> <txt_file>

Where:

https://scikit-learn.org/stable/
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• <pkl_file> receives a pkl file to be converted to a txt format;
• <txt_file> is the output and corresponds to a txt file.

4. Technical Validation

This section details the technical validation of the dataset. The dataset was initially
processed by applying a Support Vector Machine (SVM)-based machine learning method.
The results obtained were then benchmarked against a deep learning Convolutional Neural
Network (CNN) based method.

It has been chosen to validate the dataset with exactly 50 features extracted from
each multimedia file. However, we have made experimental tests with sets with different
lengths and collected the corresponding processing time and F1-score. Table 5 summarizes
the results obtained, where it is possible to observe that between 50 and 100 features, the
processing time almost doubled, and the F1-score slightly increases. The dataset validation
was made with 50 features; however, it can be processed with different features sets of
different lengths.

Table 5. The influence of the number of features on the total processing time and F1-score.

Features Preprocessing Time (s) Processing Time (s) F1-Score

20 1437 14.84 0.7010

50 1708 22.64 0.7160

100 3026 43.16 0.7570

200 4103 94.84 0.7819

500 5339 185.71 0.8462

The SVM processing and dataset evaluation were made through two distinct ap-
proaches: 5-fold cross-validation [5] and 10-fold cross-validation, which are detailed below
in this Section. The dataset described in Section 2 was divided into three parts: one part
with only photos, one part with only frames taken from videos, and a third part with the
mixture of the other two parts. For each part, a 10-fold cross-validation was performed,
and the results are shown in Tables 6–8.

For each split, corresponding to the evaluation of a K part of the dataset, the values of
TP, TN, FP, and FN were obtained. With the values obtained, the precision, recall, F1-score,
and accuracy were calculated using the formulas explained in Section 3.

Table 6. The results obtained with 10-fold cross-validation against the dataset containing only photos.

TP TN FP FN Precision Recall F1-Score Accuracy

Split 1 2016 2015 7 20 0.9965 0.9902 0.9933 0.9933

Split 2 1983 2056 12 7 0.9940 0.9965 0.9952 0.9953

Split 3 2057 1980 7 14 0.9966 0.9932 0.9949 0.9948

Split 4 2032 2005 11 10 0.9946 0.9951 0.9949 0.9948

Split 5 2012 2027 4 15 0.9980 0.9926 0.9953 0.9953

Split 6 2079 1954 9 16 0.9957 0.9924 0.9940 0.9938

Split 7 2004 2039 9 6 0.9955 0.9970 0.9963 0.9963

Split 8 1971 2070 4 13 0.9980 0.9934 0.9957 0.9958

Split 9 2026 2018 5 9 0.9975 0.9956 0.9966 0.9966

Split 10 1989 2052 6 11 0.9970 0.9945 0.9957 0.9958

Mean 2017 2022 7 12 0.9963 0.9941 0.9952 0.9952
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Table 6 describes the results obtained with 10-fold cross-validation to the dataset
containing only photos. The table highlights the partial results obtained in each split,
namely the number of FP, FN, TN, and TP, as well as the calculated values for Precision,
Recall, F1, and Accuracy. The corresponding mean scores obtained with the 10-fold cross-
validation are also indicated. The results obtained show a mean F1-score above 99.52%,
which outperforms the state-of-the-art documented work [2]. The mean value obtained for
accuracy (A) is 99.52%, which surpasses the result of 93.52% achieved in [2]. The number
of incorrectly classified examples, namely FP and FN, is low, having a mean value of 7 and
12, respectively.

The results attained with 10-fold cross-validation against the dataset containing only
videos are presented in Table 7. The mean values for F1-score and accuracy are 79.8%
and 78.3%, respectively. When comparing with previously documented experiments [8],
it is possible to note that, using the Celeb-DF dataset [4] as part of the input dataset,
the results outperform those obtained with the DFT-MF approach, which achieved an
accuracy of 71.25%. Regarding misclassified examples, the average values for FP and FN
are, respectively, 180 and 89 in a total amount of 1240 examples.

Table 7. The results obtained with 10-fold cross-validation against the dataset containing only videos.

TP TN FP FN Precision Recall F1-Score Accuracy

Split 1 544 442 174 80 0.7577 0.8718 0.8107 0.7952

Split 2 553 447 135 105 0.8038 0.8404 0.8217 0.8065

Split 3 548 420 188 84 0.7446 0.8671 0.8012 0.7806

Split 4 510 441 198 91 0.7203 0.8486 0.7792 0.7669

Split 5 520 443 184 93 0.7386 0.8483 0.7897 0.7766

Split 6 554 448 159 79 0.7770 0.8752 0.8232 0.8081

Split 7 522 426 202 90 0.7210 0.8529 0.7814 0.7645

Split 8 505 464 177 94 0.7405 0.8431 0.7884 0.7815

Split 9 524 421 196 99 0.7278 0.8411 0.7803 0.7621

Split 10 532 453 182 73 0.7451 0.8793 0.8067 0.7944

Mean 531 441 180 89 0.7476 0.8568 0.7983 0.7836

Table 8. The results obtained with 10-fold cross-validation against the dataset containing both photos and videos.

TP TN FP FN Precision Recall F1-Score Accuracy

Split 1 2689 1962 641 7 0.8075 0.9974 0.8925 0.8777

Split 2 2689 2005 600 5 0.8176 0.9981 0.8989 0.8858

Split 3 2633 2040 623 3 0.8087 0.9989 0.8938 0.8819

Split 4 2627 2021 641 10 0.8039 0.9962 0.8898 0.8771

Split 5 2631 2012 651 5 0.8016 0.9981 0.8892 0.8762

Split 6 2656 2000 640 3 0.8058 0.9989 0.8920 0.8787

Split 7 2647 2015 630 7 0.8077 0.9974 0.8926 0.8798

Split 8 2596 2083 612 8 0.8092 0.9969 0.8933 0.8830

Split 9 2639 2023 632 5 0.8068 0.9981 0.8923 0.8798

Split 10 2627 2043 621 8 0.8088 0.9969 0.8931 0.8813

Mean 2643 2020 629 6 0.8078 0.9978 0.8927 0.8801
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Considering that videos are composed of a set of frames, a third experiment was made
to accommodate both multimedia content types. Table 8 presents the results obtained with
the whole dataset composed of 52, 990 examples, applying 10-fold cross-validation.

It is possible to observe that the mean values for precision, recall, and F1-score are,
respectively, 80.78%, 99.78%, and 89.23%. The calculated mean accuracy is 88, 01%, and the
overall results outperform those attained and documented in [3].

Table 9 summarizes the dataset evaluation for photos processing made with different
methods, while Table 10 summarizes the results obtained with the processing of video
frames. The results obtained with 5-fold cross-validation and the CNN-based method are
described in [5].

Table 9. Dataset evaluation for photos.

ML Method Features Extraction Precision Recall F1-Score Accuracy

SVM - 5-fold CV DFT 0.9965 0.9941 0.9953 0.9951

SVM - 10-fold CV DFT 0.9963 0.9941 0.9952 0.9952

CNN Original files 0.9970 0.9966 0.9968 0.9967

Table 10. Dataset evaluation for videos.

ML Method Features Extraction Precision Recall F1-Score Accuracy

SVM - 5-fold CV DFT 0.7438 0.8548 0.7955 0.7794

SVM - 10-fold CV DFT 0.7476 0.8568 0.7983 0.7836

CNN Original files 0.8820 0.8045 0.8415 0.8387

As depicted in Table 7, compared with Table 6, it is possible to note that videos has
lower accuracy. These results can be justified with the number of frames extracted from each
video. Since only 3–4 frames per second were extracted, the frames with manipulations
may go unnoticed. The quality of the videos present in the dataset can also partially justify
the results obtained.

Benchmarking ML methods is crucial to investigate innovative learning methods that
could be successfully applied in the detection of tampered multimedia files in a digital
forensics analysis context. By observing Table 11, it is possible to note the DFT-SVM-based
method has quicker processing times comparing to the CNN-based method. As the aiming
is usually implementing these ML methods in digital forensic tools to automate the process
of detecting tampered multimedia content, time is a important factor. Even though the
CNN-based method achieved better results, their preprocessing and processing times can
be unbearable in real-time processing scenarios. Additional research should be made to
reduce the processing time on using CNN in standalone digital forensics tools.

Table 11. Processing time spent for videos and photos, in the format hh:mm:ss.

Photos Videos

DFT-SVM-based method 00:00:51 00:02:00

CNN-based method 06:36:00 02:40:00

Deep learning based methods have been widely used and are considered state-of-the-
art in image and video forensics [9,10]. Notwithstanding, the features extraction methods
and the overall functioning of deep learning based models, such as CNN and RNN, are
time-consuming to process and less flexible to be embedded into a standalone digital
forensics application, such as Autopsy. Regarding the DFT-SVM-based method used to
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process the proposed dataset, the results achieved are competitive with the CNN model for
both photos and videos with a significantly lower processing time, as depicted in Table 11.
The trade-off between the processing time and the evaluation performance obtained by
DFT-SVM method [3] should thus be taken in account in the creation of forensic tools to
support and help criminal investigator’s digital forensics daily routine.

5. Conclusions

This paper described a dataset of genuine and manipulated photos and videos to be
used by ML methods in the detection of tampered multimedia content. A classified dataset
of about 40,000 photos is proposed, composed of both faces and objects, where it is possible
to find examples of copy-move, splicing, and deepfake manipulations. Technical validation
of the dataset was made by benchmarking it with CNN and SVM ML methods.

The DFT features extraction method was used to process the dataset with SVM. A
set of 50 features was used for technical validation of the dataset, being however possible
to extract a different number of features. Regarding CNN, the original multimedia files
were processed. The results obtained are in line with those documented in the literature,
namely on the use of SVM and CNN methods to detect tampered files. Generally, it was
possible to achieve a mean F1-score of 99.68% on the detection of manipulated photos,
while a mean F1-score of 84.15% was attained for videos.

The dataset is delivered with a set of tools that give flexibility to the researchers,
namely by using it in different ML frameworks and with distinct formats. The use of
realistic and well-structured datasets, such as the one presented in the paper, give the
ML practitioners and researchers the ability to test a vast set of methods and models that
can be further applied to solve digital forensics real-world problems. By incorporating
these methods into well-known digital forensics tools, such as Autopsy (www.autopsy.
com, accessed on 23 June 2021), the daily routine of criminal investigation could benefit
enormously [5].

Future work has the following major topics: to continuously improve the dataset by
integrating more genuine and manipulated photos, namely by enhancing the quality and
resolution; to incorporate videos with high-quality manipulations that may challenge the
ML methods even more.
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Abbreviations
The following abbreviations are used in this manuscript:

A Accuracy
CNN Convolutional Neural Networks
CV Cross Validation
DFT Discrete Fourier Transformation
DoG Difference of Gaussian
FCN Fully Convolutional Network
FN False Negative
FP False Positive
GAN Generative Adversarial Network
ML Machine Learning
ORB Oriented Rotated Brief
P Precision
R Recall
RNN Recurrent Neural Networks
SVM Support Vector Machines
TN True Negative
TP True Positive
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