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Abstract: Multimorbidity is a growing healthcare problem, especially for aging populations. Tradi-
tional single disease-centric approaches are not suitable for multimorbidity, and a holistic framework
is required for health research and for enhancing patient care. Patterns of multimorbidity within pop-
ulations are complex and difficult to communicate with static visualization techniques such as tables
and charts. We designed a visual analytics system called VISEMURE that facilitates making sense of
data collected from patients with multimorbidity. With VISEMURE, users can interactively create
different subsets of electronic medical record data to investigate multimorbidity within different
subsets of patients with pre-existing chronic diseases. It also allows the creation of groups of patients
based on age, gender, and socioeconomic status for investigation. VISEMURE can use a range of
statistical and machine learning techniques and can integrate them seamlessly to compute prevalence
and correlation estimates for selected diseases. It presents results using interactive visualizations to
help healthcare researchers in making sense of multimorbidity. Using a case study, we demonstrate
how VISEMURE can be used to explore the high-dimensional joint distribution of random variables
that describes the multimorbidity present in a patient population.

Keywords: multimorbidity; visual analytics; conditional probability; binary logistic regression;
softmax regression; decision tree; electronic medical record data

1. Introduction

Multimorbidity, which refers to the presence of more than one chronic condition in a
patient [1], is a prominent problem in healthcare. It is more prevalent in elderly patients,
and is associated with higher morbidity, mortality, and increased healthcare costs [2].
Patients suffering from multiple chronic conditions are usually high-need and high-cost
patients [3]. According to a study in 2015, the prevalence of multimorbidity was above
75 percent among elderly patients, and the total cost related to multimorbidity was 5.5 times
higher than for other patients [4]. The higher the number of coexisting conditions a patient
has, the more challenging it becomes to manage their care [5,6]. In 2012, approximately
38 million deaths worldwide were related to multiple chronic diseases; according to the
World Health Organization, this number will increase to 52 million by 2030 [7].

Thus, there is a rising demand for research that provides deeper insights into multi-
morbidity. Electronic medical records (EMRs) hold great promise to facilitate the under-
standing of problems related to multimorbidity and its underlying mechanisms [8]. EMRs
contain patient data such as prescriptions, demographics, diagnosis history, laboratory
test results, discharge summaries, and surgical notes [9]. EMR databases are systematized
platforms that can help medical professionals to access accurate and complete information
about patients. With the progression of information technology and the extensive use
of computerized systems, EMRs are available nowadays for subsequent use for research
purposes [10–13]. For instance, EMRs can potentially aid clinical researchers in detecting

Data 2021, 6, 85. https://doi.org/10.3390/data6080085 https://www.mdpi.com/journal/data

https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0002-9258-8619
https://orcid.org/0000-0003-2452-8494
https://doi.org/10.3390/data6080085
https://doi.org/10.3390/data6080085
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/data6080085
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data6080085?type=check_update&version=1


Data 2021, 6, 85 2 of 19

hidden patterns and trends, revealing missing events, identifying event sequences, estab-
lishing quality control, and reducing medical errors [14,15]. A number of recent studies
have used EMRs to address multifaceted challenges of multimorbidity [16–18].

Despite the advantages of EMRs, it is often challenging for medical professionals
to keep pace with the large quantity of heterogeneous data stored in EMRs [19]. These
databases are usually complex and difficult to analyze and interpret. Automated data
analysis methods based on statistics, data mining, and machine learning have the potential
to fulfill the computational demands of EMRs [20,21]. Data analysis refers to the analysis
of raw data to gain both deeper and novel insights into associations among the data
elements [22]. However, one of the challenges of using such analysis methods lies in
their lack of interpretability and transparency, which limits their application in EMR-
based systems [12,13]. In order to overcome this challenge, it is possible to make the
analysis processes accessible to the user through interactive visualizations. A new set of
computational tools, known as visual analytics systems (VASes), have the potential to
help reduce the complexity of EMRs by combining automated analysis techniques with
interactive visualizations [23–25]. VASes can help with the analysis, interpretation, and
making sense of EMR databases by improving the capabilities of the user to accomplish
complex data-driven tasks [26]. Even though VASes hold great promise for analyzing and
making sense of EMR data from patients with multiple chronic diseases, up until now,
there is a shortage of VASes for understanding multimorbidity.

The objective of this study is to demonstrate how VASes can be designed to offer
deeper insights into multimorbidity by enabling exploratory analyses of EMR datasets and
providing a rich set of descriptive statistics. We provide a foundation for, and implemen-
tation of, the design and use of VA systems in exploring the prevalence and patterns of
multimorbidity in a given patient population. To this end, we present a novel web-based
system that we have developed, called VISEMURE—VIsual analytics system for making
SEnse of MUltimorbidity using electronic medical REcord. To illustrate the usefulness of
VISEMURE, we use the Deliver Primary Healthcare Information project database, which is
available through the Canadian Primary Care Sentinel Surveillance Network [27].

The proposed system uses an interactive bar chart to display the prevalence of chronic
diseases, as well as a dynamic correlation matrix to present the correlations among oc-
currences of those diseases. Disease prevalence and correlations may be estimated using
count-based conditional probability, logistic regression, and decision tree models. VISE-
MURE can also create conditional prevalence and correlation estimates, based on any
pre-existing conditions the patient may have, and on other patient characteristics such as
gender, age, household income, and household education. This allows for the investigation
of the impact of existing chronic disease and patient characteristics on the distribution
of multimorbidity in a patient population. The visualization techniques in VISEMURE
can be repurposed for other tasks in the area of healthcare where high-dimensional joint
distributions of random variables are important to understand.

We envision VISEMURE being most useful for researchers who are familiar with EMR
data and for multidisciplinary teams of data specialists and clinical specialists to investigate
many different questions related to multimorbidity. Because multimorbidity is a complex
phenomenon that is not easily captured by a small number of prespecified visualizations,
we contend that a VAS is needed. The main purpose of VISEMURE is not to create plots
for a static publication (although it could be used for this task) but rather to quickly and
efficiently make sense of the multimorbidity patterns within a dataset and to generate
hypotheses about how these patterns may generalize to other settings.

The rest of this paper is organized as follows: Section 2 explains the methodology em-
ployed for VISEMURE. Section 3 explains the design of the proposed system by describing
its structure and components. Section 4 presents the results using some case studies to
illustrate the usefulness of the system. Sections 5 and 6 include discussion, limitations, and
some future areas of application. Finally, Section 7 presents the conclusion of the paper.
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2. Methods

This section describes the methodology we have employed to design the proposed VA
system, namely VISEMURE. In Section 2.1, we explain the data source. We then describe
the preprocessing steps in Section 2.2. Next, in Section 2.3, we introduce the analytical
and visual components of VISEMURE and briefly describe how these components are
combined, which is discussed more extensively in Section 3. Finally, Section 2.4 outlines
the implementation details of VISEMURE.

2.1. Data Source

VISEMURE is designed to be used with structured EMR data, that is, data that are in a
tabular format consisting of columns with well-defined entries for the variables of interest,
including patient characteristics such as age and sex, and disease status. Many EMR data
sources have this structure, but if a data source does not, applying case definitions [27]
and/or natural language processing [28] to create patient characteristics or disease status
variables may be required as a preprocessing step.

To demonstrate the use of VISEMURE, we use a subset of the Deliver Primary Health-
care Information (DELPHI) project database. It is one of the eleven regional networks
included in the Canadian Primary Care Sentinel Surveillance Network [29]. DELPHI
established the first Canadian primary care database derived from EMR data, which
coded symptoms and diagnoses for a subset of patient encounters using the International
Classification of Primary Care.

For our illustrative example, we use a subset of the DELPHI database that includes a
total of 13,697 patients who have at least one of 20 specified chronic diseases. Each patient
is further characterized by three features: age, gender, and socioeconomic status (SES).
Among a total of 7565 females and 6132 males in the dataset, 6303 patients have developed
only one disease, 3183 patients have developed two chronic diseases, and 4211 patients
have developed more than two chronic conditions. SES is categorized into five equal-sized
quintiles. The first quintile represents the lowest-income group, whereas the fifth quintile
refers to the highest-income group. The distribution of sociodemographic factors among
13,697 patients is shown in Table 1. Small cell sizes have been suppressed. It is important
to note that there are no patients in the first and second quintile for both female and male
categories; hence, we would not be able to use these data to extrapolate conclusions to
patients in these income quintiles.

Table 1. The distribution of sociodemographic factors among the patients (i.e., frequency in each category).

Female Male
TotalThird

Quintile
Fourth

Quintile
Fifth

Quintile
Third

Quintile
Fourth

Quintile
Fifth

Quintile

Child
Percentages

<5
<3%

58
32.58%

20
11.23%

<5
<3%

83
46.63%

17
9.55%

178
100%

Adolescent
Percentages

<5
<2%

154
39.39%

33
8.44%

<5
0%

155
39.64%

47
12.02%

391
100%

Young Adult
Percentages

7
0.95%

312
42.45%

142
19.32%

6
0.81%

210
28.57%

58
7.89%

735
100%

Adult
Percentages

8
0.73%

493
45.23%

157
14.40%

6
0.55%

340
31.19%

86
7.89%

1090
100%

Middle Age
Percentages

20
0.40%

2077
42.03%

647
13.09%

29
0.59%

1678
33.95%

491
9.93%

4942
100%

Elder
Percentages

9
0.14%

2423
38.09%

1003
15.77%

18
0.28%

2106
33.11%

802
12.61%

6361
100%

Total
Percentages

46
0.33%

5517
40.28%

2002
14.62%

59
0.43%

4572
33.38%

1501
10.96%

13,697
100%
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Table 2 depicts the list of twenty chronic diseases ordered by patient counts according
to the dataset, which was derived from the DELPHI database using the same methodology
as Nicholson (2017) [30]. As shown in Table 2, ‘Hypertension’, ‘Hyperlipidemia’, and
‘Bronchitis’ are the most common diseases, whereas ‘Kidney Disease’, ‘Dementia’, and
‘Liver Disease’ are the least common diseases among all patients in the database.

Table 2. The distribution of chronic diseases among the patients.

Chronic Disease Patient Counts %

1 Hypertension 4345 31.72

2 Hyperlipidemia 3442 25.13

3 Bronchitis 2617 19.11

4 Cardiovascular
Disease 2332 17.02

5 Musculoskeletal
Problem 2163 15.79

6 Diabetes 2161 15.78

7 Depression 1747 12.75

8 Arthritis 1718 12.54

9 Cancer 1589 11.60

10 Thyroid Disease 1510 11.02

11 Obesity 1266 9.24

12 Colon Problem 1216 8.88

13 Osteoporosis 926 6.76

14 Urinary Problem 861 6.29

15 Stomach Problem 804 5.87

16 Heart Failure 306 2.23

17 Stroke 231 1.69

18 Kidney Disease 212 1.55

19 Dementia 210 1.53

20 Liver Disease 45 0.33

We have chosen the ten most common chronic diseases based on our dataset to use
for further exploratory analysis. They are as follows: ‘Hypertension’, ‘Hyperlipidemia’,
‘Bronchitis’, ‘Cardiovascular Disease’, ‘Musculoskeletal Problem’, ‘Diabetes’, ‘Depression’,
‘Arthritis’, ‘Cancer’, and ‘Thyroid Disease’. The main reason for this choice is that the
dataset is not large enough to allow a good estimation of disease prevalence and correlations
when prevalence is very low.

2.2. Preprocessing

This section describes the preprocessing steps to prepare the data for the statistical
and machine learning techniques in VISEMURE.

2.2.1. Creating Dummy Variables

All chronic diseases, as well as gender, are already binary variables taking values
either 0 or 1 in the dataset. Age is, however, a categorical variable with more than two
categories and was converted into dummy variables prior to regression.
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2.2.2. Merging Categories with Few Observations

Since some dummy variables in the dataset have very few observations, the clas-
sification models in VISEMURE were unable to fit models properly and return null or
not-a-number (NaN) values as coefficients. This results in NaNs as prevalence and cor-
relation estimates. One solution for this problem is to merge the categories of predictors
with a small number of patients. To do so, the three groups of ‘Child’, ‘Adolescent’, and
‘Young Adult’ have been merged and labeled as ‘Child and Young Adult’. We also merge
‘Adult’ and ‘Middle-Aged’ into one category. Therefore, the modified age variable in the
dataset has three categories—namely, ‘Child and Young Adult’, ‘Adult and Middle-Aged’,
and ‘Elder’.

Similarly, ‘Third Income Quintile’ and ‘Fourth Income Quintile’ have also been merged.
According to Statistics Canada [31], Table 3 shows the average adjusted after-tax income
that is divided into five quintiles in 2010.

Table 3. Average Adjusted After-Tax Income by five quintiles for the population in 2010.

Quintile Average Adjusted After-Tax Income

Lowest income quintile USD 16,000

Second income quintile USD 28,000

Third income quintile USD 38,500

Fourth income quintile USD 50,600

Highest income quintile USD 85,500

Statistics Canada’s income grouping is used to label the new categories of SES after
merging them. This attribute breaks down the patients into two groups of ‘Less than or
Equal to USD 50,600’ and ‘Greater than USD 50,600’ average adjusted after-tax income.

2.3. Components of VISEMURE

This section introduces VISEMURE by providing an overview of its design compo-
nents. The main interface of VISEMURE is presented in Figure 1. VISEMURE calculates
conditional probabilities and performs logistic regression, softmax regression, and decision
tree on the data in real-time based on user selections. These statistical and machine learning
models are currently the available techniques employed by the system to analyze and
interactively visualize the input data. However, the system is modular and so can be
extended by incorporating additional methods.
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First, five dropdown lists are created to allow the user to select different categories of
age, gender, and SES available in the data, as well as the types of models applied to the
visualizations in the system.

Second, a bar graph is designed interactively to represent the prevalence of chronic
diseases. The three prevalence estimation techniques—namely, count-based conditional
probability, logistic regression, and decision tree—are used by the bar graph. Based on
the user selections, the results of the model of interest are shown in the bar chart. Three
radio buttons (graphical control elements) are associated with each bar in the bar chart,
allowing end-users to select only one item at a time. Every bar encodes the prevalence
of the chronic disease, and its corresponding radio buttons take one of the labels among
1, 2, or null. If the user selects the first and nearest radio button to a bar with label 1, all
prevalence estimates will be made conditional on having the corresponding disease. In
contrast, selecting the second radio button produces prevalence estimates conditional on
not having the corresponding disease. Finally, a radio button with a null label under each
bar indicates that the prevalence estimates will be made assuming the status of that disease
is unknown.

Third, a dynamic correlation matrix is created to show the pairwise correlations
between chronic diseases. Two machine learning models, decision tree and softmax re-
gression, are employed to estimate these correlation values. The user can select one of
these two models from the corresponding dropdown menu. The system then computes
the correlation coefficients based on the selected model. One additional dropdown menu
is incorporated into the system to let the user order the cells in the correlation matrix by
either disease name or correlation value.

When the data is filtered by the user, the sample size of the filtered data is shown in the
interface. We note that VISEMURE is intended for exploratory analysis of a given dataset
that represents a patient population, hence, there is no “minimum dataset size” required,
subject to the needs of the different analysis techniques as described in Section 2.2.2. The
development of VASes for analyses that generalize beyond the given dataset is an active
area of research, and is discussed in Section 6.

VISEMURE can analyze and visualize arbitrary datasets containing up to ten features
representing patient characteristics in addition to up to ten chronic diseases encoded as
binary variables. We found that ten of each was sufficient to allow for a rich exploration
of multimorbidity patterns, but this could be easily increased if a user had sufficient data
and screen real estate. The system dynamically generates dropdown menus for features in
input data, so it can be used with other data with other categorical and continuous patient
characteristics.

An “About VISEMURE” button is provided such that when the user hovers over the
button, a user guide appears that contains a brief introduction of the system as well as
instructions on using it (see Figure 2).

2.4. Implementation Details

The VISEMURE system is designed using Flask and D3.js. Flask is a Python web appli-
cation framework, and D3.js is a library in JavaScript for creating interactive visualizations.
We built our binary logistic regression and softmax regression models with Python library
Statsmodels [32] and decision tree model using python library Scikit-Learn [33].

We use D3.js to develop interactive visualizations primarily because D3 (1) provides a
data-driven method to attach data to the DOM (i.e., Document Object Model) elements. (2)
allows the user to access the full functionalities of state-of-the-art web-browsers, and (3) is
compatible with other programming languages such as python.
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Figure 2. User guide of our proposed visual analytics system, VISEMURE.

2.5. Architecture

The architecture of VISEMURE is shown in Figure 3. VISEMURE is comprised of
three modules: Analytics, Visualization, and Interaction. The Analytics module consists
of two components: (1) disease prevalence estimator (shaped like an oval) and (2) disease
correlations estimator (shaped like a rounded rectangle). The disease prevalence estimator
can apply count-based conditional probability, logistic regression, or decision tree to
compute prevalence estimates of chronic diseases. The visualization module displays
these estimates through Count-Based Bar Chart, Logistic-Regression-Based Bar Chart, and
Decision-Tree-Based Bar Chart, respectively. The disease correlations estimator employs
a softmax regression or decision tree to produce correlation estimates between chronic
diseases. The visualization module encodes the outputs of the disease correlations estimator
into Softmax-Regression-Based Correlation Matrix and Decision-Tree-Based Correlation
Matrix. The Interaction module of VISEMURE provides users with three main actions:
(1) selecting, (2) filtering, and (3) arranging. Using the interaction module, users can gain
insight into the data and explore associations between chronic conditions and patient
characteristics by selecting drop-down menus and radio buttons. Users can also filter the
data and display it in the Count-Based Bar Chart and observe the sample size of the filtered
data or rearrange the correlation matrix to see the degree of association of diseases easily.
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3. Design of VISEMURE

In this section, we explain the design of VISEMURE by describing how different visual
and analytical components are combined in the system to facilitate various interactions.
Section 3.1 describes how simple count-based estimates can be used by VISEMURE to pro-
duce and display prevalence and correlation estimates. Because such count-based estimates
can be problematic when exploring small groups of patients, Sections 3.2 and 3.3 describe
different machine learning techniques (i.e., court-, logistic regression-, and decision tree-
based) that are also supported by the bar chart of VISEMURE. Next, Sections 3.4 and 3.5
describe how two other machine learning techniques (i.e., softmax regression- and decision
tree-based) can be used to interactively generate the correlation matrix.

3.1. Count-Based Bar Chart

By selecting ‘Count-Based Bar Chart’ from the dropdown list corresponding to the
type of the interactive bar chart, the prevalence of chronic diseases is displayed on the bar
chart in our VA system. Each bar on the x-axis is allocated to one disease Xi; the prevalence
of that disease P(Xi = 1) is presented on the y-axis. If the user selects two diseases, the
system calculates the probability of each unselected disease conditioned on the presence of
both selected diseases. Then, the system animates the change and updates the visualization.
The selection process can be continued by the user to look for further associations within
the subgroup who have the selected diseases, and so on.

The user can also interact with the visualizations by selecting different age, gender,
and socioeconomic groups from the dropdown lists. As a result, the dataset of multimor-
bid patients would be filtered based on the selected sociodemographic factors, and the
conditional probabilities would be updated accordingly. For example, suppose the user
selects ‘Child and Young Adult’ as the age group, ‘Male’ from the gender groups, and the
existence of diabetes. The prevalence of each unselected disease would then be computed
and presented on its associated bar, estimated only using patients who are child or young
adult, male, with diabetes. Because it is selected and assumed to be present, the prevalence
of diabetes would change to 1 in the bar graph. In this case, the conditional probability
formula for the jth unselected disease is as follows

P
(
Xj = 1

∣∣diabetes = 1, age = child and young adult, gender = male)
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3.2. Logistic-Regression-Based Bar Chart

Selecting ‘Logistic-Regression-Based Bar Chart’ from the corresponding drop-down
list, the bar graph represents the prevalence of chronic diseases predicted by logistic
regression. The logistic regression model uses the entire data with all 13,697 patients and
only the selected sociodemographic factor/s and pre-existing disease/s are included in
these models. The model will be changed and updated if the user changes the selection.
As an example, if the user clicks on the radio button with label 0 related to arthritis (the
absence of arthritis), then selects the radio button with label 1 corresponding to thyroid
disease (the presence of thyroid disease) and ‘Elder’ age group, the logistic regression
model for finding a mathematical relationship between them and ‘Cancer’ as the target is
as follows

z = log
(

P
1− P

)
= β0 + β1(arthritis) + β2(age1) + β3(age2) + β4(thyroid disease)

where P is the probability of developing cancer, which would be shown on the corre-
sponding bar as the cancer prevalence. The model investigates the associations between
arthritis and cancer, and thyroid disease and cancer, adjusted for the dummy variables age1
and age2.

3.3. Decision-Tree-Based Bar Chart

When the user selects ‘Decision-Tree-Based Bar Chart’ from the dropdown list, a
decision tree model will be created such that all diseases of interest, as well as selected
patient characteristics, are included in the model. It is important to note that if a categorical
variable with more than two categories is selected (e.g., age), we do not use one-hot
encoding to binarize each category, which converts the categorical variable into dummy
variables. We avoid this process because dummy variables make a decision tree sparse and
obscure the order of feature importance, which results in inefficiency and poor performance.
We build the model based on all patients included in the dataset. To avoid overfitting and
to reduce complexity, we utilize pruning methods by changing the parameters ‘max_depth’
(=3) and ‘min_samples_leaf’ (=200) in the Python server, which refers to the maximum
number of nodes in a branch and the minimum number of samples required at the leaf
node (a node without further split), respectively.

3.4. Softmax-Regression-Correlation Matrix

Suppose we aim to measure the association between two chronic diseases D1 and D2.
We create a new variable A having the following four levels:

A = 0 if D1 = 0 and D2 = 0A = 1 if D1 = 0 and D2= 1A = 2 if D1 = 1 and D2 = 0A = 3 if D1 = 1 and D2 = 1

Since our new target is the variable A with four levels (K = 4), we can build a softmax
(or multiclass logistic) regression in order to predict the probabilities for each of the
levels of A, which in turn can be used to compute the pairwise correlation between these
two diseases. Softmax regression utilizes a linear predictor function f (k,i) to predict the
probability that observation i belongs to class k

f (k, i) = β0,k + β1,kx1,i + β2,kx2,i + . . . + βM,kxM,i for k = 1, . . . , K

where M is the number of independent variables in the model and i is an observation
from 13,697 inputs in the data. We assign value 0 to the ‘Male’ category and value 1 to the
‘Female’ category, since in this dataset, gender is encoded as a binary variable. If the user
selects the presence depression and ‘Male’ group, the softmax regression model built for
class zero is as follows

f (0) = β0,0 + β1,0(depression = 1) + β2,0(gender = 0)
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After computing the linear predictor function for all four classes of the dependent
variable A, we can also compute the probability of each class as follows

P(A = 0) = eβ0,0+β1,0(depression=1)+β2,0(gender=0)

1+∑3
k=1 e f (k)

P(A = 1) = eβ0,1+β1,1(depression=1)+β2,1(gender=0)

1+∑3
k=1 e f (k)

P(A = 2) = eβ0,2+β1,2(depression=1)+β2,2(gender=0)

1+∑3
k=1 e f (k)

P(A = 3) = 1
1+∑3

k=1 e f (k)

The correlation between the two random variables X and Y is calculated through the
following formula

ρX,Y =
E(XY)− E(X)E(Y)

σXσY

where σX and E(X) denote the standard deviation and the expected value of X, respec-
tively, and E(XY) is defined as follows when X and Y are discrete random variables and
not independent

E(XY) = ∑
x∈X

∑
y∈Y

xy P(X = x, Y = y)

We name P(A = 0) = P00, P(A = 1) = P01, P(A = 2) = P10, and P(A = 3) = P11. We
also define P1. = P10 + P11 and P.1 = P01 + P11. Given that each chronic disease in our data
can be modeled as a random variable with a Bernoulli distribution, we have E(D1) = P1.,
σ2

D1
= P1.(1− P1.), E(D2) = P.1, and σ2

D2
= P.1(1− P.1).

According to the definition of E(XY) and given that D1 and D2 might influence each other,
we calculate E(D1D2) = (0× 0× P00) + (0× 1× P01)+ (1× 0× P10)+ (1× 1× P11) = P11.
Then, the correlation etween D1 and D2 is computed as follows

ρD1,D2 =
P11 − P1.P.1√

P1.(1− P1.)
√

P.1(1− P.1)

This process is repeated for each pair of chronic diseases, and their estimated corre-
lation is depicted by the corresponding cell in the interactive matrix. By hovering over
each cell, the corresponding correlation value appears. The direction of the relationships
between diseases is encoded by color. Blue and orange are used for positive and negative
correlations, respectively. In addition, color intensity encodes the magnitude of the correla-
tion coefficients such that a darker color represents a greater absolute value. The user can
also rearrange the correlation matrix by disease name and correlation value. Recall that
the height of the bar corresponding to a selected disease changes to 1 or 0, based on the
selection (assumed presence or absence). Similarly, if the user selects disease i, the color of
all cells in row i and the column i in the correlation matrix change to black, which indicates
that the correlations are undefined.

3.5. Decision-Tree-Based Correlation Matrix

By selecting ‘Decision-Tree-Based-Correlation Matrix’ from the dropdown menu re-
lated to the type of matrix, a decision tree is made given the selected variables and with
the parameters ‘max_depth’ = 3 and ‘min_samples_leaf’ = 200 to prevent overfitting. The
target in the correlation matrix is the variable A corresponding to a pair of chronic diseases
and has four levels. For instance, suppose the user selects ‘Adult and Middle-Aged’ and
the presence of hyperlipidemia and aims to observe their influence on the association
between cardiovascular disease and hypertension as the target. Therefore, the model
would examine the relationship between hyperlipidemia and the target controlling for age.
Then, the probability of occurring for each class of the target would be estimated using
one instance (in this case age = ‘Adult and Middle-Aged’ and hyperlipidemia = 1). The four
computed probabilities would be used in estimating the correlation coefficient between
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cardiovascular disease and hypertension. This analysis would be repeated for all other
pairs of unselected diseases. The correlation of those pairs whose one or both diseases are
assumed to be known to be present or absent is undefined. In this example, all correlations
between hyperlipidemia and the other nine chronic diseases would be undefined and their
relative cells in the correlation matrix would change to black.

4. Results

VISEMURE can be used in an iterative manner. In this section, we explain the process
of using the system through three case studies (i.e., Analysis 1, 2, and 3) to make it easier for
the reader to follow. There can be a large number of action sequences through which users
can accomplish their tasks. In our VA system, many different multimorbidity patterns can
be explored through user selection and filtering. We note that the VISEMURE system is
intended for exploratory investigation of a specified patient population, rather than for
extrapolating to new populations or confirming relationships among variables. Hence,
VISEMURE does not provide any hypothesis testing or confidence measures (besides
sample size).

4.1. Analysis 1

Assume the user aims to estimate the marginal probability (prevalence) of diseases for
‘Child and Young Adult’ category. The data would be filtered on the age group of interest,
and the results would be displayed on the Count-Based Bar Chart. As shown in Figure 4,
bronchitis and depression are the most prevalent diseases among 1304 children and young
adults. Figure 5 shows the correlations between the ten diseases on Softmax-Regression-
Based Correlation Matrix in Analysis 1. The user can observe the number of cells denoted
by orange is more than the number of blue cells, though all values are between −0.3 and
0.3, indicating weak correlations between the diseases.
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4.2. Analysis 2

Following this, suppose the user changes the age group to ‘Elder’, selects ‘Female’
category, and chooses Decision-Tree-Based Bar Chart from the fourth dropdown list to
observe and interpret the results. Compared to Analysis 1, the prevalence of all chronic
diseases increases noticeably except bronchitis and depression, which are more common
among young adults and children (Figure 6).

4.3. Analysis 3

As the next step, suppose the user selects the radio buttons with label 1 for hyperten-
sion and arthritis. The probabilities of chronic diseases conditioned on the diagnosis of
hypertension and arthritis would be represented on the corresponding bars. Depicted in
Figure 7, in the presence of hypertension and arthritis, the prevalence of hyperlipidemia
and musculoskeletal problem increases by seven percent and five percent, respectively.
Similarly, Figure 8 shows the Decision-Tree-Based Correlation Matrix for Analysis 3 with
‘Elder’ and ‘Female’ categories selected.
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the presence of hypertension and arthritis selected.

When we compare the two classifiers with count-based conditional probability in
Table 4, the estimated probabilities are close to each other (e.g., diabetes, emphasized in the
table), suggesting accuracy in our outputs. We use all of these models to stratify different
covariates in the data. In other words, although the models improve prediction of the
prevalence of and correlations between chronic diseases, they are being used to investigate
the relationships between the diseases and sociodemographic characteristics.

Table 4. A comparison between three algorithms: Conditional Probability (Count-Based Bar Chart), Decision Tree, and
Binary Logistic Regression, by assessing the prevalence estimates based on the selections in Analysis 3.

HT DB BC HL CC CD DP AT TD MP

Conditional
Probability

(Count-Based)
1 0.235 0.171 0.468 0.165 0.331 0.085 1 0.233 0.220

Decision Tree 1 0.221 0.170 0.382 0.136 0.261 0.091 1 0.184 0.177

Logistic Regression 1 0.222 0.145 0.401 0.127 0.326 0.068 1 0.170 0.140

Abbreviations: HT = Hypertension, DB = Diabetes, BC = Bronchitis, HL = Hyperlipidemia, CC = Cancer, CD = Cardiovascular Disease,
DP = Depression, AT = Arthritis, TD = Thyroid Disease, MP = Musculoskeletal Problem.
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Furthermore, the two machine learning algorithms, namely, softmax regression and
decision tree, predict the same correlation coefficients in the cases the user only makes one
selection (Analysis 1). We examined the correlations between cardiovascular disease and
other chronic diseases to compare the performance of the two models through the three
analyses. As shown in Table 5, for Analysis 1 in which only one variable is selected, the
correlations estimated by softmax regression and decision tree are the same. As the number
of selections increases, the results obtained from the two models differ from each other for
some pairs of the diseases because they smooth the estimates in different ways (logistic
regression assumes additive effects where decision trees do not). Which assumptions the
user finds preferable will depend on the task and on that user’s prior knowledge. For
instance, in Analysis 3, the correlation between cardiovascular disease and bronchitis
estimated by the softmax regression differs from the correlation between these two diseases
predicted by the decision tree. This difference may come from softmax regression not
being a count-based model. It borrows information from the other examples that are not
selected, especially in cases like Analysis 3 with multiple selections where the number of
selected examples is low, and the model needs additional information. Since the goal of
our VA system is to explore the associations between variables rather than improving the
predictions or determining the best classifier, these slight differences are not problematic.

Table 5. A comparison between two machine learning models, Softmax Regression and Decision Tree, which are used for
correlation estimation, for all three analyses. Cardiovascular disease is chosen as an example to compare the estimated
correlations between this disease and the other nine diseases in the data.

Type HT DB BC HL CC DP AT TD MP

Analysis 1
SR Model 0.122 0.004 0.087 0.140 0.035 0.010 0.044 0.002 0.017

DT Model 0.122 0.004 0.087 0.140 0.035 0.010 0.044 0.002 0.017

Analysis 2
SR Model 0.106 0.037 0.06 0.147 −0.029 0.124 0.064 0.051 0.037

DT Model 0.108 0.038 0.05 0. 144 −0.029 0. 116 0.056 0.06 0.054

Analysis 3
SR Model - 0.061 0.206 0.248 0.029 0.251 - 0.239 0.196

DT Model - 0.018 0.076 0.181 −0.035 0.140 - 0.127 0.056

Abbreviations: HT = Hypertension, DB = Diabetes, BC = Bronchitis, HL = Hyperlipidemia, CC = Cancer, CD = Cardiovascular Disease,
DP = Depression, AT = Arthritis, TD = Thyroid Disease, MP = Musculoskeletal Problem, SR = Softmax Regression, DT = Decision Tree.

5. Discussion

In this paper, we have shown how visual analytics systems can be used to explore
patterns of multimorbidity. To achieve this, we have described the development process of
VISEMURE, a VA system designed to satisfy the requirements of healthcare researchers
in making sense of multimorbidity. VISEMURE incorporates a wide range of statistical
and machine learning techniques and integrates them seamlessly with interactive data
visualizations.

Using the DELPHI data, we have demonstrated how a health researcher can use
VISEMURE to better understand the relationships among patient characteristics, existing
disease states, and patterns of multimorbidity. The system is thus able to answer many
questions that health researchers may have about these relationships in a way that affords
them a great deal of freedom in terms of what characteristics to consider or exclude and on
what diseases to focus as outcomes.

There is little research focusing on elaborate and interactive visualizations for enhanc-
ing the exploration of multimorbidity patterns [34]. Investigations in this area are mostly
represented through static charts and tables that do not enable users to filter, select, control,
and customize data points [1,35,36]. There are some interactive visualization systems that
provide valuable healthcare insights by investigating the effects of patient characteristics
and risk factors on the prevalence, incidence, or mortality of diseases [37]. However, such
tools analyze only one health outcome at a time. Previous work on multimorbidity often
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simplifies the outcome to a count of the number of chronic diseases present without dis-
tinguishing between them, although some work has investigated particularly common
co-occurrence patterns [30]. This is the key difference between the VA system designed in
this paper and other applications: VISEMURE allows users to investigate the distribution of
a multivariate outcome, i.e., the joint occurrence of chronic diseases, in a way that supports
a much richer set of questions about how those diseases are related to each other. This
opens the path for a more detailed understanding of why chronic diseases co-occur, which
in turn may lead to improved prevention and treatment strategies.

6. Limitations and Future Directions

The main limitation of this work stems from a design choice that we made regard-
ing the type of analysis that VISEMURE is intended to support. Our system supports
exploratory analysis, sometimes referred to as “descriptive epidemiology”, rather than
confirming facts that generalize beyond the data that are being analyzed. Exploratory
analyses are crucial for understanding what is happening within a population of interest,
and they are crucial for developing hypotheses around which relationships among risk fac-
tors, pre-existing conditions, and multimorbidity patterns may generalize to other settings.
The proof-of-concept case study that we presented using the DELPHI data is designed to
describe the DELPHI population and demonstrate the utility of the VISEMURE approach
rather than to create broadly generalizable knowledge about multimorbidity.

To move beyond exploratory/descriptive tasks requires careful attention to issues
of bias (e.g., what populations are or are not represented in the data) and variance (e.g.,
assessing confidence and statistical significance of findings). Issues of bias in data are
well-known in epidemiology, and health researchers are trained to mitigate the bias present
in data through prior knowledge and modelling. One future direction for VISEMURE
would be to allow end-users to more finely adjust what information is used to control bias,
perhaps by offering more flexible modelling options. The issue of variance or confidence
is tied to the idea of statistical significance; the best way to address statistical significance
in an interactive setting has been explored but is still an open area of research [38,39].
Developing a methodology for interactively mitigating bias and understanding variance so
that VISEMURE can be used for a wider variety of tasks will be a focus of our future work.

Another avenue for future work would be to provide a richer view of the joint dis-
tribution of outcomes (conditional on patient characteristics and pre-existing conditions).
We have used correlation to describe pairwise relationships among the different diseases,
but it is possible that three-way or higher-order relationships are important in understand-
ing the distribution of patterns of multimorbidity. Making sense of these more complex
relationships would require substantially more development of the visual analytics tool in
order to help the user to understand their salience and, thereby, to make them useful for
sensemaking.

7. Conclusions

Multimorbidity is a growing healthcare challenge, especially for older adults, and
results in greater vulnerability, higher risk of functional decline and disability, and higher
mortality. Focusing on chronic diseases individually no longer meets the needs of patients
or healthcare providers in preventing and managing these chronic conditions. A holistic
approach to chronic diseases and their associations with sociodemographic characteristics
and risk factors is needed to design effective prevention and control strategies. Therefore,
we created a system for analyzing and exploring multimorbidity prevalence and associa-
tions in a visual, interactive manner. Unlike many studies in the area of multimorbidity
whose results are shown through simple charts, tables, and flowcharts, our VA system
allows users to interact with dynamic subsets of data and select a set of chronic diseases,
and specific categories of age, gender, and socioeconomic scores for investigation.

The data visualizations in our system can be repurposed for other tasks in the area
of healthcare or other disciplines where high-dimensional joint distributions of random
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variables are important to understand. The system can also apply other statistical and
machine learning models for prevalence and correlation estimation, and it can interpret
more data with more available features.

VISEMURE is novel in the way it includes several statistical and machine learning
techniques and integrates data analysis with interactive visualization to facilitate making
sense of EMR data collected from patients with multimorbid diseases, which has never
been attempted before. The design process established in this research will lead to the
emergence of best practices for designing similar systems.
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