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Abstract: The day-to-day working of an organization produces a massive volume of unstructured
data in the form of invoices, legal contracts, mortgage processing forms, and many more. Orga-
nizations can utilize the insights concealed in such unstructured documents for their operational
benefit. However, analyzing and extracting insights from such numerous and complex unstructured
documents is a tedious task. Hence, the research in this area is encouraging the development of
novel frameworks and tools that can automate the key information extraction from unstructured
documents. However, the availability of standard, best-quality, and annotated unstructured docu-
ment datasets is a serious challenge for accomplishing the goal of extracting key information from
unstructured documents. This work expedites the researcher’s task by providing a high-quality,
highly diverse, multi-layout, and annotated invoice documents dataset for extracting key information
from unstructured documents. Researchers can use the proposed dataset for layout-independent
unstructured invoice document processing and to develop an artificial intelligence (AI)-based tool
to identify and extract named entities in the invoice documents. Our dataset includes 630 invoice
document PDFs with four different layouts collected from diverse suppliers. As far as we know,
our invoice dataset is the only openly available dataset comprising high-quality, highly diverse,
multi-layout, and annotated invoice documents.

Dataset: http://doi.org/10.5281/zenodo.5113009

Dataset License: CC-BY-4.0.

Keywords: artificial intelligence (AI); information extraction; Named Entity Recognition (NER);
unstructured data

1. Summary

Forbes statistics [1] state that the amount of data produced through daily transactions
is very high, and 80% of this daily generated data is unstructured. Unstructured data
include Portable Document Formats (PDF), emails, official letters, and many more.

Unstructured data are a valuable asset to the organization as they have a lot of in-
formation hidden in them. If an organization extracts these key insights and uses them
for the decision-making process, it can significantly increase its operational efficiency [2].
However, manual processing and extracting key insights from such numerous and complex
unstructured documents is naturally time-consuming and error-prone. Hence, developing
an artificial intelligence (AI)-enabled tool for automatic key information extraction from
unstructured data is a promising and upcoming research focus [3]. However, automatic
extraction of key insights from unstructured document research faces certain key chal-
lenges [4,5]. One of the most fundamental and critical challenges is to obtain a high-quality,
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standard, and annotated unstructured document dataset. The dataset is the foremost im-
portant entity for machine learning model training. Model robustness and accuracy depend
on its learning from the training data. Therefore, it is always necessary to include variations
in training data so that the model learns to recognize the unknown data. Standard datasets
or publicly available datasets in this research face key challenges discussed as follows:

• Publicly available datasets consist of poor-quality, blurred, skewed, and low-resolution
document images, leading to poor text extraction [6].

• Publicly available datasets are obsolete, consisting of the old or obsolete formats of
documents [7].

• Publicly available datasets are domain-specific and task-specific. For example, the
dataset proposed in [8,9] is used for the healthcare domain, and the dataset proposed
in [10,11] is used for the legal contract analysis domain. In addition, they are used for
specific tasks such as metadata extraction from scientific articles [12] or patient detail
extraction from the clinical dataset [13].

• Publicly available datasets are unlabelled. Therefore, manual labeling or annotating
the dataset is time-consuming and tedious [4,5].

Due to these challenges, a few research studies proposed a custom dataset. However,
the custom datasets are private and face confidentiality issues [4,14]. The custom dataset
also includes documents with similar layouts or formats. Providing similar layout docu-
ments restricts the generalizability of key extraction tasks. Few recent studies highlight the
significance of the template-free processing of unstructured documents [15,16]. Therefore,
to encourage and advance automatic key information extraction research, we developed a
dataset. Figure 1 shows an overview of key information extraction tasks from the invoice
document. Our multi-layout invoice document dataset (MIDD) dataset contains 630 in-
voices with four different layouts of different suppliers. The dataset is of high-quality
document images, which leads to high accuracy in text extraction. The dataset also helps to
generalize the AI-enabled model as it comprises varied and complex layouts of documents.
Table 1 summarizes our MIDD dataset specifications.
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Table 1. Specification of multi-layout invoice document dataset (MIDD) dataset.

Subject Area Natural Language Processing, Artificial Intelligence

More precise area Named Entity Recognition
Type of files collected Scanned invoice PDFs

Method of data acquisition Scanner
Provided file format in our dataset IOB and manually annotated

Source of data acquisition Different supplier organizations
Number of files 630

Number of layouts 4

1.1. Research Purpose/Goal of Multi-Layout Invoice Document Dataset (MIDD)

• To provide the annotated and varied invoice layout documents in IOB format to iden-
tify and extract named entities (named entity recognition) from the invoice documents
to the researchers working in this domain. Obtaining a high-quality and sufficient
annotated corpus for automated information extraction from unstructured documents
is the biggest challenge researchers face.

• To overcome the limitations of rule-based and template-based named entity extraction
from unstructured documents traditionally used so far in information extraction
approaches. Template-free processing is the only key to processing, and managing a
huge pile of unstructured documents in the recent digitized era.

• To provide varied invoice layouts so that researchers can develop a generalized
AI-based model that will train on various unstructured invoice layouts. Obtained
structured output can later be utilized for integrating into information management
application of the organization and used for the decision-making process.

1.2. Related Datasets

The research study [6,16–18] proposed key field extraction from a scanned receipts
dataset named the ICDAR (International Conference on Document Analysis and Recogni-
tion) SROIE-2019 dataset. It has 1000 scanned receipt images with similar layouts, including
876 annotated receipts with labels such as the name of a company, address, date of receipt,
and total amount.

The research study [19] used the RVL-CDIP dataset that includes scanned document im-
ages of different categories, including invoices as one of the categories. It has 25,000 images
of every category. However, the dataset is obsolete and of poor-quality scanned documents.

A few research studies [20,21] built a custom invoice dataset for key field extraction
tasks. However, these datasets are not publicly available to researchers due to privacy and
confidentiality issues in invoice documents.

A few research studies [8–10,12] proposed information extraction tasks on various
domain-specific and task-specific datasets such as the I2b2 2010 (Informatics for Integrating
Biology and the Bedside) clinical notes dataset, the MIMIC-III (Medical Information Mart
for Intensive Care) dataset, the custom-built legal contract document dataset, and the
GROTOAP2 dataset.

2. Data Description

To the best of our knowledge, our dataset is the first publicly available multi-layout
invoice document dataset. The proposed MIDD dataset includes invoices of different
layouts collected from different supplier organizations. Developing generalizability and
model robustness are the main aims of collecting the highly diverse and complex invoice
layouts. In addition, researchers may use training and testing samples from the dataset as
per their requirements. Table 2 represents the details of varied layouts and the total number
of invoice document PDFs collected for each layout. Table 2 also shows label naming
conventions used while manually annotating the invoices using a UBIAI tool (Release
4.6.2021). There are 11 labels used in invoice annotations. Labels used are Supp_N for
Supplier name, Supp_G for Supplier GST, BUY_N for Buyers Name, BUY_G for Buyers
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GST, GSTL for GST Label, INV_NO for Invoice Number, INV_L for Invoice Number Label,
INV_DL for Invoice Date Label, INV_DT for Invoice Date, GT_AMTL for Grand Total
Amount Label and GT_AMT for Grand Total Amount. Our dataset includes four different
layout invoices from different supplier organizations. The number of scanned invoice PDFs
for layout 1 is 196, layout 2 is 29, layout 3 is 14, and layout four is 391. Thus, our dataset
has 630 total scanned invoice PDFs.

Table 2. Proposed multi-layout invoice document dataset features.

Layouts Number of PDFs Size of Invoices (in MB) Labels in Dataset

Layout 1 196 164 Invoice Number: INV_NO
Invoice Date: INV_DT
Buyer Name: BUY_N

Supplier Name: SUPP_N
Buyer GST Number: BUY_G

Supplier GST Number: SUPP_G
Grand Total Amount: GT_AMT

Layout 2 29 25.8

Layout 3 14 23.6

Layout 4 391 353

Total 630 566.4

3. Methods

Figure 2 shows the detailed process of our multi-layout invoice document dataset creation.
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3.1. Data Acquisition

Invoices from different supplier organizations are acquired to obtain variations in
layouts of invoices. All the supplier invoices are scanned using HP Laserjet M1005 MFP
Printer and Scanner (HP: Pune, India) in PDF Format. Each supplier has its unique and
own layout or format of their invoices. The varied and multiple layouts of invoices later
will help researchers in the template-free processing of various unstructured documents.
As shown in Table 2. four different layout invoices from different supplier organizations
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are collected. The number of scanned invoice PDFs for layout 1 is 196, layout 2 is 29, layout
3 is 14, and layout four is 391. Thus, our dataset has 630 total scanned invoice PDFs.

Figure 2 illustrates that, as scanned PDFs of invoices are collected, each of these
scanned PDFs is converted into an image as the initial step. Conversion from PDF to image
is required as any optical character recognition (OCR) engine takes the image as its input
for text detection and extraction. Later, all the corresponding text files obtained after OCR
are input for the data annotation tool. The Google Vision OCR (Version 2.3.2) engine is used
for text extraction, and the UBIAI annotation tool is used for manual annotations. Google
Vision OCR output is validated manually by cross verifying the extracted text and original
text contents. Roughly 30% of invoices from each invoice layout were manually verified
and validated against original scanned PDF contents for evaluating OCR accuracy. As a
result, it was observed that Google Vision OCR gives 90% accuracy in text extraction for
each supplier invoice layout. The MIDD dataset was also evaluated using AI approaches
such as BiLSTM and BiLSTM-CRF for key fields extraction tasks [22].

Figure 3 shows the sample invoices of all four different layouts from our dataset.
Different key fields are colored with different colors to understand the meaning of “different
layouts of invoices.” For example, the invoice number key field shown with the green
rectangular surround box is positioned at different locations in all four layouts of invoices
collected from different suppliers. Likewise, all other invoice key fields take a different
position as the supplier organization changes. Thus, our dataset is useful for dealing with
a real-world situation where organizations have their own unique format or layout of
unstructured documents.

Table 3 summarizes more statistical information on the proposed dataset. Invoices
collected for MIDD belong to the construction firm having different suppliers for different
material purchases.

Table 3. Statistical summary of MIDD.

Period of invoice collection From March 2015 to October 2020 for all supplier organizations

Type of supplier products/items in invoices Building construction material such as doors, cement, glass

Number of words per invoice page 350 words per page on average. (One .csv file for one invoice page)

Number of named entities labeled for each invoice
11 labels in each invoice, including entity heading name and actual
value of that entity. (For example, INV_DL for Invoice Date Label,
INV_DT for actual Invoice Date value)

Size of one invoice PDF of any layout
500 KB minimum
1.5 MB average
3 MB maximum

Image quality of invoice PDF 300 dpi

Software used during MIDD construction

Python-3 Jupiter Notebook, Google colab, wand library (version 0.6.6)
for converting invoice PDF to image
Google vision OCR (version 2.3.2) for text extraction from image
UBIAI Framework for NER annotations

Hardware used during MIDD construction HP Laserjet M1005 MFP Printer and Scanner and HP Pavilion Laptop
AMD RYZEN NVIDIA GEFORCE GTX card
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3.2. Data (Named Entities) Annotation

Converted text files are manually annotated. UBIAI is a convenient and simple-to-use
text labeling/annotation tool used for most Natural Language Processing (NLP) tasks such
as named entity recognition (NER). By selecting the “free version” of the UBIAI package
under the “Package” option, all decided labels for invoice entities ( for example, INV_L for
invoice label and INV_DT for actual Invoice Date value) to annotate the invoice document
are supplied through its interface manually. After providing labels, the converted text files
are inputted manually either by the “drag and drop” facility or the “browse” facility of
the UBIAI interface. After all the text files are inputted, they can be annotated by choosing
labels individually and highlighting the respective text within a complete text file, as
shown in Figure 4. This also provides an annotation file export facility in multiple formats
such as spacy, IOB, and JSON. As shown in Figure 2, the text files obtained after OCR are
provided to UBIAI with the labels to be annotated. Table 2 shows the name of the labels
used to annotate the text files. Finally, the annotated text file of each invoice in IOB format
is exported. IOB labels are like part-of-speech (POS) labels, but they signify the inside,
outside and beginning of a word. In NER, every word in the text file, also called “token,” is
labeled with an IOB label, and then adjacent tokens are joined together depending on their
labels. Later IOB files are transformed into a .csv file. Figure 5 shows the sample IOB file of
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the invoice. The first column represents the “token,” and the second column represents the
IOB tags of the respective tokens.
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3.3. Data Pre-Processing

Figure 6 shows the data pre-processing steps carried out to obtain the pre-processed data.
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Stop-word removal: stop-words like English articles (the, an, a) and conjunction (or,
and) are removed from the data. Stop-words take up memory size and require processing
time. In addition, stop words have no contribution to the meaning of a sentence, so these
stop-words are removed from the data.

Lowercasing: all the tokens or words are converted into lowercase to get the consis-
tent output.

Duplicate and blank-row removal: all the duplicate rows and blank rows are manually
removed from the .csv files using the “Remove rows” option in Microsoft Excel.

Non-alphanumeric characters’ removal: few non-alphanumeric characters like “(” are
removed from the data files. Few non-alphanumeric characters like “:” are kept in the data
files as they are part of some fields like Invoice Date.

3.4. Practical Applications/Use-Cases of MIDD

Currently, available literature mainly focuses on information extraction from receipts
with a similar format or layout. However, in a practical scenario, organizations receive
invoices from various suppliers having their unique structure or layout. Publicly available
datasets lack an invoice document dataset which has varied invoice layouts.

• The proposed MIDD dataset has many practical implications for extracting named
entities as a structured output from the huge pile of unstructured invoice documents.
In addition, end-to-end automation of invoice information extraction workflow helps
the accounting department in every organization for quick invoice processing and to
verify accounts payable and receivable.

• Automated key field extraction from financial documents such as invoices impacts
the performance of the business by customer onboarding and verification processes.
It can reduce significantly the cost employed for manual data entry and verification of
thousands of daily received invoices.

4. Conclusions

The proposed work developed a multi-layout invoice document dataset consisting of
630 invoices with four different layouts from different supplier organizations. It contributes
to this research by providing a highly diverse, high-quality, and annotated dataset, which is
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very useful in Natural Language Processing tasks such as named entity recognition (NER).
The dataset size and contents are sufficient to build a generalized AI-based model used
for template-free invoice processing for key information extraction tasks. The proposed
work presents the statistical summary of the proposed MIDD dataset. It also highlighted
the detailed process flow of our dataset creation, which fellow researchers can utilize as
the guideline for creating a custom dataset. To the best of our knowledge, our dataset is
the first publicly available multi-layout invoice document dataset. The proposed MIDD
dataset will be useful for researchers and practitioners working for end-to-end automation
across various sectors. This research work unlocks opportunities for researchers working
in this area.

5. Future Work

1. Increase the data size in MIDD. We aim to increase the number of supplier invoice
layouts to achieve more data diversity.

2. Automatic data annotation. Automatic data annotations make the researcher’s task
simpler and quicker. Therefore, we aim to find a way to annotate invoice docu-
ments automatically.

3. Use of pre-trained neural networks. Pre-trained Neural Networks such as BERT and
their variants can be utilized on MIDD to evaluate its performance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/data6070078/s1, MIDD Dataset.
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