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Abstract: Malaria is a serious infectious disease that leads to massive casualties globally. Myanmar is
a key battleground for the global fight against malaria because it is where the emergence of drug-
resistant malaria parasites has been documented. Controlling the spread of malaria in Myanmar
thus carries global significance, because the failure to do so would lead to devastating consequences
in vast areas where malaria is prevalent in tropical/subtropical regions around the world. Thanks
to its wide and consistent spatial coverage, remote sensing has become increasingly used in the
public health domain. Specifically, remote sensing-based land cover/land use (LCLU) maps present
a powerful tool that provides critical information on population distribution and on the potential
human-vector interactions interfaces on a large spatial scale. Here, we present a 30-meter LCLU
map that was created specifically for the malaria control and eradication efforts in Myanmar. This
bottom-up approach can be modified and customized to other vector-borne infectious diseases in
Myanmar or other Southeastern Asian countries.

Dataset: https://doi.org/10.1594/PANGAEA.921126

Dataset License: CC-BY-4.0

Keywords: remote sensing; public health; infectious disease; malaria; Myanmar; land cover/land
use map; landsat

1. Summary

Accurate accounts of land cover/land use (LCLU) in the form of LCLU maps are
critical sources of information that allow stakeholders to make informed decisions. Many
LCLU datasets, such as the Moderate Resolution Imaging Spectroradiometer (MODIS)
MCD12 Land Cover product [1] and the National Land Cover Database (NLCD) [2], are
geared towards serving general needs (i.e., land planning, forest management, etc.) and
are generally created based on global algorithms (i.e., algorithms that are consistently
applied across the areas of interest). However, there are situations where specific LCLU
classification schemes are required and these circumstances are generally associated with
the efforts that are implemented on smaller spatial scales. As a result of such specific needs,
the LCLU maps produced using global top-down algorithms are likely to be insufficient
for use locally. Recently, publicly available datasets and algorithms designated to specific
LCLU classes, such as croplands and water bodies, have been increasingly offered with
a high readiness for scientific usage. As these datasets and algorithms are designed for
specific purposes and are often associated with uncertainty metrics (allowing the mapping
results to be adjusted locally), they are likely to be more reliable in representing the LCLU
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classes of interest than the datasets that are derived using top-down methods. Leveraging
such datasets and algorithms that utilize local knowledge about the issues in question
could be the key to the development of bottom-up LCLU maps that serve various special
and localized needs.

LCLU patterns have been shown to be important for disease epidemiology and can be
conveniently determined using remote sensing data. Land cover determines habitat suit-
ability for hosts and vectors [3] and remote sensing data are commonly used to determine
vector/host animal habitats. Disease risk variation, however, is not only determined by the
land cover but also by the land use, which helps to understand the places that people visit
and use for certain activities or during certain times of the day or year [4], and contributes
to the determination of human distribution and the contact between humans and vec-
tors [3]. LCLU maps and landscape metrics that have been derived using remote sensing
have been used to understand the patterns and transmission of several diseases, including
malaria, Lyme disease, cholera, dengue, Zika, etc. [5–10]. Most of such studies have used
the mapped vegetation derived from remote sensing to understand the factors associated
with vector presence and modeled human transmission risk, relying on the fact that most
vector-borne disease transmission is dependent partly on vegetation characteristics [5]. For
example, some studies have used LCLU maps at multiple spatial resolutions to predict the
disease transmission risk or to study the role of LCLU in disease transmission based on the
links between vector habitat preferences, LCLU classes, and disease incidence [6,10]. In
contract, others have associated LCLU based landscape metrics such as edge density, patch
density, and proportion of land use with disease risk [9].

The Southeastern Asian country of Myanmar, home to a population of more than
53 million people, carries one of the highest malaria burdens within the Greater Mekong re-
gion, despite having only 4% of its population [11,12]. Although Myanmar has successfully
reduced the number of malaria cases by ~82% between 2012 and 2017 [13], the emergence
of drug-resistant parasites in the region in recent years [14] has made Myanmar a critical
battleground for the global fight against malaria. The use of satellite data and LCLU
information has been demonstrated to be crucial in understanding landscape-scale malaria
exposure and disease transmission. Previous work has established some linkages between
the LCLU types and malaria risks. Specifically, deforestation and agricultural development
have been shown to influence mosquito species abundance and malaria incidence through
changes to the ecology of vector species as well as the nature and stage of the agricultural
development determining patterns of human contact with vectors [7,15,16].

In addition to capturing and highlighting the areas where malaria exposure and
transmission are more likely, LCLU maps could also be of great importance for malaria
treatment efforts because they could provide information about the distribution of human
settlements at large spatial scales. This is especially crucial for rural villages with low
economic well-being and limited access to care [16,17]. However, creating LCLU maps that
offer meaningful information about village distribution across the country is challenging
because (1) it requires the mapping to be implemented at a 30-meter or higher resolution to
ensure the successful mapping of remote villages (according to our personal observations,
many remote villages in Myanmar are fairly small in extent and consist of a few buildings
with small footprints), which are known to serve as the remnant pools of malaria [18],
and (2) villages are quite similar to many bare ground features (e.g., riverbanks, bare
mountain tops) in terms of their spectral signature. There are several existing LCLU
datasets (Table 1) that provide information about human settlements that cover Myanmar
at a 30-meter or higher resolution, including the SERVIR land cover dataset for the Greater
Mekong region (hereafter referred to as “SERVIR Mekong land cover dataset”) [19], the
Global Human Settlement Layer (GHSL) dataset [20], and the Global Human Built-up And
Settlement Extent (HBASE) dataset [21]. However, due to either their multipurpose nature
(SERVIR Mekong land cover) or global algorithms (GHSL and HBASE), their performance
in identifying remote villages in Myanmar is limited (as shown in the Data Records section).
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Table 1. List of datasets whose performance in mapping settlement-related classes were compared.

Dataset LCLU Type Name of
Settlement-Related Classes Spatial Resolution Year

SERVIR Mekong Multi-class Urban and built-up 30 m Annually
between 1987 and 2018

HBASE Single class Built-up and settlement 30 m 2010

GHSL Single class Built-up 30 m 2013–2014

Current Product Multi-class (1) Impervious surface, (2) villages 30 m 2016

In this paper, we present an LCLU map of Myanmar, which is the first 30 m LCLU
map designed specifically for the control and elimination of malaria in Myanmar. Being an
application-oriented LCLU map, it was created following a bottom-up approach, which
allows for the LCLU classes that are important for malaria transmission to be mapped
with relatively higher confidence. In addition, this approach is inherently more flexible
than the traditional methodologies used to produce LCLU maps, because (1) the classes
and their priorities can be modified based on application-specific needs and (2) there is
freedom to adopt the best available datasets and algorithms. Due to this flexibility, even
though the produced LCLU map is only for the year 2016, given proper inputs, such
LCLU representations could be produced for other years to develop a consistent time-series
of LCLU maps (most of the classes with potentially high interannual variability in our
classification scheme, such as managed forests and villages, can be updated annually).
Moreover, similar LCLU maps could be developed for other vector-borne diseases based
on their respective epidemiology or disease transmission characteristics. Additionally,
due to its strong focus on remote villages, this methodology could potentially be used in
other applications that are unrelated to public health but have equally strong demands
on the accurate mapping of villages. This may include international humanitarian efforts,
considering Myanmar has one of the highest refugee populations by country of origin, due
to long-lasting and ongoing domestic conflicts [22,23].

2. Data Description

The presented dataset (https://doi.org/10.1594/PANGAEA.921126) [24] has been
released through PANGAEA (https://www.pangaea.de/), an open data repository desig-
nated for the publication of datasets related to geoscience and environmental science. The
dataset contains two data files. One is the LCLU map in a single GeoTiff file, and the other
is a Microsoft Excel table listing the classes contained in the LCLU map. Figure 1 shows an
overview of the entire LCLU map, with zoomed-in views of four different locations across
Myanmar. Figure 2 shows the distribution of the ten classes in terms of the total area as
mapped by the LCLU map across Myanmar.

We conducted a visual comparison between our map and the following three existing
30 m datasets that contain settlement-related classes (Table 1): the SERVIR Mekong land
cover dataset [19], the GHSL dataset [20], and the HBASE dataset [21]. The comparison
(Figure 3) shows that our product provides a much more spatially comprehensive repre-
sentation of the classes related to human presence than all of the other datasets, especially
in remote rural areas, where the villages typically consist of bare ground and small indi-
vidual buildings. The difference observed in the mapping of human settlements between
our product and the existing products is not surprising considering we adopted a locally
developed algorithm to specifically map the village class.

https://doi.org/10.1594/PANGAEA.921126
https://www.pangaea.de/
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Figure 1. Overview of the presented LCLU map for Myanmar. Insets 1‐4 shows zoomed‐in views of 4 locations, respec‐

tively.   
Figure 1. Overview of the presented LCLU map for Myanmar. Insets 1-4 shows zoomed-in views of 4 locations, respectively.
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Figure 3. A comparison between the current product and three existing land cover products in terms of the representation
of human presence (SERVIR Mekong [19]: urban and built-up; HBASE [21]: built-up and settlement; GHSL [20]: built-up;
current product: impervious surface and villages). All other classes irrelevant to human presence in the compared products
are masked out (indicated in black). The SERVIR Mekong land cover map that was compared and displayed was produced
for 2016 (the same year as our product).
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3. Methods

This LCLU map is designed to support malaria research and the operational inter-
ventions for malaria elimination in Myanmar. Hence, we designed a classification scheme
to include the land cover classes associated with the habitat suitability of the malaria
vector—the Anopheles spp. mosquito—and the land use classes that can potentially increase
human exposure to malaria. Our LCLU map was developed using several published LCLU
datasets, modified ancillary data (for the depression and bare surface classes), and an
independently mapped class (village). The combination of data sources inevitably led to
several classes overlapping at certain locations. This meant that there was a need for a
mapping hierarchy to ensure that each individual pixel of the final LCLU map belonged to a
single class. Therefore, the classification scheme, which is discussed in detail subsequently,
describes not only the classes that are included in the map but also the hierarchy of the
mapped classes.

The methodology of our map development can be broken down into three major steps
(Figure 4). First, the roads in Myanmar were manually digitized, leading to a much more
complete and up-to-date road network dataset for Myanmar compared with other existing
public datasets that we were aware of. Second, the resultant road network dataset was
used in conjunction with a set of publicly available satellite imagery and ancillary data
or their derivatives to map the village extent in Myanmar. Finally, the LCLU map was
assembled based on the mapped village extent and a series of additional datasets.
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major data inputs and intermediate outputs, respectively. The orange box represents the final output, which is the
produced LCLU map. Abbreviations: a Shuttle Radar Topography Mission (SRTM), a digital elevation model (DEM),
a Moderate Resolution Imaging Spectroradiometer (MODIS), a Visible Infrared Imaging Radiometer Suite (VIIRS), the
Landsat Vegetation Continuous Fields (Landsat VCF) project [25], Very High Resolution (VHR), the global surface water
dynamics (GSWD) product, the Global Man-made Impervious Surface (GMIS) product [26], the Global Food Security
Analysis-Support (GFSAD) product [27], the Global Forest Change (GFC) product [25], the normalized difference vegetation
index (NDVI) [28], the global bare ground gain (GBG) product [29].

3.1. Road Digitization

Road networks are an important indicator for understanding population distribution
and human mobility. However, after conducting a visual assessment of VHR imagery and
existing road network data in Myanmar, we determined that there are limited road network
data available for Myanmar, especially in mountainous regions. From April 2019, as the
basis of our effort using the administrative boundaries downloaded from the Myanmar
Information Management Unit (MIMU, http://geonode.themimu.info, accessed in April
2019), we digitized roads using VHR Google Earth images based on the Myanmar Roads

http://geonode.themimu.info
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dataset that was provided by the Humanitarian OpenStreetMap Team [30]. Notably, we
have added road networks in vast areas of Myanmar (Figure 5, center) and individual
townships (select areas in different parts of the country are shown in Figure 5, panels 1–4).
Townships are the third-level administrative divisions below districts (level two) and
states/regions/union territories (level one). We digitized over roughly 25,000 km of
additional roads.
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3.2. Village Mapping

In Myanmar, rural populations are particularly susceptible to malaria because of their
relatively lower economic status and access to care [17]. Therefore, understanding the
distribution of the settlements, especially those that are remote, has huge implications
for developing effective interventions. It is for that reason that our LCLU map includes
a village class designated primarily to rural settlements that are not characterized by im-
pervious surfaces (hence not mapped by impervious surface datasets such as GIMS [26]).
Hoffman-Hall, Loboda, Hall, Carroll, and Chen [18] developed a random forest-based
village mapping algorithm for Ann, a township in the Rakhine State of Myanmar. Con-
sidering Ann is only a small part of Myanmar (0.9% of the total area of Myanmar), an
improved algorithm was needed to account for the great heterogeneity in environmental,
socio-demographic conditions, and spatial patterns across the country. Here, building
upon the foundation proposed by Hoffman-Hall, Loboda, Hall, Carroll, and Chen [18],
we developed an updated village mapping algorithm. We adopted 26 variables, which
were identified by Hoffman-Hall, Loboda, Hall, Carroll, and Chen [18] to be important for
village mapping. We also added a slope variable, as our preliminary analysis confirmed its
influence on village distribution. Table 2 lists the total of 27 variables that were fed into our
random forest models. Most of these variables were derived based on corresponding Land-
sat imagery, i.e., one cloud-free Landsat composite for the dry–cold season (February–April
2016) and one for the dry–hot season (November 2016–January 2017). All of the variables
were processed at a spatial resolution of 30 m.

Table 2. List of variables used by the random forest models and their brief descriptions. For index calculation formulas,
refer to Hoffman-Hall, Loboda, Hall, Carroll, and Chen [18]. Dry–cold and dry–hot seasons refer to February–April 2016
and November 2016–January 2017, respectively, in Myanmar.

Variable Period
Covered Data Source Unit Original

Resolution Description

Distance to MODIS Active
Fire 2016 MODIS active fire

product [31] Meter Vector Euclidean distance to MODIS
active fire points.

Distance to VIIRS Active
Fire 2016 VIIRS active fire

product [32] Meter Vector Euclidean distance to VIIRS
active fire points.

Distance to Roads N/A Updated road network
(described previously) Meter Vector

Euclidean distance to all
roadways from OpenStreetMap
and our digitized road network.

Distance to 3rd Order or
Greater Waterway N/A SRTM DEM Meter 30 m

Euclidean distance to 3rd order
or greater waterway identified
using SRTM DEM following
Hoffman-Hall, Loboda, Hall,

Carroll, and Chen [18].

Distance to Water N/A North America surface
water map [33] Meter 30 m Euclidean distance to all

waterbodies.

NIR Mean Occurrence
(Dry–Cold) Dry–Cold Season Landsat imagery Unitless 30 m

Mean values of 3 × 3 kernels
based on the NIR band of

Landsat 8.

Landsat 8 Band 7 SWIR2
(Dry–Cold) Dry–Cold Season Landsat imagery Unitless 30 m Landsat 8 Band 7 (SWIR2) for

the dry–cold season.

Landsat 8 Band 10 TIRS1
(Dry–Cold) Dry–Cold Season Landsat imagery Kelvin 30 m Landsat 8 Band 10 (TIRS1) for

the dry–cold season.

Landsat 8 Band 11 TIRS2
(Dry–Cold) Dry–Cold Season Landsat imagery Kelvin 30 m Landsat 8 Band 11 (TIRS2) for

the dry–cold season.

NBR2 (Dry–Cold) Dry–Cold Season Landsat imagery Unitless 30 m Normalized Burn Ratio 2 (NBR2
[34]) for the dry–cold season.
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Table 2. Cont.

Variable Period
Covered Data Source Unit Original

Resolution Description

NDVI (Dry–Cold) Dry–Cold Season Landsat imagery Unitless 30 m NDVI for the dry–cold season.

NDWI6 (Dry–Cold) Dry–Cold Season Landsat imagery Unitless 30 m

Normalized Difference Water
Index using SWIR1 band

(NDWI6 [35]) for the dry–cold
season.

NDWI7 (Dry–Cold) Dry–Cold Season Landsat imagery Unitless 30 m

Normalized Difference Water
Index using SWIR2 band

(NDWI7 [35]) for the dry–cold
season.

Tasseled Cap Wetness
(Dry–Cold) Dry–Cold Season Landsat imagery Unitless 30 m Tasseled Cap Wetness (TCW

[36]) for the dry–cold season.

Texture: NIR Mean
Occurrence (Dry–Hot) Dry–Hot Season Landsat imagery Unitless 30 m

Mean values of 3 × 3 kernels
based on the NIR band of

Landsat 8.

Landsat 8 Band 7 SWIR2
(Dry–Hot) Dry–Hot Season Landsat imagery Unitless 30 m Landsat 8 Band 7 (SWIR2) for

the dry–hot season.

Landsat 8 Band 10 TIRS1
(Dry–Hot) Dry–Hot Season Landsat imagery Unitless 30 m Landsat 8 Band 10 (TIRS1) for

the dry–hot season.

Landsat 8 Band 11 TIRS2
(Dry–Hot) Dry–Hot Season Landsat imagery Unitless 30 m Landsat 8 Band 11 (TIRS2) for

the dry–hot season.

NBR2 (Dry–Hot) Dry–Hot Season Landsat imagery Unitless 30 m NBR2 for the dry–hot season.

NDVI (Dry–Hot) Dry–Hot Season Landsat imagery Unitless 30 m NDVI for the dry–cold season.

NDWI6 (Dry–Hot) Dry–Hot Season Landsat imagery Unitless 30 m NDWI6 for the dry–cold season.

NDWI7 (Dry–Hot) Dry–Hot Season Landsat imagery Unitless 30 m NDWI7 for the dry–cold season.

Tasseled Cap Wetness
(Dry–Hot) Dry–Hot Season Landsat imagery Unitless 30 m TCW for the dry–hot season.

Seasonal Difference in
Tasseled Cap Wetness 2016 Landsat imagery Unitless 30 m

Absolute value of TCW
difference between the dry–hot

and dry–cold seasons.

Elevation N/A SRTM DEM Meter 30 m Terrain elevation directly based
on the SRTM DEM.

Slope N/A SRTM DEM % 30 m Terrain slope calculated based
on the SRTM DEM.

Tree Cover 2015 Landsat VCF tree cover
[25] % 30 m Tree cover based on Landsat

VCF dataset.

At the country level, Myanmar has large variations in terrain. Based on our field
experience, the contextual relationships of the individual buildings in the villages located in
the mountain regions are evidently different to those in the plains, i.e., villages are generally
larger and denser in the plains, whereas in the mountains, villages are much sparser,
smaller, and more irregularly shaped. Based on this information, we created two training
sample pools for the village class, separating mountain and plain topography. Using
the SRTM DEM data, we divided the entire country of Myanmar into two terrain classes
(mountain: ≥1000 m; plain: <1000 m, using an elevation threshold we selected empirically).

We used the village point dataset published by MIMU to guide our selection of training
sample points. Covering the majority of Myanmar, with more than 47,000 points, this is
the most comprehensive village point dataset to our knowledge. Every village point in
the MIMU dataset was buffered by 500 m (a threshold value we chose empirically), after
which 2000 sample points were randomly generated with the mountain and plain areas
each having 1000 points. Then, we visually examined each of the 2000 random points using
VHR imagery hosted on Google Earth to see whether that point was actually placed within
the village. Owing to the differences in the spatial extents of the individual villages and
the inaccuracy of some of the MIMU village points, a considerable number of the random
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points were placed outside of villages (e.g., in croplands or forests adjacent to villages).
These out-of-bound random points were preserved and used as the training sample for the
“non-village” class, while those random points correctly located in villages were considered
as the training sample for the “village” class.

All of the training sample points (village + non-village) were used to extract the values
from the independent variables listed in Table 2, resulting in two training sample pools,
one for the mountain region and one for the plain region. Each of these training sample
pools was fitted to a random forest model, which was subsequently applied to the testing
data (created utilizing all of the independent variables for the entire country) to identify
villages across Myanmar. Additional training points for each class were added iteratively
upon visual examination of classification outputs. The final training dataset consisted of
19,790 points (village: 464; non-village: 19,326) for the mountain region and 3456 points
(village: 215; non-village: 3241) for the plain region (the number of training sample points
for the mountain region is considerably larger than that for the plain region due to the
added difficulty of characterizing villages in areas with high topographic variability). A
quantitative assessment of the mapping accuracy of the village class was performed as part
of the combined LCLU map.

3.3. LCLU Map Assembly

LCLU map classes are chosen to be representative of the landscape. Addition-
ally, based on our understanding of the malaria distribution and spread, as well as our
field knowledge of the environmental and demographic conditions in Myanmar, several
classes (Table 3) are also important in the context of malaria transmission. For exam-
ple, we included depressions, defined as areas where standing water periodically or
sporadically emerges after rain or floods, because they are a known breeding habitat of
mosquitoes [37,38]. We included croplands because they cover a substantial proportion of
the landscape and, in addition to flooded paddy fields being a mosquito habitat [39], they
are also an important interface where mosquito–human transmission is likely to happen,
as agriculture is the main source of income for Myanmar, accounting for more than a third
of its gross domestic product [40]. Similarly, managed forests were also included in our
LCLU map because they usually coincide with plantations (based on our field knowledge),
which are another common environment for occupation-related exposure to malaria [12,41].
The impervious surface class, characterized by larger towns/cities and large manmade
structures such as roads, was included because its association with malaria distribution
and spread may be different from that in villages, where living conditions and access to
care are more limited.

Table 3. List of classes of the LCLU map and the corresponding input data and technical summaries.

Class Definition Input Data Technical Summary

Perennial Water
Consistent water surface with
low seasonal or interannual

variability
GSWD [42]

Pixels mapped by GSWD as
“permanent water” (water bodies

with consistent extent between
1999 and 2018) or “water gain”

(water bodies that emerged
between 1999 and 2018).

Impervious Surface

Man-made surface such as
buildings and concrete
ground surface that is

different from bare ground

GMIS [26]
Pixels mapped by GMIS as

having impervious proportion
values of larger than 1%.

Villages
Aggregation of buildings in

rural areas, built on bare
ground

Mapped previously
Village extent as mapped by our

random forest-based village
mapping algorithm.
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Table 3. Cont.

Class Definition Input Data Technical Summary

Croplands Croplands GFSAD [27] Pixels mapped by GFSAD as
croplands.

Managed Forests
Forests that show signs of

disturbances in the near past
(i.e., since 2000)

GFC [43] Pixels mapped by GFC as forest
loss between 2000 and 2016.

Natural Forests
Forests that do not show signs
of disturbance in the near past

(i.e., since 2000)
Landsat VCF Tree Cover [25]

Pixels mapped by Landsat VCF
product as having tree cover

values of larger than 40%.

Ephemeral Water
Water surface with high
seasonal or interannual

variability
GSWD [42]

Pixels mapped by GSWD as
“stable seasonal”, “high

frequency”, “dry period”, or “wet
period”. These four classes

correspond to areas where high
levels of seasonal or interannual

variability between land and
water took place.

Depressions

Areas with high levels of
curvature and are likely

hotspots for standing water
after rain or floods

SRTM DEM

Pixels whose curvature values are
between −10 and −1 and flow

accumulation values are greater
or equal to 3. Curvature and flow

accumulation were calculated
based on SRTM DEM using the
corresponding tools in ArcGIS.

Bare Surfaces Areas with limited tree cover
and low NDVI values (<0.5) GBG [29]

Pixels mapped by GBG as bare
ground or have NDVI values of
less than 0.5 (a threshold value
chosen empirically). The NDVI

values were calculated based on a
Landsat cloud-free composite

created for the dry–cold season in
2016 for entire Myanmar.

Shrub/Grass Areas with limited tree cover
but high NDVI values (≥0.5) N/A

All pixels that were not mapped
as the classes above were
classified into this class.

In the end, a total of ten classes were identified for the LCLU classification scheme
(Table 3). These were, subsequently, assembled from separate data sources based on the
following order of priority: perennial water > impervious surface > villages > croplands >
managed forests > natural forests > ephemeral water > depressions > bare surfaces >
shrub/grass. The priorities were determined empirically based on the expert opinion of
in-country medical researchers and public health professionals on the general knowledge
regarding the relevance of the class for malaria transmission. If a pixel met the criteria of
multiple classes simultaneously, it was ultimately classified into the class with the highest
priority. For example, if a pixel was mapped as impervious surface by GIMS, it would
be eventually merged into the impervious surface class, unless it simultaneously met the
criteria for perennial water, in which case it would be merged into the perennial water class.

4. Validation

We assessed the map classification accuracy using a stratified random sampling design
guided by the “good practices” described by Olofsson et al. [44]. We used the open-source
stratified area estimator design tool available on the SEPAL platform (https://sepal.io/), a
cloud-based platform developed by the United Nations Food and Agriculture Organization
Forestry Department’s Open Foris team, to implement the sampling design and generate

https://sepal.io/
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the stratified random points. The dataset was reclassified in ArcMap to exclude the
depressions class. The remaining map classes, except depressions, were used as strata. The
stratified area estimator design tool calculates the overall sample size and the strata sample
size using the equations described by Olofsson, Foody, Herold, Stehman, Woodcock, and
Wulder [44]. The expected user’s accuracies for the perennial water, villages, croplands,
natural forests, and bare surfaces strata were assigned 0.75, while the impervious surface,
managed forests, ephemeral water, and shrub and grass strata were assigned 0.65. The
desired standard error of the map’s overall accuracy was set to 0.013. A total of 1179
samples were created with at least 75 samples per class to ensure adequate samples of rare
classes [44]. The samples were buffered to 30 m × 30 m in ArcMap and reviewed against
Google Earth VHR imagery.

Although the land cover classifications represent distinct categories, a combination
of various LCLU classes is frequently found within a 30-meter pixel, particularly for the
classes with small footprints (e.g., impervious surface), or the classes with an expected mix
of different land covers (e.g., villages). Additionally, the general lack of multi-temporal
VHR data creates ambiguity in the exact extent of a class at a specific point in time (the point
when the class was mapped vs. when the class is assessed) particularly for highly dynamic
classes (e.g., perennial or ephemeral water), but also for many other classes. To account
for this potential ambiguity and mixed pixels, we adopted a linguistic scale developed by
Gopal and Woodcock [45] for fuzzy accuracy assessments of classified maps. The scale
ranges from 1 to 5, where (1) is “absolutely wrong”, (2) is “understandable but wrong”, (3)
is “reasonable or acceptable answer”, (4) is “good answer”, and (5) is “absolutely right” [46].
An interpreter reviewed each sample against each stratum according to the five-level scale.
The responses were recorded using Microsoft Access.

Two fuzzy accuracy assessment functions, MAX and RIGHT [46], were calculated to
assess the map classification. The MAX function considers correctness if the interpreter
properly identified the sample as a five, or “absolutely right.” The RIGHT function consid-
ers correctness if the appropriate class is identified as a three or higher, (i.e., “reasonable or
acceptable answer”, “good answer”, or “absolutely right”). Overall, the weighted fuzzy
accuracy of the map classification is 69.22% (Table 4).

Table 4. Results of MAX and RIGHT functions.

Map Strata Total Samples
(n)

Correct
Samples

Defined by MAX
Function

(n)

MAX
(M)

Function

Correct
Samples

Defined by RIGHT
Function

(n)

RIGHT
(R)

Function

Improvement in
Accuracy

when Fuzziness Is
Considered

(R-M)

Area
Weights

Perennial
water 75 44 58.67% 56 74.67% 16.00% 0.007

Impervious
surface 75 34 45.33% 50 66.67% 21.33% 0.002

Villages 75 33 44.00% 63 84.00% 40.00% 0.003

Croplands 152 90 59.21% 118 77.63% 18.42% 0.190

Managed
forests 75 24 32.00% 48 64.00% 32.00% 0.048

Natural forests 393 256 65.14% 332 84.48% 19.34% 0.489

Ephemeral
water 75 19 25.33% 35 46.67% 21.33% 0.029

Shrub and
grass 184 17 9.24% 62 33.70% 24.46% 0.229

Bare surfaces 75 23 30.67% 31 41.33% 10.67% 0.003

Total 1179 540 45.80% 795 67.43% 21.63%

Total weighted
accuracy 48.20% 69.22% 21.02%
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5. User Notes

We would like to demonstrate two possible scenarios where our LCLU map could be
used, among others.

Scenario 1: Using our LCLU map to identify high-risk areas. Under this scenario, it
is recommended that users first assess the relationship between each of the classes of our
LCLU map and the specific infectious disease in question. The identified relationships can
be used to determine the weight that is assigned to each class, which ultimately can serve
as the foundation of a system that highlights the high-risk areas. If interannual changes in
the distribution of the high-risk areas are of interest, users can apply the algorithm outlined
in this paper to the data acquired in other years and generate similar LCLU-based risk
maps for other years.

Scenario 2: Using our LCLU map to identify remote villages. As our intercompar-
ison shows (Figure 3), our LCLU map offers one of the highest levels of accuracy for
identifying remote villages among the existing datasets. Users can integrate our map
with other datasets, such as OpenStreetMap road networks and DEM, to identify villages
that are isolated and might need special attention in disease monitoring and eradication.
Similar to Scenario 1, users can create annual LCLU maps for multiple years based on
which spatio-temporal distribution of villages can be tracked across Myanmar.

6. Limitation and Caveat

While our LCLU map performs well identifying villages in general (as indicated in
Table 4), it is unable to capture individual buildings. In other words, standalone buildings
that are not part of a perceivable settlement are likely to be misclassified into other classes.
This is, however, not surprising considering that the resolution of Landsat imagery is 30 m.
For the delineation of the footprints of individual buildings, VHR imagery is likely required.

We would like to point out that the performance of the cropland class is likely to be
strongly subject to seasonality. This is because Myanmar has a tropical monsoon climate,
which means there is great seasonality in the precipitation patterns across the country.
During the monsoon season, floods are prevalent in Myanmar, which may cause the
flooded croplands to spectrally resemble water bodies. Therefore, for applications that
require high accuracy in the delineation of croplands, users are encouraged to incorporate
additional data with higher temporal resolutions, using our LCLU map as the baseline map.
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