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Abstract: Over the last few years, employment of the standard silicon microfabrication techniques for
the gas sensor technology has allowed for the development of ever-small, low-cost, and low-power
consumption devices. Specifically, the development of silicon microheaters (MHs) has become well
established to produce MOS gas sensors. Therefore, the development of predictive models that help
to define a priori the optimal design and layout of the device have become crucial, in order to achieve
both low power consumption and high mechanical stability. In this research dataset, we present the
experimental data collected to develop a specific and useful predictive thermal-mechanical model for
high performing silicon MHs. To this aim, three MH layouts over three different membrane sizes
were developed by using the standard silicon microfabrication process. Thermal and mechanical
performances of the produced devices were experimentally evaluated, by using probe stations
and mechanical failure analysis, respectively. The measured thermal curves were used to develop
the predictive thermal model towards low power consumption. Moreover, a statistical analysis
was finally introduced to cross-correlate the mechanical failure results and the thermal predictive
model, aiming at MH design optimization for gas sensing applications. All the data collected in this
investigation are shown.

Dataset: http://doi.org/10.5281/zenodo.4590243

Dataset License: CC BY-NC-ND

Keywords: silicon microheaters; chemoresistive gas sensors; predictive thermal model; mechanical
failure analysis; response surface method

1. Summary

The market for gaseous sensors is continuously growing. There is a significant de-
mand for small, low-cost and high-performance gas sensors in several sectors, including
chemical process control, precision agriculture, environmental monitoring, and medical
applications [1–5]. Among the various new classes of smart gas detectors, one of the most
investigated and used are the chemoresistive gas sensors, which show high sensitivity,
allowing to detect low concentrations of gases (ppm-ppb range) with high accuracy [6–9].
These devices are composed of an active sensing material, typically nanostructured metal
oxide semiconductors (MOS), and a heated substrate [6,10–12]. The substrate plays a
key role in the gas sensors devices because it acts as mechanical support of the sensing
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material and it hosts the heater and electrodes, allowing to heat the sensing material at
its best working temperature and to read the electrical resistance of the sensing material,
respectively [13,14]. Recently, silicon microheaters (MHs) have replaced the alumina ones,
becoming popular in both research prototype development and commercial devices [13,15].
The great advantage of silicon is the use of established microfabrication techniques, which
allow very small, reproducible and energy-efficient devices to be produced on an indus-
trial scale [13,15,16]. The low power consumption is obtained by developing very thin
suspended membranes of insulating material, obtained by selective etching of silicon in the
last microfabrication step [13,15]. These membranes allow to almost eliminate heat dissipa-
tion completely by conduction along the substrate [13,15]. However, they are extremely
fragile, and their breakage is one of the major causes of failure for silicon-based gas sensors.
The use of predictive models to optimize device design is crucial to achieve low power
consumption and high mechanical stability [17,18]. This work presents the experimental
dataset used in our previous work [17] to develop a specific combined thermal-mechanical
model useful to tune MH design for gas sensing application to the required performance.
To this aim, three different MH layouts over three different membrane areas were micro-
fabricated and analyzed. The thermal characterization was carried out using a manual
probe, while a shear/pull tester was used for the mechanical failure analysis. The dataset
was divided into two excel files, both in tidy format (with one row corresponding to one
observation), one for the thermal analysis and the other for the mechanical analysis. Both
files were supplied with a second sheet reporting the raw thermal and mechanical data in
series from which the Yields were obtained. The first sheet of each dataset can be directly
imported in R for further analysis. Finally, a statistical method was used to cross-correlate
thermal and mechanical analysis. The scheme reported in Figure 1 summarizes the ap-
proach used in this work for the development of the predictive thermal-mechanical model
for the optimization of MHs, useful for gas sensing applications.

Figure 1. Scheme of the approach used in this work for the development of a thermal-mechanical model for the predictive
evaluation of the microheaters (MH) performance.
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The thermal characterization (Table S1) allows for developing a thermal model for
the evaluation of the microheater power consumption, by taking into consideration the
heat transfer contributions and a constant empirically calculated (KEAD, reported in
Table S2) [17]. The power consumption values calculated through the developed ther-
mal model were in good agreement with the experimental data [17]. The failure analysis
(Table S3) showed that MH layout and membrane size greatly impact on the failure
forces [17]. The statistical analysis, used to cross-correlate the thermal and mechanical
results, allowed to define the best combination of membrane area and MH layout for the
optimization of the microheater performance [17]. To this aim, the desirability factor was
introduced for the predictive evaluation of the MH efficiency [17]. A case study is also here
reported, in which the maximization of the mechanical stability and the minimization of
the MH power consumption were considered for the desirability factor.

This methodology could be further consolidated to readers’ liking by increasing
the number of factors defining MH geometry. On this note, our future experimental
analysis will expand by varying area layout and area membrane outside the factor domain
considered in this work.

2. Data Description

Thermal and mechanical data are organized in separate excel files (Tables S1 and S3),
each file is easily accessible to conduct further data analysis. The first sheet of each file
is reported in the tidy format: every single row represents an observation; the use of this
standard allows the rapid importation in R as well as easy analysis of the data. In both
files, the second sheet contains in a progressive manner the collected curve from which
the data of the first sheet was extrapolated by analysis. The progressive number is also
present in the first sheet (reported as sample number) to easily relate the tidy results with
the correspondent curves. In the thermal database, the first sheet reports the Power in
mW needed to reach the temperature of 400 ◦C for each combination of membrane and
heater. The second sheet includes the Voltage (V) applied as an independent variable and
as dependent variables the measured resistance (Ohm), the measured temperature (◦C),
and the measured Power (mW). Each sample has then five columns. In the first sheet
of the mechanical database, the Force in N at which the rupture of the device occurred
is reported for each combination of membrane and heater. The second sheet presents
all the Force-Deflection curves in a progressive fashion within their respective sample
number. These sheets contain two columns per sample, the first being the deflection (µm)
and the second being the measured force (N). The first data points are registered after
the indenter, approaching the MH membranes, meets the membrane and ending in the
brittle failure after the maximum force is registered. Moreover, the values of the corrective
thermal constant KEAD are organized in a separate file (Table S2) and are easily accessible
to conduct further data analysis. The first sheet of the file is in tidy format, every single
row represents an observation, the use of this standard allows the rapid importation in
R as well as easy analysis of the data. The progressive number is also present in the first
sheet (reported as sample number) to easily relate the tidy results with the correspondent
curves. The experimental values of the corrective thermal constant KEAD are reported
as a function of temperature (◦C) and of the percentage area occupied by the heater (A%)
for sample L1 in sheets 2 and 3, respectively. The calculation and the physical meaning
of KEAD is discussed and explained by Gaiardo et al. in [17]. In addition, the calculated
values of the corrective thermal constant KEAD are reported as a function of temperature
(◦C) and of the percentage area occupied by the heater (A%) for samples L2 and L3 in
sheets 4 and 5.

3. Methods
3.1. Device Fabrication

The MHs were developed in the clean rooms of the Bruno Kessler Foundation [19]. A
Centrotherm E 1200 HT 260-4 4 diffusion and LPCVD furnace was used for the thermal
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growth of SiO2 and deposition of Si3N4 and SiO2 layers. An ulvac EBX-16C with Ferrotec
EV S-6 e-gun was used for the deposition of Ti and Pt layers. The thermal annealing of the
silicon wafers was carried out using an Expertech CTR 200. The SiO2 intermetal passivation
layer was deposited through an STS-MPS PECVD. SiO2 was etched over pad areas of the
heaters by means of an OEM Tegal 903 ACS reactive ion etcher. Layouts of the deposited
layers were defined by photolithography technique, using an SVG 8600 Photoresist Coat
Track and a Karl Suess automatic mask aligner. Overall, 9 different combinations of layout
and membrane were tested (listed in Table 1).

Table 1. Tested combinations of layout and membrane within their area.

Group Factor A-Area Layout
(mm2)

Factor B-Area Membrane
(mm2)

1 0.15 0.81
2 0.15 1.74
3 0.15 3.04
4 0.56 0.81
5 0.56 1.74
6 0.56 3.04
7 0.77 0.81
8 0.77 1.74
9 0.77 3.04

3.2. Thermal Analysis

An automatic prober Accretech UF200R, equipped with ATT LOW TEMP System
L200T, was used to perform temperature coefficient of resistance (TCR) measurements on
all the produced devices. This system provides a nominal Temperature Stability of ±0.1 ◦C,
an Accuracy of ±0.5 ◦C and a uniformity (along the chuck surface) less than 0.5%. To extract
TCR parameters on heather and bulk resistors, resistance measurements were performed
at different temperatures: 20 ◦C, 60 ◦C, 100 ◦C, and 140 ◦C. Electrical measurements were
performed using Agilent/Keysight equipment including a low leakage Switching Matrix
Mainframe B2201A, with four modules B2211A, and a SMU Mainframe E5270B, with
four medium-power high-resolution SMU E5281B, two high-power high-resolution SMU
5280B, and a Ground Unit. Both SMU types have a nominal resolution of 10 fA and
20 uV. Manual measurements were performed using a Karl Suss Manual probing station
PM8, equipped with an Agilent 4156C Precision Semiconductor Parameter Analyzer with
a nominal resolution of 1 fA and 2 uV, Tables 2 and 3. Each measurement was repeated
three times. Resistive temperature detection method can display only spatial averages
of the temperature distribution while being very reliable and convenient to implement.
Furthermore, several resistive elements can be integrated into the device for temperature
control in different locations [20]. Conversely, other methods, such as optical thermal
imaging methods [21,22] that measure thermal radiation spectrum, can precisely capture
the thermal profile of the specific MH geometry [23]. However, instrumentation for precise
thermal measurements requiring micrometric pixel resolutions and high confocality is
expensive and a proper calibration for emissivity could be complex [24].

Table 2. Evaluation of the reported measurements.

Reported Measurement Derivate From

Temperature Resistance measurement
Power consumption Current-voltage measurement

Failure force Peak of force-deflection curve
Work of fracture Integral of force-deflection curve
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Table 3. Measurement sensitivity of thermal and mechanical curves.

Measurement Sensitivity

Manual IV probe Current: 1 fA
Voltage: 2 uV

Indentation test Deflection: 30 nm
Force: 0.1 mN

3.3. Mechanical Analysis

Tests are intended to evaluate the resistance of different membrane sizes and layouts
to screen-printing pressure. The testing apparatus for destructive indentation tests was a
shear/pull tester (Condor Sigma, XYZTEC, Panningen, The Netherlands) equipped with a
stainless steel flat conical tip with a diameter of 290 µm and an axial load sensor of 20 N and
high displacement sensitivity. The test procedure consisted of a manual approach along the
z-axis ending within 50 µm of distance from the membrane’s surface. Successively, the tip
was optically aligned in the center of the membrane using heater geometry as xy reference.
The mechanical characterization was in a quasi-static regime with a vertical speed of
10 µm/s, and data were recorded at approximately 15 Hz for better data visualization. Test
distance was set in the range of 150 ÷ 400 µm to reach fracture in all samples depending on
the membrane’s deformability, Tables 2 and 3. Stainless steel tip was cleaned from debris
in between tests. Membrane testing was performed on silicon pieces containing arrays of
several membranes. Each silicon piece was secured in place on a thick aluminum plate
by means of a thin bi-adhesive Kapton tape. The sample size for each membrane set was
the following: 20 MHs of 1A, 11 MHs of 1B, 30 MHs of 1C, 44 MHs of 2A, 11 MHs of 2B,
19 MHs of 2C, 8 MHs of 3A, 16 MHs of 3B, and 30 MHs of 3C. The indentation tests are
used to register force-deflection curves until fracture of the clamped square membranes.
Each curve was analyzed to extract the MH failure force, defined as the maximum of the
force deflection curve, and the work of fracture defined as the integral of the curve [17].

3.4. Statistical Methods

A statistical method was used to cross-correlate the results obtained from the thermal
predictive model and the mechanical failure analysis, with the aim to define a comprehen-
sive model to tune future sensor layouts to the required performance. The entire statistical
analysis has been done by the use of the programming language R [2] following the statis-
tical strategy described in previous works [3–6]. An initial comparison by verifying the
presence of significant difference among the different groups by using the analysis of vari-
ance (ANOVA) followed by a Turkey multi-comparison test [7]. The levels of significance
were assigned as follows p ≤ 0.1 [19], p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***). A Response
Surface Methodology (RMS) has been adopted to model the empirical equations relating
the considered factors to the yields. In this case, we considered two continuous factors, the
area covered by the heater (Factor X) and the membrane surface (Factor Y) and two yields,
the produced power (mW), and the mechanical strength (N). Table 1 shows the considered
group. The complete model is reported in Equation (1). An ANOVA test followed by
a Turkey multi-comparison was conducted to verify the significance of each term of the
reported equation. Only the terms with a significant effect (p ≤ 0.01) were included in the
model. The function F has been chosen to both normalize the model residues and to make
them pattern less. The model was considered significant with a p-value ≤ 0.05. To the
goodness of fit of the model, the coefficient of determination (r2) was calculated. Models
with a perfect fitting have an r2 = 1. A desirability approach has been used to perform
the numerical optimization, this method is quite general and has been applied to solve
different typology of problems, from the inkjet printing optimization [25–27] to biopolymer
processing [28–30]. This method is based on the desirability functions which value can
vary in the [1, 0] range, where 1 represents the optimum solution. A single desirability
function was assigned to each of the yield (Yi). For the maximization of Yi, the function
is reported in Equation (2), for the minimization in Equation (3). In the equations Yi is
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the specific yield, di the corresponding desirability function, Ui and Li the maximum and
the minimum value of the yield, respectively. The overall desirability (D) is the geometric
mean of all these functions reported in Equation (4) with k equal to the total number of
yields (in our case 2). Then D is plotted against the process factors to find its minimum
value and thus the best solution.

F(Yield) = c0 + c1X + c2Y + c3XY + c4X2 + c5Y2 + c6X2Y + c7XY2 + c8X2Y2 (1)

di =


1i f Yi ≥ Ui

Yi − Li
Ui − Li

i f Li ≥ Yi ≥ Ui

0i f Yi ≤ Li

(2)

di =


0i f Yi ≥ Ui

Yi − Li
Ui − Li

i f Li ≥ Yi ≥ Ui

1i f Yi ≤ Li

(3)

D = (d1d2d3 . . . dk)
1
k (4)

4. Data Analysis
4.1. Preliminary Analysis

From a preliminary screening on the results, it is clear that in case of the power
(Figure 2A) all the measurements performed on the single group were close to each other,
thus between almost all the groups the differences resulted statistically significant. Instead,
in case of the mechanical response (Figure 2B) due to the presence of a higher variability on
the collected, only some of the differences were significant. Interestingly, a trend could be
recognized in both datasets, a decrease in each triplet passing from the first to the last group
(1 to 3, 4 to 6, 7 to 8), that could be referred to the effect of the membrane area, and a general
increase between the different triplets (1 to 4 to 7, 2 to 5 to 8, 3 to 6 to 9) that could be referred
to the effect of the layout area. All these differences were statistically significant. The levels of
significance were assigned as follows: p ≤ 0.1 [19], p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***).
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Figure 2. Comparison of the 8 tested configurations for the (A) Thermal response and (B) Mechanical
response. An ANOVA followed by a Turkey test has been adopted to verify the presence of statistically
significant differences. The levels of significance were assigned as follows: p ≤ 0.1 [19], p ≤ 0.01 (**),
p ≤ 0.0001 (****).
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4.2. Thermal Data Analysis

The ANOVA analysis (Table 4) indicates that both the considered factors were significant.
In addition, the terms AB, A2, A2B, A2B2 resulted significantly. In order to maintain the model
hierarchy, the term B2 and AB2 has been added. The significance of the two mixed terms
indicates the interaction between the effects of A and B on the power outcome (this could
be further analyzed by a physical interpretation). The model is shown in Figure 3A. The
power increases diagonally with the increasing of Al and the decreasing of Lm. The predicted
versus actual plot is shown in Figure 3B, the model well fits the data (the calculated r2 = 0.998).
Coefficients of the model and its 95% confidence intervals are reported in Table 5.

Table 4. ANOVA table of the Thermal Model factors. The levels of significance were assigned as follows: p ≤ 0.1, p ≤ 0.05
(*), p ≤ 0.001 (***).

Source Sum of Squares df Mean Square F-Value p-Value Significance

Model 16,514.52 8 2064.31 1741.77 <0.0001 ***
A-Layout Surf. 3947.71 1 3947.71 3330.88 <0.0001 ***

B-Membrane Surf. 633.00 1 633.00 534.09 <0.0001 ***
AB 225.33 1 225.33 190.12 <0.0001 ***
A2 92.46 1 92.46 78.01 <0.0001 ***
B2 0.4885 1 0.4885 0.4122 0.5290

A2B 28.66 1 28.66 24.18 0.0001 ***
AB2 0.0172 1 0.0172 0.0146 0.9053
A2B2 5.89 1 5.89 4.97 0.0387 *

Pure Error 21.33 18 1.19
Cor Total 16,535.85 26
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Figure 3. (A) Contour plot of the proposed Thermal Model and the (B) predicted versus actual plot.
The points in (B) resulted on the diagonal line indicating the good agreement between the model and
the collected data points.
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Table 5. Estimation of the coefficients of the model and of the 95% high and low confidence inter-
val. The coefficients were estimated in the coded forms in which each factor is normalized in the
[−1,1] range.

Factor Coefficient Estimate 95% CI Low 95% CI High

Intercept 77.49 75.9 79.08
A-Layout Surf. 26.6 25.63 27.57

B-Membrane Surf. −11.90 −12.98 −10.82
AB −4.33 −4.99 −3.67
A2 −8.07 −9.99 −6.15
B2 0.5921 −1.35 2.53

A2B 3.06 1.76 4.37
AB2 0.0679 −1.11 1.25
A2B2 2.49 0.1438 4.83

4.3. Mechanical Data Analysis

The ANOVA analysis (Table 6) indicates that only the factor B was significant. In
addition, the terms AB2, A2B2 were significant. In order to maintain the model hierarchy,
all the remaining terms have been added. The significance of the two mixed terms indicates
the interaction between the effects of A and B on the mechanical outcome (as with the
previous case, this could be interpreted with a physical explanation). The model is shown
in Figure 4A. The mechanical response increases with the increasing of the layout surface
and the decreasing of the membrane surface. The predicted versus actual plot is shown
in Figure 4B: as shown, the model is more complex than the previous. Furthermore, in
this case, the model well fits the data (the calculated r2 = 0.924). This high value of r2 is
partially due to the higher value of the Yields, in fact by magnifying the predicted versus
actual plot on the lower range some scattering of the data points around the diagonal is
present. However, in this case a trend is also well recognizable. Coefficients of the model
and its 95% confidence intervals are reported in Table 7.

Table 6. ANOVA table of the Mechanical model factors. The levels of significance were assigned as follows: p ≤ 0.1,
p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***).

Source Sum of Squares df Mean Square F-Value p-Value Significance

Model 7.03 8 0.8785 83.09 <0.0001 ***
A-Layout Surf. 0.1156 1 0.1156 10.94 0.0039 **

B-Membrane Surf. 3.07 1 3.07 290.17 <0.0001 ***
AB 0.0874 1 0.0874 8.27 0.0101 *
A2 0.0992 1 0.0992 9.38 0.0067 **
B2 0.3511 1 0.3511 33.21 <0.0001 ***

A2B 0.3574 1 0.3574 33.80 <0.0001 ***
AB2 6.436 × 10−6 1 6.436 × 10−6 0.0006 0.9806
A2B2 0.2120 1 0.2120 20.05 0.0003 ***

Pure Error 0.1903 18 0.0106
Cor Total 7.22 26
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Table 7. Estimation of the coefficients of the model and of the 95% high and low confidence in-
terval. The coefficients were estimated in the coded forms in which each factor is normalized in
the [−1,1] range.

Factor Coefficient Estimate 95% CI Low 95% CI High

Intercept −2.88 −3.03 −2.73
A-Layout Surf. 0.144 0.0525 0.2354

B-Membrane Surf. −0.8283 −0.9305 −0.7261
AB 0.0854 0.023 0.1477
A2 0.2644 0.0831 0.4458
B2 0.502 0.319 0.685

A2B 0.3422 0.2185 0.4659
AB2 −0.0013 −0.113 0.1104
A2B2 −0.4722 −0.6938 −0.2507

4.4. Optimization—Minimization P, Maximization s

In the specific case of maximization of the mechanical response and minimization of the
power, the problem results as non-trivial and particularly complex since these two constraints
are in countertendency. The best point if we treat both the yields in the same manner (they
are considered both with the same importance) is the one depicted in Figure 5 and reported
in Table 8 with a desirability of 0.746. One of the tested points gave the highest desirability.
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Figure 5. Desirability plot of the optimization. In this case the solution results in one of the tested corners.

Table 8. Results of the optimization. Among the different optimizations with the same results the
first was selected as solution.

Number Layout Surf. Membrane
Surf. Power Strength Desirability

1 0.148 0.810 50.333 0.148 0.746
2 0.148 0.857 49.892 0.146 0.745
3 0.148 1.000 48.630 0.140 0.741
4 0.148 1.077 47.985 0.137 0.738

5. User Note

Datasets are reported in excel format easily convertible in csv for a further importation
in third software to perform statistical analysis. The data reported in the first sheet of both
the Thermal and the Mechanical datasets are in tidy format and importable in R to perform
statistical analysis. In the tidy format each row corresponds to a single observation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2306-572
9/6/3/30/s1, Table S1: AB_Thermal Database-Tidy. Table S2: KEAD Database, Table S3: AB_Mechanical
Database-Tidy.
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