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Abstract: The Malaysian stingless bee industry is hugely dependent on wild colonies. Nevertheless,
the availability of new queens to establish new colonies is insufficient to meet the growing demand
for hives in the industry. Heterotrigona itama is primarily utilized for honey production in the region
and the major source of stingless bee colonies comes from the wild. To propagate new colonies
domestically, a fundamental understanding of the biology of queen development, especially from the
genomics aspect, is necessary. The whole genome was sequenced using a paired-end 150 strategy
on the Illumina HiSeq X platform. The shotgun sequencing generated approximately 89 million
raw pair-end reads with a total output of 13.37 Gb and a GC content of 37.31%. The genome size of
the species was estimated to be approximately 272 Mb. Phylogenetic analysis showed H. itama are
much more closely related to the bumble bee (Bombus spp.) than they are to the modern honey bee
(Apis spp.). The genome data provided here are expected to contribute to a better understanding of
the genetic aspect of queen differentiation as well as of important molecular pathways which are
crucial for stingless bee biology, management and conservation.

Dataset: This genome sequencing project has been deposited at the European Nucleotide Archive
(ENA) under the accession BioProject ID PRJEB34838. The data can be accessed at ENA (https:
//www.ebi.ac.uk/ena/browser/view/PRJEB34838).

Dataset License: The European Nucleotide Archive (ENA) policies on data release follow the
International Nucleotide Sequence Database Collaboration (INSDC) Policy, remaining permanently
accessible as part of the scientific record. The archive is an open, supported platform for the
management, sharing, integration, archiving and dissemination of sequence data.
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1. Summary

Malaysia is home to about 50 different species of Meliponines (stingless bees) previously belonging
to 13 genera [1]. However, they recently have undergone taxonomic revisions and the 13 genera are
now reduced to only seven—with some of the genera having been revised into the subgenus level [2,3].
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While some taxa have limited distributions, Heterotrigona itama populations are scattered in Malesia (the
Malay Archipelago) spanning over Peninsular Malaysia, Borneo’s East Malaysia, Southern Thailand,
Singapore and Indonesia (Kalimantan, Java and Sumatra) [1,4]. Based on our recent species diversity
survey, Meliponines found in Malaysia produce edible, fragrant kinds of honey, the taste of which is
generally sweet-tangy and whose color varies depending on the season. Among these, H. itama has
become the most common species reared or kept for its highly prized medicinal honey; this species has
also been regarded as an economically-important insect in agriculture due to its high adaptability to
a wide range of habitats and floristic attributes [5–9].

H. itama is a member of the Apidae family within the order of Hymenoptera, which displays
eusociality behavior and a caste polyphenism in females. Female larvae develop into two interdependent
adult castes, the queen and the worker, during caste differentiation. Chen et al. [10] stated that caste
differentiation depends on the differential expression of entire sets of genes involved in the larval fate
of queens and workers. The substantial physiological and morphological differences are due to the
differential expression of these genes [10–13]. To date, the genetic aspect of queen differentiation in
Malaysian stingless bees has not been fully addressed, yet this area is crucial not only to enhance our
understanding of caste differentiation but also to complement the ongoing research on producing
queens using an in vitro platform. Tamizi et al. [14] conducted a related study focusing on the
transcriptomics of a queen larva which discovered that H. itama most highly follows a conserved
caste differentiation pathway based on the detection of a few sets of annotated genes related to
queen differentiation. Other studies related to H. itama queens were on oviposition behavior and the
presence of virgin queen eggs after colony splitting [6,8]; however, these two did not address the caste
differentiation during the developmental stage. Here, we report the genome sequencing, de novo
assembly and annotation data of the Malaysian stingless bee, H. itama, which can help researchers
to better access genes and pathways related to queen differentiation from a much larger nucleotide
reference—the genome. In addition, the data can be useful as a genomic reference to facilitate future
studies on sustainable cultivation and conservation of stingless bees. The sequenced H. itama genome
is the first report for the Indo-Malayan/Australasian stingless bee group and the fourth in the world
after two Neotropical stingless bees, Melipona quadrifasciata and Frieseomelitta varia [15,16], and an Asian
species from Taiwan, Lepidotrigona ventralis hoosana (GenBank accession: PRJNA387986), which had
been revised as Lepidotrigona hoozana (Strand) Rasmussen [1].

2. Data Description

The whole genome sequencing of a queen of H. itama (Figure 1A) generated approximately
89 million raw pair-end reads with a total output of 13.37 Gb sequencing data. A total of 90.83% of
the sequencing data were retained after pre-processing; more than 82 million high-quality reads with
approximate 12.15 Gb total bases were generated (Table 1A).

Table 1. Summary statistics of Malaysian stingless bee, H. itama draft genome.

(A) Sequencing Reads
Total number Total bases (bp)

Raw data 89,154,444 13,373,166,600
Pre-processed data 82,979,630 (93.07%) 12,146,499,923 (90.83%)

(B) Assembly Data
No. contigs (≥1000 bp) 13,733
Total length (≥1000 bp) 262,450,989

N50 43,263
N75 14,434
L50 1649
L75 4534

GC content 37.31%
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Table 1. Cont.

(C) Structural Annotation
Number of predicted protein-coding genes 12,496

Total length of CDS (bp) 5,951,300
Number of predicted protein-coding genes (≥99 bp) 12,482

Total length of CDS (bp) (≥99 bp) 5,951,047
Number of tRNA 398
Number of rRNA 14

(D) Functional Annotation
Predicted protein-coding genes (≥99bp) 12,496 (100%)

Protein with RefSeq blast hits 10,388 (83.22%)
Protein with Swiss-Prot blast hits 8,214 (65.81%)

Protein with GO assignments 7,999 (64.08%)
Total GO annotation 175,576
Total EC annotation 613

Total KEGG pathway annotation 142
(E) Annotated Gene Ontology Related to Caste Differentiation and Insect Hormone

(Note: Number in the parentheses indicates the number of the genes of interest)

Caste differentiation GO:0048650 Caste determination, influenced
by environmental factors (1)

Insect hormone (Top 5)

GO:0009725 Response to hormone (77)
GO:0045433 Male courtship behavior (30)
GO:0048749 Compound eye development (25)
GO:0045169 Fusome (21)
GO:0060562 Epithelial tube morphogenesis (35)

Data 2020, 5, x  3 of 12 

 

 

Figure 1. Genome size estimation of Malaysian stingless bee, H. itama.  (A) Photograph of a queen 

pupa  (unpigmented)  and  newly  emerged  queen  of  H.  itama  (slightly  pigmented).  (B)  21‐mer 

GenomeScope profile showed the predicted genome size with other matrices for genome profiling. 

Table 1. Summary statistics of Malaysian stingless bee, H. itama draft genome. 

(A) Sequencing Reads 

  Total number  Total bases (bp) 

Raw data  89,154,444   13,373,166,600 

Pre‐processed data    82,979,630 (93.07%)  12,146,499,923 (90.83%) 

(B) Assembly Data 

No. contigs (≥1000 bp)  13,733 

Total length (≥1000 bp)  262,450,989 

N50  43,263 

N75  14,434 

L50  1649 

L75  4534 

GC content  37.31% 

(C) Structural Annotation 

Number of predicted protein‐coding genes  12,496 

Total length of CDS (bp)  5,951,300 

Number of predicted protein‐coding genes (≥99 bp)  12,482 

Total length of CDS (bp) (≥99 bp)  5,951,047 

Number of tRNA  398 

Number of rRNA  14 

(D) Functional Annotation 

Predicted protein‐coding genes (≥99bp)  12,496 (100%) 

Protein with RefSeq blast hits  10,388 (83.22%) 

Protein with Swiss‐Prot blast hits  8,214 (65.81%) 

Protein with GO assignments  7,999 (64.08%) 

Total GO annotation  175,576 

Total EC annotation  613 

Total KEGG pathway annotation  142 

(E) Annotated Gene Ontology Related to Caste Differentiation and Insect Hormone   

(Note: Number in the parentheses indicates the number of the genes of interest) 

Caste differentiation  GO:0048650  Caste determination, influenced by 

environmental factors (1) 

Insect hormone (Top 5)  GO:0009725  Response to hormone (77) 

GO:0045433  Male courtship behavior (30) 

GO:0048749  Compound eye development (25) 

Figure 1. Genome size estimation of Malaysian stingless bee, H. itama. (A) Photograph of a queen pupa
(unpigmented) and newly emerged queen of H. itama (slightly pigmented). (B) 21-mer GenomeScope
profile showed the predicted genome size with other matrices for genome profiling.

2.1. Genome Size Estimation

Analysis of k-mer distribution used the high-quality reads to estimate the genome size,
heterozygosity and repeat content of the stingless bee genome. Based on the k-mer spectrum
(Figure 1B), a simple Poisson profile denotes the low heterozygosity of the organism (0.275%) [17].
In addition, the genome was found to be slightly repetitive, and the estimated genome size of the
Malaysian stingless bee (H. itama) was discovered to be approximately 272 Mb. This is similar to
the size of previously reported genomes of the honey bee (Apis mellifera—236 Mb) [18], bumble bee
(Bombus terrestris—249 Mb) [19] and two Neotropical stingless bee species (M. quadrifasciata—256 Mb,
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F. varia—275 Mb) [15,16]. Based on the draft genome size estimated, subsequent de novo assembly and
genome annotation were performed with the sequencing depth of approximately 49X coverage.

2.2. Genome Assembly and Structural Annotation

The draft genome with a total assembly size of 262.45 Mb has 13,733 contigs (≥1000 bp) with
GC content of 37.31%, the longest contig of 438,094 bp and contig N50 sizes of 43,263 bp (Table 1B).
The BUSCO integrity assessment detected a 94.4% completeness score of complete single-copy orthologs
(53-mer) in the genome assembly (Figure 2A), indicating a high level of completeness of the draft
genome. In addition, the BUSCO assessment reported a completeness score of 94.6% on the genome
assembly based on hymenoptera_odb9 profiles, indicating a comparable level of completeness to
that of other bee genomes (Figure 2B). Subsequently, a total of 12,496 protein-coding genes (>99 bp),
398 tRNA and 14 rRNA genes were predicted from structural annotation (Table 1C). The mean exon per
gene annotated is 6.57. The predicted genes achieved 84.6% completeness based on hymenoptera_odb9
BUSCO profiles.

Figure 2. Genome assembly and structural annotation. (A) Benchmarking Universal Single Copy
Orthologs (BUSCO) assessment based on different k-mer (51- to 59-mer). (B) Benchmarking Universal
Single Copy Orthologs (BUSCO) assessment for six different bee species including the H. itama
assembled in this study. (C) Repeat elements of the draft genome.

A total of 2.29 Mb, equivalent to 0.87% repeats belonging to different classes of interspersed
repeats were masked for the stingless bee draft genome. The repetitive elements identified in the draft
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genome comprising 0.19% of long terminal repeats (LTRs), 0.18% of DNA transposons, and 0.06%
of long interspersed nuclear elements (LINEs) (Figure 2C). The low amount of repetitive sequences
detected was due to the sequencing technology used and the relatively low sequencing coverage. Short
reads generated could have been collapsed into contiguous contig or resulted in a fragmented assembly.
In addition, the relatively low sequencing coverage of ~49×might not be enough to sequence every
genomic region and thus some repetitive regions might be missed out from the sequencing.

2.3. Functional Annotation

From the predicted protein-coding genes (>99 bp) obtained, the peptide sequences (≥33 amino
acid) were found to be 83.22% and 65.81% functionally annotated against RefSeq [20] and Swiss-Prot [21]
databases, respectively (Table 1D). The RefSeq top-hit species annotation revealed that most of the
stingless bees’ proteins hit to those of the bumble bee, B. terrestris dataset. Further, protein structure
characterization successfully discovered a total of 7999 genes from Gene Ontology (GO) [22] and
categorized to biological function, cellular component and molecular function. A total of 142 KEGG
pathways were mapped with the most enzymes identified in the biosynthesis of the antibiotics pathway,
the purine metabolism pathway and the cysteine and methionine metabolism pathway (Figure 3).
Subsequently, genes of interest related to caste differentiation and insect hormone were data-mined
from the annotated GO terms (Table 1E). Several key genes related to insect hormone, which were
reported to play an important role in caste development [11,23], were mapped to the insect hormone
biosynthesis pathway (KEGG pathway: map 00981).

Figure 3. Distribution of the top twenty Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
mapped with the most number of enzymes through KEGG pathway analysis.

2.4. Orthologous and Phylogenetic Analysis

Ortholog analysis showed that 10,067 orthologous clusters were formed based on the protein data
set from the four Hymenoptera bee species. The numbers in the Venn diagram represent the number
of orthologous clusters that H. itama shares with the three other species. In total, 7573 orthologous
clusters were found to be common in all four bee species, suggesting their conservation in the lineage
after speciation. In addition, the diagram shows that there are 70 clusters exclusive to the Malaysian
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stingless bee, H. itama (Figure 4A). These 70 clusters contain unannotated genes whose function have
not been studied at this stage (Table S1).

Figure 4. Orthologous and phylogenetic analysis. (A) Venn diagram of orthologous gene clusters
between four extant representative members (Apini, Bombini, Euglossini and Meliponini) of the bee
clade Corbiculata including H. itama. (B) Bayesian inference (BI) tree obtained for ten bee species
based on 39 conserved single-copy orthologs rooted on Vespula germanica (branches transformed
proportionally; posterior probability (%) labeled; species names labeled at tips).

As for the phylogenetic analysis, a total of 39 single-copy orthologs that were found to be conserved
across the ten bees and one wasp species were adopted and analyzed. The eleven species that were
analyzed were made up of different tribes, including the stingless bee, honey bee, bumble bee and
euglossine bee, with the wasp as the outgroup. Phylogeny of these concatenated genes showed that
the H. itama evolved closely with two other stingless bees, F. varia and the M. quadrifasciata, which
share a common ancestor with the bumble bees (Figure 4B). The phylogenetic inference also indicated
that stingless bees are much closely related to bumble bees than they are to the modern honey bee
group (Apis spp.). This is further supported by a study done by Tamizi et al. [14], which found that the
H. itama transcripts shared higher similarity with B. impatiens and B. terrestris (30%–39%) than with
A. mellifera and A. florea (<8.1%).

In summary, we report the first draft genome of H. itama, the fourth Meliponine genome to be
sequenced. Since there are limited genomic sequence resources for this intriguing group of social
insects, our study hopes to provide more insights into and understanding of the biological processes
which could contribute to the conservation and sustainable management of stingless bees in Malaysia.

3. Methods

3.1. Sample Preparation and Sequencing

A single queen of H. itama (pupal stage) was collected from an active colony placed at MARDI,
Serdang, Selangor. The main reason a single individual (particularly the queen) was used is the size
advantage of the queen compared to a drone (male). A single queen pupa can provide just enough DNA
material needed for genome sequencing while three-four workers or drones are needed to produce
an equal amount of DNA. The biology and behavior of H. itama are slightly different than those of



Data 2020, 5, 112 7 of 12

Apis spp. While drones from a single healthy Apini colony are most likely produced by a single queen,
drones from Meliponini could come from different lineages as some species may house multiple queens
at a time; even the workers could actively participate in laying haploid eggs that turn into drones.
Genomic DNA was extracted from the whole pupa following a modified cetyl trimethyl ammonium
bromide (CTAB) protocol [24]. Next generation sequencing library preparations were constructed
following the manufacturer’s protocol (VAHTS Universal DNA Library Prep Kit for Illumina). Prior to
the library construction, the quality assessment of the genomic DNA sample was performed using
Qubit 2.0 fluorometer (Life Technologies Corporation) for concentration determination and agarose
gel electrophoresis for integrity testing. The prepared library was then loaded onto an Illumina
HiSeq X Ten instrument according to the manufacturer’s instructions (Illumina, San Diego, CA, USA).
Sequencing was carried out using a 2 × 150 paired-end (PE) configuration; image analysis and base
calling were conducted by the HiSeq Control Software (HCS) + OLB + GAPipeline-1.6 (Illumina)
on the HiSeq instrument. The data quality of the raw sequencing reads was assessed using FastQC
version 0.11.3 [25]. Pre-processing was then carried out using Trimmomatic version 0.38 [26] with
the following parameters: ILLUMINACLIP: TruSeq3-PE-2. fa: 2:30:10 LEADING:20 TRAILING:20
SLIDINGWINDOW:8:20 MINLEN:50. Reads that were at least QV20, read length of ≥50 bp and
adapters-free paired sequences were collected as clean reads.

3.2. Genome Size Estimation and Genome Assembly

The high-quality reads were used for k-mer distribution analysis to estimate the genome size,
heterozygosity and repeat content of the stingless bee genome. Jellyfish v2.1.1 (University of Maryland,
College Park, US) [27] was used to calculate the k-mer occurrences in DNA with a k-mer size of 21.
Following that, GenomeScope v1.0.0 (Cold Spring Harbor Laboratory, Laurel Hollow, US) [28], a k-mer
analysis software that uses the k-mer frequencies output from jellyfish, was employed to predict the
genome size along with several other metrics for genome profiling.

The draft genome was de novo assembled using Velvet v1.2.10 (KBase, US) [29]. The assembly
was carried out using different k-mer lengths (ranging from 51 to 59) with the parameters as follows:
-shortPaired -separate -fastq for velveth; exp_cov = auto, read_trkg = yes for velvetg. Among the
assemblies built with different k-mer sizes, the best assembly was chosen based on the number of
contigs, assembly size, N50 and BUSCO completeness score. Therefore, QUAST v3.1 (St. Petersburg
Academic University, St. Petersburg, Russia) [30] was used to access the quality of the draft genome
in terms of contiguity through three different contig thresholds that were set at 300 bp, 500 bp and
1000 bp respectively. Benchmarking Universal Single-Copy Orthologs (BUSCO) v2.0 (Université
de Genève, Geneva, Switzerland) [31] was used to assess the completeness of the draft genome.
The hymenoptera_odb9 profile was chosen as the reference profile for this sample. After both
assessments, filtering was applied to remove contigs shorter than 1000 bp in order to improve the
overall contiguity without losing much genetic information. In other words, all contigs longer than
1000 bp were retained for downstream analyses.

3.3. Gene Structural Annotation and Functional Annotation

The draft genome was annotated using the MAKER v3.0 (University of Utah, Salt Lake City,
US) [32] genome annotation pipeline which combines repeat masking, different prediction tools
with evidence-based quality control and gene-model editing. The custom repeat library was used
by RepeatMasker within the MAKER pipeline to mask repetitive elements. Transcript assembly
from the same species [14] was adopted as EST evidence. In addition, four different sets of protein
sequences from Apis spp., Bombus spp., Melipona spp. and Scaptotrigona spp. were downloaded from
a public database and used as evidences to aid gene predictions. As MAKER was run iteratively
for three times, repeat masking and evidence alignment were first performed with the following
parameters: est = Trinity.fasta, protein = apis.fasta,bombus.fasta,melipona.fasta,scaptotrigona.fasta,
model_org = hymenoptera, est2genome = 1 and protein2genome = 1. The resulting general feature
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format (GFF3) file was used as input for all subsequent MAKER runs. Gene predictions were performed
within MAKER using SNAP. For the second and third rounds of MAKER, the following parameters
were used: est2genome = 0 and protein2genome = 0 in order to specify ab initio gene prediction.
tRNA was predicted using tRNAscan-SE v1.3.1 [33] with default parameters. This was followed
by rRNA prediction using RNammer v1.2 [34] by including these parameters: -S euk and -multi.
After gene prediction, the full repertoire of peptide sequences (≥33 amino acid) was assessed for
completeness using BUSCO v2.0 [31]. The hymenoptera_odb9 profile was chosen as the reference
profile. Transposable elements and repetitive regions in the genome were identified using RepeatMasker
v4.0.5 (Institute for Systems Biology, Seattle, US) [35] with the following parameters: Hymenoptera as
the source species of query DNA, NCBI search engine, without masking the small RNA (pseudo) genes
or low complexity DNA or simple repeats but masking only the interspersed repeats using a sensitive
slow-search mode.

The Protein homology BLAST search was performed against NCBI Reference Sequence protein
(RefSeq) [20] and Swiss-Prot [21] protein databases. Diamond v0.9.22 (The University of Tübingen,
Tübingen, Germany) [36] was used to blast the peptide sequences to the RefSeq database, while
ncbi-blast v2.7.1+ was used to blast the same peptide set against Swiss-Prot. The cut-off for both
BLAST searches was set at a maximum expect value (E-value) of 1e-5. Subsequently, the BLAST
outputs from both databases were used for Gene Ontology (GO) [22] and Kyoto Encyclopedia of Genes
and Genomes (KEGG) [37] analysis using standalone Blast2GO v2.5 (BioBam, Valencia, Spain) [38].
In addition, protein structure characterization was carried out with local InterProScan lookup service
v5.4-47.0 (EMBL-EBI, Cambridgeshire, UK) [39].

3.4. Orthologous and Phylogenetic Analysis

Ortholog analysis was carried out using OrthoMCL v2.0.9 (University of Pennsylvania,
Philadelphia, US) [40] with default parameters. Three protein data sets from A. mellifera, B. terresteris
and E. mexicana together with the protein data of the Malaysian stingless bee were used for orthologous
group clustering.

Genome sequences from a total of eleven species (namely the H. itama sequenced and
assembled in this study, A. cerana (RefSeq accession: GCF_001442555.1), A. florea (RefSeq accession:
GCF_000184785.3), A. mellifera (GenBank accession: GCA_000002195.1), B. cullumanus (GenBank
accession: GCA_014737535.1), B. impatiens (RefSeq accession: GCF_000188095.3), B. terrestris
(RefSeq accession: GCF_000214255.1), E. mexicana (GenBank accession: GCA_001483705.1), F. varia
(GenBank accession: GCA_011392965.1), M. quadrifasciata (GenBank accession: GCA_001276565.1) and
V. germanica (GenBank accession: GCA_014466195.1)) were assessed for their single-copy orthologs
using BUSCO v2.0 [31], utilizing metazoa_odb9 (N = 978) BUSCO profiles. A subset of single-copy
orthologs (Table 2) that were annotated as complete and present in all eleven species were aligned
using MAFFT v7.471 (AIST, Tsukuba, JP) [41]. Manual inspection and trimming were carried out
for single-copy orthologs with gaps or poor alignments in ≥50% of the sequences. A phylogeny
based on the refined concatenated multiple sequence alignments of 39 single-copy orthologs was
generated using MrBayes v3.2.7 [42,43] utilizing the Bayesian Markov Chain Monte Carlo (MCMC)
algorithm. The analysis was conducted by sampling a mixture of models: fixed rate matrices as well as
gamma-distributed variable- and invariable matrices [44]. Input alignments were carried out with
sampling frequency for every 500 generations. A burn-in of 25% from the beginning of the cold chain
was discarded. An average standard deviation of split frequencies <0.01 was achieved. The plot of
generation versus log probability of the data did not show a noticeable trend, and potential scale
reduction factor (PSRF) close to 1.0 was set for all parameters. The Bayesian posterior probability of
tree was based on a total of 50,000 generations. The phylogenetic tree was visualized using FigTree
v1.4.4 (The University of Edinburgh, Edinburg, UK) [45] and rooted using V. germanica.
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Table 2. List of single-copy orthologs that were annotated as complete and present in all eleven species
used for phylogenetic analysis.

BUSCO ID Description

EOG091G00GQ thyroid hormone receptor interactor 12
EOG091G00L0 integrator complex subunit 1
EOG091G01TH CSE1 chromosome segregation 1-like (yeast)
EOG091G01VH Aminoacyl-tRNA synthetase, class Ia
EOG091G01WY SCY1-like, kinase-like 2
EOG091G01XI vacuolar protein sorting 18 homolog (S. cerevisiae)
EOG091G02C8 component of oligomeric golgi complex 1
EOG091G02LY cleavage stimulation factor, 3’ pre-RNA, subunit 3, 77kDa
EOG091G02O6 Vacuole morphology and inheritance protein 14
EOG091G02P2 component of oligomeric golgi complex 4
EOG091G02V5 eukaryotic translation initiation factor 3, subunit B
EOG091G03AN UFM1-specific ligase 1
EOG091G03I1 SAC1 suppressor of actin mutations 1-like (yeast)
EOG091G03JX mediator complex subunit 17
EOG091G03M4 nucleolar protein 10
EOG091G03P0 component of oligomeric golgi complex 6
EOG091G03PD Protein arginine N-methyltransferase
EOG091G03QC mitochondrial translational initiation factor 2
EOG091G03RW exocyst complex component 5
EOG091G03XO tyrosyl-tRNA synthetase
EOG091G03Z1 asunder spermatogenesis regulator
EOG091G03ZS Radical SAM
EOG091G04FV SMG8 nonsense mediated mRNA decay factor
EOG091G04GK PDZ domain containing 8
EOG091G04JK neurochondrin

EOG091G04WH negative elongation factor complex member B
EOG091G017G Ribosomal protein S5 domain 2-type fold
EOG091G017T N-acetyltransferase 10 (GCN5-related)
EOG091G024J vacuolar protein sorting 53 homolog (S. cerevisiae)
EOG091G025T Integrator complex subunit 2
EOG091G040D methyltransferase like 13
EOG091G046H USO1 vesicle transport factor
EOG091G049W lin-9 DREAM MuvB core complex component
EOG091G0262 excision repair cross-complementation group 2
EOG091G0321 vacuolar protein sorting 51 homolog (S. cerevisiae)
EOG091G0349 exocyst complex component 8
EOG091G0495 zinc finger, RAN-binding domain containing 1
EOG091G0525 NOP9 nucleolar protein
EOG091G03Z1 asunder spermatogenesis regulator

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5729/5/4/112/s1,
Table S1: List of 70 orthologous gene clusters exclusive to the Malaysian stingless bee, H. itama.
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