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Abstract: In this paper, we study the information lost when a real-valued statistic is used to reduce
or summarize sample data from a discrete random variable with a one-dimensional parameter.
We compare the probability that a random sample gives a particular data set to the probability of the
statistic’s value for this data set. We focus on sufficient statistics for the parameter of interest and
develop a general formula independent of the parameter for the Shannon information lost when
a data sample is reduced to such a summary statistic. We also develop a measure of entropy for
this lost information that depends only on the real-valued statistic but neither the parameter nor
the data. Our approach would also work for non-sufficient statistics, but the lost information and
associated entropy would involve the parameter. The method is applied to three well-known discrete
distributions to illustrate its implementation.
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1. Introduction

We consider the data sample x = (x1, . . . , xn) from a random sample X = (X1, . . . , Xn) for
a discrete random variable X with sample space S and one-dimensional parameter θ. A statistic T(X)
is a function of the random sample X for any fixed but arbitrary value of a parameter θ associated
with the underlying X. Thus a statistic T(X) is a random variable itself. Here we consider only
real-valued statistics that reduce the data sample x to a number T(x) that might be used to summarize
X, to characteriz X, or perhaps to estimate θ. However, data reduction is an irreversible process [1]
and always involves some information loss. For instance, if T(X) is the sample mean X, the original
measurements x cannot be reconstructed from x, and some information about x is lost. Nonetheless,
such data reduction is frequently used to make inferences.

More explicitly, our motivation for considering such situations is that T(x) is usually communicated
in practice as a summary for the data x but without the actual data. The question then naturally
arises: how much information is lost to someone about a data sample x when only the value of T is
available for x, but not the data itself? To answer this question, we develop a theoretical framework
for determining how much information is lost about a given data set x by knowing only the value of
T(x) but neither x itself nor the parameter θ. Our information-theoretic approach to data reduction
generalizes the observation in [2] that a binomial random variable loses all the information about
the order of successes in the associated sequence of Bernoulli trials. In other words, for a series of n
Bernoulli trials one cannot recreate the order of successes by only knowing the number that occurred.
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For any real-valued statistic T and the given sample data x, we decompose the total information

about X available in x into the sum of (a) the information available in the reduced data T(x) =
−
x and

(b) the information lost in the process of data reduction. When T is a sufficient statistic for θ, this lost
information is independent of θ. Moreover, by taking the expected value of this lost information over
all possible data sets, we define an associated entropy measure that depends on T but neither x nor θ.
Our approach also works for non-sufficient statistics, but the lost information and associated entropy
would then involve θ. Thus θ must be estimated before computing these quantities.

The paper is organized as follows. In Section 2, we present the necessary definitions, notation,
and preliminary results. In Section 3, we decompose the total information available about X in x and
give various expressions for the Shannon information lost by reducing x to T(x). In Section 4, we
develop an entropy measure associated with this lost information. In Section 5, we present examples of
our results for some standard discrete distributions and several sufficient statistics for θ. Conclusions
are offered in Section 6.

2. Preliminaries

Standard definitions, notation, and results to be used in our development are now presented
for completeness and accessibility. In addition, some new definitions and results are established for
subsequent use. Definition 1, Result 1, Definition 2, and Definition 3 can be found in [3–5] and
elsewhere. The notion of a sufficient statistic is first defined.

Definition 1 (Sufficient Statistic [3]). A statistic T(X) is a sufficient statistic (SS) for the parameter θ if the
probability

P[X = x
∣∣∣T(X) = T(x)] (1)

is independent of θ.

Note that P instead of Pθ is used in (1) since this probability is independent of θ. In addition,
observe that (1) is not a joint conditional probability distribution for X since its condition changes with
x. This observation is significant in Section 4. The fact that (1) does not involve θ can be used to prove
the Fisher Factorization Theorem (FFT) below, which is the usual method for determining if a statistic
is an SS for θ. In the FFT, we use the notation f(x

∣∣∣θ) to denote the joint probability mass function (pmf)
of X evaluated at the variable x for a fixed value of θ.

Result 1 (FFT [3]). The real-valued statistic T(X) is sufficient for θ if and only if there exist functions
g : R1

→ R1 and h : Sn
→ R1 such that for any sample data x and for all values of θ the joint pmf f (x

∣∣∣θ) of
X can be factored as

f(x |θ ) = g[T(x) |θ ] × h(x) (2)

for real-valued, nonnegative functions g on and h on Sn. The function h does not depend on θ, while g does
depend on x but only through T(x).

We focus on a sufficient statistic T for θ in Section 3, where we need the notion of a partition [5]
defined next.

Definition 2 (Partition [3]). Let S be the denumerable sample space of the discrete random variable X so that
Sn is the denumerable sample space of the random sample X . For any statistic T : Sn

→ R1 , let τT be the
denumerable set τT = {t|∃x ∈ Sn for which t = T(x)

}
, which is the range of T. Then T partitions the sample

space Sn into the mutually exclusive and collectively exhaustive partition sets At =
{
x ∈ Sn

∣∣∣T(x) = t
}
, ∀t ∈ τT.

Figure 1 illustrates Definition 2.
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We also use the well-known likelihood function.

Definition 3 (Likelihood Function [3–5]). Let x be sample data from a random sample X from a discrete
random variable X with sample space S and real-valued parameter θ, and let f (x

∣∣∣θ) denote the joint pmf of the
random sample X . For any sample data x, the likelihood function of θ is defined as

L(θ|x) = f(x |θ ). (3)

The likelihood function L(θ|x) in (3) is a function of the variable θ for given data x. However,
the joint pmf f(x |θ ) as a function of x for fixed θ is frequently called the likelihood function as well.
In this case, we also write the joint pmf as L(x |θ ). We distinguish the two cases since L(θ|x) is not
a statistic but L(x |θ ) is one that incorporates all available information about X. Moreover, L(x |θ ) is
an SS for θ [4] and uniquely determines an associated SS called the likelihood kernel to be used in
subsequent examples.

We next define a new concept called the likelihood kernel. As a function of x for fixed θ, it is
shown below to be a sufficient statistic for θ and is used in Section 5 to facilitate the computation of lost
information associated with other sufficient statistics T. As a function of θ for fixed x, a possibility not
considered here, the likelihood kernel may be useful in applying the likelihood principle [3,4] to make
inferences about θ without resorting to the notion of equivalence classes. It would be the “simplest”
factor of L(θ|x) that can be used in a likelihood ratio comparing two values of θ.

Definition 4 (Likelihood kernel). Let S be the sample space of X . For fixed but arbitrary θ, suppose that
L(x

∣∣∣θ) can be factored as
L(x |θ ) = K(x |θ ) ×R(x), ∀x ∈ Sn, (4)

where K : Sn
→ R1 and R : Sn

→ R1 have the following properties.

(a) Every nonnumerical factor of K(x
∣∣∣θ) contains θ.

(b) R(x) does not contain θ.
(c) For ∀x ∈ Sn, both K(x

∣∣∣θ) ≥ 0 and R(x) ≥ 0.
(d) K(x

∣∣∣θ) is not divisible by any positive number except 1.

Then K(x
∣∣∣θ) is defined as the likelihood kernel of L(x

∣∣∣θ) and R(x) as the residue of L(x
∣∣∣θ).

Theorem 1. The likelihood kernel K(x
∣∣∣θ) has the following properties.
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(i) K(x
∣∣∣θ) exists uniquely.

(ii) K(x
∣∣∣θ) is an SS for θ.

(iii) For any θ1 and θ2, the likelihood ratio L(x|θ1 )
L(x|θ2 )

equals K(x|θ1 )
K(x|θ2 )

.

Proof. To prove (i), for fixed θ we first show that the likelihood kernel K(x |θ ) of Definition 4 exists by
construction. Since the formula for L(θ|x) = f(x |θ ) must explicitly contain θ, the parameter θ cannot
appear only in the range of x. Hence L(x |θ ) as a function of x can be factored into K(x |θ ) × R(x),
satisfying (a) and (b) of Definition 4, where K(x |θ ) ≥ 0, ∀x ∈ Sn, and the numerical factor of K(x |θ ) is
either +1 or −1. Then R(x) ≥ 0, ∀x ∈ Sn since K(x |θ ) ≥ 0, ∀x ∈ Sn, and K(x |θ ) × R(x) = f(x |θ ) ≥ 0.
Thus (c) is satisfied. Finally, the only positive integer that evenly divides +1 or −1 is 1, so (d) holds.
It follows that the likelihood kernel K(x |θ ) and its associated R(x) in Definition 4 are well defined
and exist.

We next show that K(x |θ ) as constructed above is unique. Let K1(x |θ ) with residue R1(x) and
K2(x |θ ) with R2(x) both satisfy Definition 4. Thus for j = 1, 2, Rj(x) does not contain θ, while every
nonnumerical factor of Kj(x |θ ) does contain θ. It follows that K1(x |θ ) ≥ 0 and K2(x |θ ) ≥ 0 must be
identical or else be a positive multiple of one another. Assume that K2(x |θ ) = λK1(x |θ ) for some
λ > 0. If λ , 1, K2(x |θ ) is divisible by a positive number other than 1 to contradict (d). Thus K(x |θ )
is unique.

To prove (ii), we show that this unique K(x |θ ) is an SS for θ. For L(θ|x) = f(x |θ ), let g[z] = z
and h(x) = R(x) in (2). Then, L(θ|x) = f(x |θ ) = g[K(x |θ )] × h(x) = K(x |θ ) × R(x). Thus K(x |θ ) is
an SS by the FFT of Result 1. Finally, (iii) follows from Definition 4 and the fact that the joint pmf
L(x |θ 2) , 0 for x ∈ Sn. �

We next discuss the notion of information to be used. Actually, probability itself is a measure
of information in the sense that it captures the surprise level of an event. An observer obtains more
information, i.e., surprise, if an unlikely event occurs than if a likely one does. Instead of probability,
however, we use the additive measure known as Shannon information [6,7], defined as follows.

Definition 5 (Shannon Information [6,7]). Let x be sample data for the random sample X from the discrete
random variable X with a one-dimensional parameter θ, and let f (x|θ) be the joint pmf of X at x. The Shannon
information obtained from the sample data x is defined as

I(x |θ ) = − log f(x |θ ), (5)

where the units of I(x|θ ) is bits if the base of the logarithm is 2, which is to be used here.

Other definitions for information have been proposed. For example, Vigo [8,9] has defined
a measure of representational information. Further details on different types of information can be
found in [10–16]. For Shannon information, we use its expected value over ∀x ∈ Sn.

Definition 6 (Entropy [17–20]). Under the conditions of Definition 5, the Shannon entropy H(X|θ ) is
defined as the expected value of I(X|θ ); i.e.,

H(X |θ ) =
∑

x
f(x|θ)I(x|θ). (6)

The general properties of Shannon entropy are given in [17–20], for example. Since entropy is the expected
information over all possible random samples, it can be argued that entropy is a better measure of the available
information about X than would the Shannon information for a single data set x, which might not be typical [18].
We next give a method to obtain the information loss about X that occurs when a data set x is reduced to T(x).
In our approach, we focus on a sufficient statistic T so there will be no θ in (5) for the lost information below.
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3. Information Decomposition under Data Reduction by a Real-Valued Statistic

We now develop a procedure to determine how much information about X contained in
a data set x is lost when the data is reduced to T(x) by the sufficient statistic T. Consider the
joint conditional probability

Pθ[X = x | T (X) = T(x)], (7)

which is identified with the probabilistic information lost about the event X = x by the data reduction
of x to T(x). The notation Pθ refers to the fact that the discrete probability (7), in general, involves the
parameter θ. We next express (7) using the definition of conditional probability to obtain the basis of
our development. Result 2 is given in ([3], p. 273) and proven below to illustrate the reasoning.

Result 2 [3]. Let x be sample data for a random sample X from a discrete random variable X with sample space
S and real-valued parameter θ, and let T(X) be any real-valued statistic. Then

Pθ[X = x | T (X) = T(x)] =
Pθ[X = x]

Pθ[T(X) = T(x)]
. (8)

Proof. Using the definition of conditional probability, rewrite (7) as

Pθ[X = x; T(X) = T(x)]
Pθ[T(X) = T(x)]

. (9)

However, T(X) = T(x) whenever X = x, so (8) follows. �

Observe that if T is an SS for θ, the left side of (8) is independent of θ by the FFT and hence so is
the right. Taking the negative logarithm of (8) and rearranging terms gives

− log Pθ[X = x] = − log Pθ[T(X) = T(x)] − log Pθ[X = x | T (X) = T(x)]. (10)

From (8), note that Pθ[X = x | T (X) = T(x)] ≥ Pθ[X = x] since Pθ[T(X) = T(x)] ≤ 1, so
− log Pθ[X = x | T (X) = T(x)] ≤ − log Pθ[X = x]. Similarly, − log Pθ[T(X) = T(x)] ≤ − log Pθ[X = x].
These facts suggest that the left side of (10) is the total Shannon information in bits about X contained in
the sample data x. On the right side of (10), the term− log Pθ[T(X) = T(x)] is considered the information
about X contained in the reduced data summary T(x), and the term − log Pθ[X = x | T (X) = T(x)] is
identified as the information about X that has been lost as the result of the data reduction by T(x).

In particular, this lost information represents a combinatorial loss in the sense that multiple x’s
may give the same value T(x) = t, as depicted in Figure 1 above. In other words, the lost information
− log Pθ[X = x | T (X) = T(x)] is a measure of the knowledge unavailable about the data sample x
when only the reduced data summary T(x) is known but not x itself. For a sufficient statistic T(X) for
θ, this lost information is independent of θ. It is a characteristic of T(X) for the given data sample x.

In terms of Figure 1, (10) may be described as follows. On the left of the figure is the sample space
Sn
⊆ Rn over which probabilities on X are computed. On the right is the range τT ⊆ R1 of T over which

the probability of T(X) are computed. T reduces the data sample x into T(x), where multiple x’s may
give the same T(x) = t. In Figure 1, the distinct data samples x1, x2, and x3 are all reduced into the
same value t1. However, knowing that T(x) = t1 for some data sample x does not provide sufficient
information to know unequivocally, for example, that x = x1. Information is lost in the reduction.
One can also say that the total information − log Pθ[X = x] obtained from the left side of Figure 1 is
reduced to − log Pθ[T(X) = T(x)] obtained from the right. The reduction in information from the left
to the right side is precisely the lost information − log Pθ[X = x | T (X) = T(x)] of (10). For fixed t,
it is lost due to the ambiguity as to which data sample on the left actually gave t. There is no such
ambiguity when T is one-to-one.
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The general decomposition of information in (10) is next summarized in Definition 7, where T
does not need to be sufficient for θ.

Definition 7 (Itotal, I reduced, Ilost). Let x be sample data for a random sample X from a discrete random
variable X with sample space S and real-valued parameter θ. For any real-valued statistic T(X), the Shannon
information about X obtained from the sample data x can be decomposed as

Itotal(x |θ ) = Ireduced(x |θ , T) + Ilost(x |θ , T), (11)

where
Itotal(x |θ ) = − log Pθ[X = x] (12)

Ireduced(x |θ , T) = − log Pθ[T(X) = T(x)] (13)

and
Ilost(x |θ , T) = − log Pθ[X = x | T (X) = T(x)]. (14)

Definition 7 generalizes the information decomposition of [2] for a data sample x of size n from a Bernoulli
random variable X. In terms o f this paper, the parameter θ in [2] is the probability 0.5 of success on a single

Bernoulli trial, and T(x) =
n∑

i=1
xi. It should be noted that the notation Icomp in [2], which refers to compressed

information, corresponds to Ireduced in Equation (13). We use the term “data reduction” as described in [3] as
opposed to “data compression” to prevent misinterpretation. In computer science, data compression refers to
encoding information using fewer bits than the original representation and is often lossless.

Both Result 2 and Definition 7 are valid for any real-valued statistic for X. The notation Itotal(x |θ )
indicates that Itotal is a function of the sample data x for a fixed but arbitrary parameter value θ.
Similarly, both Ireduced(x |θ , T) and Ilost(x |θ , T) are functions of x for fixed θ and T. However, in this
paper we focus on sufficient statistics, which provide a simpler expression for Ilost(x |θ , T) that does not
involve θ. For a sufficient statistic T for θ, we use the notation Ilost(x |T ) for the lost information, though
Itotal(x |θ ) and Ireduced(x |θ , T) still require θ. The next result is an application of the FFT of Result 1.

Theorem 2 (Lost Information for an SS). Let x be sample data for a random sample X from a discrete random
variable X with sample space S and real-valued parameter θ. Let T be an SS for θ, let f (x|θ ) be the joint pmf of
X, and write f (x|θ ) = g[T(x)

∣∣∣θ] × h(x) as in Result 1. Then for all x ∈ Sn

Ilost(x |T ) = − log
h(x)∑

yεAT(x)
h(y)

, (15)

where AT(x) is defined in Definition 2 for t = T(x).

Proof. Let x ∈ Sn. Then f(x|θ) > 0 since x is a realization of X. Because T is an SS, we write (7) without
θ. It now suffices to establish that

P[X = x |T (X) = T(x)] =
h(x)∑

yεAT(x)
h(y)

, (16)

from which (15) immediately follows. Rewrite (8) as

P[X = x |T (X) = T(x)] =
Pθ[X = x]

Pθ[T(X) = T(x)]
=

f(x |θ )∑
yεAT(x)

f(y |θ )
, (17)
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so from (17) and (2), then

P[X = x |T (X) = T(x)] =
g[T (x) |θ ] × h(x)∑

yεAT(x)
g[T (y) |θ ] × h(y)

. (18)

However, T(y) = T(x), ∀y ∈ AT(x) in (18), so

P[X = x |T (X) = T(x)] =
g[T (x) |θ ] × h(x)

g[T (x) |θ ] ×
∑

yεAT(x)
h(y)

, ∀x ∈ Sn. (19)

Since f(x|θ) > 0 and hence g[T(x)
∣∣∣θ] , 0 , this term can be canceled on the right side of (19) to yield

(16). Taking the − log of (16) completes the proof. �

Now consider Theorem 2 when each At is a singleton in (16), i.e., when T is a one-to-one
function. In this extreme case, P[X = x

∣∣∣T(X) = T(x)] = 1 since
∑

y∈AT(x)

h(y) = h(x) in the denominator

of the right side of (16). Thus Ilost(x|T) = 0 from which Icomp(x |θ , T) = Itotal(x
∣∣∣θ) for all x in

Sn. Thus, the special case of a one-to-one T justifies the identification of the lost information as
Ilost(x |θ , T) = − log Pθ[X = x

∣∣∣T(X) = T(x)] . In other words, for all data samples x, y ∈ Sn, if x , y
whenever T(x) , T(y), then P[X = x |T (X) = T(x)] is not diminished by the reduction of the singleton
AT(x) to the number T(x).

More generally, it is also true that Ilost(x |θ , T) = 0 when T is one-to-one but not sufficient for θ. In

this case, write Pθ[X = x |T (X) = T(x)] = Pθ[X=x]
Pθ[T(X)=T(x)] =

f(x |θ )∑
yεAT(x)

f(y |θ )
. However, since T is one-to-one,

then
∑

yεAT(x)

f(y |θ ) = f(x |θ ), Pθ[X = x |T (X) = T(x)] = 1, and again Ilost(x |θ , T) = 0.

Now consider the other extreme case where T(x) = c is constant on Sn. Thus Pθ[X = x |T (X) = c] =
Pθ[X=x]

Pθ[T(X)=c] . However, Pθ[T(X) = c] = 1, so Pθ[X = x |T (X) = c] = Pθ[X = x] and Ilost(x |θ , T) =

Itotal(x |θ , T) on Sn. In this case, Ireduced(x |θ , T) = 0 because the event T(x) = c gives no
information about x.

We also note that Ilost(x |T ) could be used as a metric to compare sufficient statistics for a given
data sample x. For example, T1 could be regarded as better than T2 for x if Ilost(x, T1) < Ilost(x, T2).
However, this comparison would be limited to the given x. In Section 4, we propose but do not explore
a metric based on entropy independent of a particular data sample. We next show that (16) can be
simplified when T is the likelihood function.

Corollary 1 (Information Loss for Likelihood Function). Under the assumptions of Theorem 2,
if T(x) = L(x|θ ), then

Ilost(x |L ) = − log
1∣∣∣AL(x|θ)

∣∣∣ , (20)

where
∣∣∣AL(x|θ)

∣∣∣ is the cardinality of the partition set At for t = L(x|θ ).

Proof. For T(x) = L(x |θ ) = f(x |θ ) in (2), let g be the identity function and h(x) = 1. Then substituting
h(x) = 1 into (16) gives the denominator

∑
yεAL(x|θ)

1 =
∣∣∣AL(x|θ)

∣∣∣ to yield (20). �

We next state a reproductive property of a statistic T′ that is a one-to-one function of a sufficient
statistic T for θ.

Theorem 3. If there is a one-to-one function between a sufficient statistic T for θ and an arbitrary real-valued
statistic T′ on Sn, then the following hold.
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(i) T′ is also an SS.
(ii) T and T′ partition the sample space S into the same partition sets.
(iii) Ilost(x|T) = Ilost(x|T′),∀x ∈ Sn.

Proof. To prove (i), let u be a real-valued one-to-one function of T′ such that

T(x) = u[T′(x)]. (21)

Since T is an SS, by Equation (2) there are real-valued functions g on R1 and h on Sn for which

f(x |θ ) = g[T(x) |θ ] × h(x). (22)

By substituting T(x) from (21) in (22), we get

f(x |θ ) = g(u[T′(x)] |θ ) × h(x), (23)

which can be rewritten as
f(x |θ ) = (g ◦ u)[T′(x) |θ ] × h(x). (24)

Since T′ in (24) satisfies the condition of Result 1 for g′ = g ◦ u, T′ is an SS.
To prove (ii), we use Definition 2. Let T partition the sample space Sn into the mutually exclusive

and collectively exhaustive sets At =
{
x |T (x) = t

}
, ∀t ∈ τT. By Equation (21) we can also write At as

At =
{
x |u [T′(x)] = t

}
, ∀t ∈ τT. (25)

Since u is a one-to-one function, it has an inverse u−1. Letting u−1(t) = t′, we apply u−1 to the right
side of (25) and get

At =
{
x
∣∣∣T′ (x) = t′

}
,∀t′ ∈ u(τT). (26)

However, u(τT) = τT′ and the cardinalities satisfy
∣∣∣τT

∣∣∣= ∣∣∣τT′
∣∣∣, so the right side of (26) is At′ and

At = At′ . (27)

Finally, to get (iii) we use Theorem 2 to calculate information lost over two statistics T and T′.
Since h(x) is the same in (22) and (24) and since Equation (27) holds, we sum h(x) over the same sets in
the denominator of Equation (16) for both T and T′ to give

Ilost(x |T ) = Ilost
(
x
∣∣∣T′ ) (28)

and complete the proof. �

We next compare the information loss of the sufficient statistic L(x|θ) to other sufficient statistics.
For the sufficient statistic K(x|θ), a lemma is needed.

Lemma 1. Let x be any data sample for a random sample X from the discrete random variable X with real-valued
parameter θ. Then K(x|θ ) is a function of L(x|θ ) and τL ≥ τK.

Proof. From ([3], p. 280), K(x|θ) is a function of L(x|θ) if and only if K(x|θ) = K(y
∣∣∣θ) whenever

L(x|θ) = L(y
∣∣∣θ). For all data samples x and y, we prove that if L(x|θ) = L(y

∣∣∣θ), then K(x|θ) = K(y
∣∣∣θ).

Thus suppose that L(x|θ) = L(y
∣∣∣θ). By Definition 4, we can decompose L(x|θ) and L(y

∣∣∣θ) into
K(x|θ)R(x) and K(y

∣∣∣θ)R(y), respectively. Note that K(y
∣∣∣θ) , 0. Otherwise, L(y

∣∣∣θ) = 0 in contradiction
to y being sample data with a nonzero probability of occurring. Now write
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K(x|θ)

K(y
∣∣∣θ) =

R(y)
R(x)

. (29)

Suppose that K(x|θ) , K(y
∣∣∣θ) so that K(x|θ)

K(y|θ)
=

R(y)
R(x) , 1 in (29). From Definition 4, every nonnumerical

factor of K(x|θ) and K(y
∣∣∣θ) contains θ. Moreover, neither K(x|θ) nor K(y

∣∣∣θ) is divisible by any positive

number except the number 1. Hence, since R(y)
R(x) does not contain θ, the nonnumerical factors of K(x|θ)

and K(y
∣∣∣θ) must cancel in (29) and the remaining numerical factors could not be identical. Thus at

least one of these factors would be divisible by a positive number other than 1 in contradiction to
Definition 4. It now follows that K(x|θ) = K(y

∣∣∣θ), so K(x|θ) is some function u of L(x|θ). Finally,
τL ≥ τK since this function u is surjective from Sn onto its image u(Sn). �

Lemma 2. Under the conditions of Lemma 1, the sufficient statistics L and K satisfy

Ireduced(x |θ , L) ≥ Ireduced(x |θ , K), ∀x ∈ Sn. (30)

Proof. Let x ∈ Sn and suppose that y ∈ AL(x). Then L(y
∣∣∣θ) = L(x|θ), so it follows from Lemma 1 that

K(y
∣∣∣θ) = K(x|θ) and thus y ∈ AK(x). Hence AL(x) ⊆ AK(x), and so

Pθ[L(X|θ) = L(x|θ)] =
∑

yεAL(x)

f(x |θ ) ≤
∑

yεAK(x)

f(x |θ ) = Pθ[K(X|θ) = K(x|θ)],∀x ∈ Sn. (31)

Taking the negative log of both sides of the inequality in (31) and using (13) gives (30). �

Theorem 4. Let x be sample data for a random sample X from a discrete random variable X with the real-valued
parameter θ. Then for all x ∈ Sn,

Ilost(x |L ) ≤ Ilost(x |K ). (32)

Proof. Let x ∈ Sn. Note that Itotal(x |θ ) in (12) does not depend on the arbitrary sufficient statistic T
of (11). Hence

Itotal(x |θ ) = Ireduced(x |θ , L) + Ilost(x |L ) = Ireduced(x |θ , K) + Ilost(x |K ). (33)

Then (32) follows immediately from (30) and (33). �

As a consequence of Theorem 3, Theorem 4 has an immediate corollary.

Corollary 2. Under the conditions of Theorem 4, let T be a sufficient statistic for θ for which there is a one-to-one
function between T and K. Then for all x ∈ Sn,

Ilost(x |L ) ≤ Ilost(x |T ). (34)

The question remains open as to whether (34) holds for all sufficient statistics T for θ. Regardless,
the proofs of Lemma 2 and Theorem 4 illustrate the fact that the relation between the lost information
for two statistics T and T′ is determined by the relation between their partition sets At =

{
x |T (x) = t

}
and Bt′ =

{
x
∣∣∣T′ (x) = t′

}
. For example, if for every At there exists a Bt′ for which At ⊂ Bt′ , then the

partition of Sn by the Bt′ of T′ is said to be coarser than the partition by the At of T. In that case,
Ilost(x |θ , T) ≤ Ilost(x |θ , T′) because each x ∈ Sn has more y ∈ Sn with T′(y) = T′(x) than there are with
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T(y) = T(x). In other words, T′(y) = t′ is at least as ambiguous as T(y) = t in determining the data
sample giving the value of the respective statistics.

4. Entropic Loss for an SS

For a sufficient statistic T for θ, we now propose an entropy measure to characterize T by the
expected lost information incurred by the reduction of X to T(X). This expectation is taken over all
possible data sets x. This nonstandard entropy measure is called entropic loss, and it depends on
neither a particular data set x nor the value of θ. Before defining this measure, we need to determine
the appropriate pmf to use in taking an expectation. The following results are used.

Result 3. Under the assumptions of Theorem 2, for any data sample let t = T(x) and consider the
partition set At. Then ∑

x∈At

P[X = x
∣∣∣ T(X) = t] = 1. (35)

Proof. Summing (16) over x ∈ At yields

∑
x∈At

P[X = x
∣∣∣ T(X) = t] =

∑
xεAT(x)

h(x)∑
yεAT(x)

h(y)
= 1. (36)

to give (35). �

Result 4. Under the assumptions of Theorem 2, the sum∑
x∈Sn

P[X = x | T (X) = T(x)] = |τT|. (37)

Proof. We perform the sum on the left of (37) by first summing over x ∈ At for fixed t and then
summing over each t ∈ τT to give∑

x∈Sn

P[X = x | T (X) = T(x)] =
∑
t∈τT

∑
x∈At

P[X = x
∣∣∣ T(X) = t]. (38)

The inner series on the right side of (38) sums to one by Result 3. Hence, the outer sum yields |τT| for
τT = {t|∃x ∈ Sn for which t = T(x)

}
. �

From (37), it follows that the left side of (37) is not a probability distribution on Sn unless |τT| = 1.
Moreover, P[X = x | T (X) = T(x)] is not a conditional probability distribution even if |τT| = 1 since the
condition T(X) = T(x) varies with x. However, we use Result 4 to normalize P[X = x | T (X) = T(x)]
and obtain the appropriate pmf for calculating the expectation of Ilost(X |T ).

Definition 8 (Entropic Loss). Under the assumptions of Theorem 2, the entropic loss resulting from the data
reduction by T is defined as

Hlost(X, T) =
−1
|τT|

∑
x∈Sn

P[X = x |T (X) = T(x)] log P[X = x |T (X) = T(x)], (39)

which from (15) and (16) can be rewritten as

Hlost(X, T) =
−1
|τT|

∑
x∈Sn

h(x)∑
yεAT(x)

h(y)
log

h(x)∑
yεAT(x)

h(y)
. (40)
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Observe that (39) and (40) are independent of both x and θ. Indeed, for a given underlying random
variable X and sample size n, Hlost(X, T) is a function only of T. Thus, Hlost(X, T) could be used as
a metric to compare sufficient statistics independent of the data sample. In particular, T1 could be
regarded as better than T2 if Hlost(X, T1) < Hlost(X, T2), i.e., if the expected information loss associated
with T1 is less than that for T2. Moreover, for a given underlying random variable X and sample size n,
Definition 8 could be extended to non-sufficient statistics. In that case, the entropic loss Hlost(X, T, θ)
would be a function of both T and θ. For a fixed θ, a non-sufficient statistic T1 could again be considered
as better than a non-sufficient T2 if Hlost(X, T1, θ ) < Hlost(X, T, θ ). Furthermore, for a given statistic T,
the numerical value θ1 could be considered as a better numerical point estimate for θ than the value θ2

if Hlost(X, T, θ1 ) < Hlost(X, T, θ2 ). Similarly, Hlost(X, T, θ) could be minimized over θ to give a best
numerical point estimate for θ based on the entropic loss criterion. However, we do not pursue these
possibilities here. We next compute Hlost(T) for the sufficient statistic T(X) = L(X|θ).

Theorem 5 (Entropic Loss for Likelihood Function). Under the assumptions of Theorem 2, the entropic
loss resulting from the data reduction by T(x) = L(x|θ) is

Hlost(X, L) =
−1
|τL|

∑
t∈τL

log
1
|At|

. (41)

Proof. From (20), write

Hlost(X, L) =
−1
|τL|

∑
x∈Sn

1∣∣∣AL(x)

∣∣∣ log
1∣∣∣AL(x)

∣∣∣ . (42)

We decompose the sum over x ∈ Sn in (42) to consecutive sums over x ∈ At and then t ∈ τT to get

Hlost(X, L) =
−1
|τL|

∑
t∈τL

∑
x∈At

1
|At|

log
1
|At|

=
−1
|τL|

∑
t∈τL

|At|

|At|
log

1
|At|

. (43)

Equation (41) now follows from (43). �

Result 5. Suppose there is a one-to-one function between two sufficient statistics T and T′ for θ. Then

Hlost(X, T) = Hlost(X, T′). (44)

Proof. For all x ∈ Sn, Ilost(x |T ) = Ilost(x|T′ ) from Theorem 3, so

− log
h(x)∑

yεAT(x)
h(y)

= − log
h(x)∑

yεAT′(x)
h(y)

, (45)

from which
h(x)∑

yεAT(x)
h(y)

=
h(x)∑

yεAT′(x)
h(y)

. (46)

Thus from (45) and (46),

h(x)∑
yεAT(x)

h(y)
log

h(x)∑
yεAT(x)

h(y)
=

h(x)∑
yεAT′(x)

h(y)
log

h(x)∑
yεAT′(x)

h(y)
. (47)

Now summing (47) over x ∈ Sn yields

∑
x∈Sn

h(x)∑
yεAT(x)

h(y)
log

h(x)∑
yεAT(x)

h(y)
=

∑
x∈Sn

h(x)∑
yεT′(x) h(y)

log
h(x)∑

yεAT′(x)
h(y)

. (48)
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However, from Theorem 3, |τT| = |τT′ |. Thus dividing the left side of (48) by −|τT| and the right side
by −|τT′ | yields (44). �

5. Examples and Computational Issues

In this section, we present examples involving the discrete Poisson, binomial, and geometric
distributions [21]. For each distribution, three sufficient statistics for a parameter θ are analyzed.
For each such T, the quantity Ilost(x |T ) does not involve θ. However, calculating Ilost(x |T ) can still
present computational issues, some of which are discussed below. Our examples are simple in order to
focus on the definitions and results of Sections 3 and 4.

Example 1 (Poisson Distribution). Consider the random sample X = (X1, . . . , Xn) with the data sample
x = (x1, . . . , xn) from a Poisson random variable X . We consider three sufficient statistics f or the parameter

θ > 0. These sufficient statistics are T1(X) =
n∑

i=1
Xi, the likelihood kernel T2(X) = K(X|θ ) for fixed but

arbitrary θ, and the likelihood function T3(X) = L(X|θ ) f or f ixed but arbitrary θ. We use T1(X) as a surrogate

for T′1(X) =
∑n

i=1 Xi
n . Neither T1(X) or T′1(X) involves θ and can thus be used either to characterize X or

to estimate θ. Moreover, there is an obvious one-to-one function relating
∑n

i=1 Xi
n and

n∑
i=1

Xi, so Theorems 3

and 5 establish that Ilost
(
x
∣∣∣T′1 ) = Ilost(x|T1 ) and Hlost

(
X, T′1

)
= Hlost(X, T1), respectively. We analyze T1(X)

because it is also Poisson, whereas T′1(X) is not Poisson since
∑n

i=1 Xi
n is notnecessarily a nonnegative integer.

In contrast to T1(X), both T2(X) and T3(X) contain θ and can only be used to characterize X. For each of these
three sufficient statistics, we develop an expression for Ilost(x|T ) and describe how to obtain a numerical value.
We then illustrate previous results with a realistic Poisson data sample. We present further computational results
in Table 1.

Table 1. Poisson Example.

x = (x1,x2,x3) T1(x) Ilost(x|T1) T2(x) Ilost(x|T2) T3(x) Ilost(x|T3)

(0,0,0) 0 0 e−3θ 0 e−3θ 0

(0,0,1)
1 log 3 θe−3θ log 3 θe−3θ log 3

(0,1,0)

(1,0,0)

(1,1,0)
2 log 9

2 θ2e−3θ log 9
2 θ2e−3θ log 3

(1,0,1)

(0,1,1)

(2,0,0)
2 log 9 θ2e−3θ log 9 θ2e−3θ

2
log 3

(0,2,0)

(0,0,2)

Case 1: Let T1(X) =
n∑

i=1
Xi. Observe that T1(X) is a sufficient statistic for θ from Result 1 since

f(x |θ ) = Pθ[X = x] = θ
∑n

i=1 xi e−nθ∏n
i=1 xi!

can be factored in (2) into the functions g[T1(x) |θ ] = θ

n∑
i=1

xi
e−nθ and

h(x) = 1∏n
i=1 xi!

. Next recall that the statistic
n∑

i=1
Xi has a Poisson distribution with parameter nθ [21].

Thus, Pθ

[
n∑

i=1
Xi =

n∑
i=1

xi

]
=

(nθ)
∑n

i=1 xi e−nθ

(
∑n

i=1 xi)!
, and so (8) becomes
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P[X = x|
n∑

i=1

Xi =
n∑

i=1

xi] =
1

n
∑n

i=1 xi

( ∑n
i=1 xi

x1, . . . , xn

)
, (49)

where the multinomial coefficient
( ∑n

i=1 xi

x1, . . . , xn

)
=

(
∑n

i=1 xi)!∏n
i=1 xi!

. It follows from (49) and (10) that

Ilost(x |T 1) = − log
( ∑n

i=1 xi

x1, . . . , xn

)
+ (log n)

n∑
i=1

xi, (50)

which is also Ilost

(
x
∣∣∣T′1 )

, as noted above.
For a data sample (x1, . . . , xn), the evaluation of Ilost(x |T 1) in (50) involves computing

factorials [22]. For realistic data, the principal limitation to calculating them by direct multiplication
is their magnitude. See [23] for a discussion. However, (50) can be approximated using either
the well-known Stirling formula or the more accurate Ramanujan approximation [24]. The online
multinomial coefficient calculator [25] can evaluate multinomial coefficients for when all xi as well as

n are less than approximately 50 if any xi = 0 is removed from
( ∑n

i=1 xi

x1, . . . , xn

)
. Such deletions do not

affect the calculation since 0! = 1.
As a numerical example, consider a data sample x of size n = 34 from a Poisson random variable

X with θ = 3, where

x = (4, 7, 1, 3, 4, 2, 5, 0, 1, 2, 3, 6, 8, 0, 1, 2, 4, 9, 0, 2, 3, 1, 4, 2, 0, 1, 5, 6, 2, 7, 0, 1, 4, 2). (51)

Then, T1(x) =
n∑

i=1
xi = 102 from (51), and the calculator at [25] gives

( ∑n
i=1 xi

x1, . . . , xn

)
≈ 1.574× 10123 in (49)

and (50). Moreover, (log n)
n∑

i=1
xi = 518.915. Hence, from (50), Ilost(x |T 1) = Ilost(x

∣∣∣T′1) ≈ 109.667 bits.

This value corresponds to 13.708 bytes at 8 bits per byte or to 0.013 kilobytes (KB) at 1024 bytes
per KB. It follows from previous discussion in this example that the Shannon information lost by using
the sample mean T′1 as a surrogate for x itself is Ilost(x

∣∣∣T′1) = Ilost(x |T 1) ≈ 0.013 KB, which seems
surprisingly small. Perhaps the small loss results partially from the fact that T′1(x) = x = θ = 3 exactly.

Case 2: Let T2(X) = K(X|θ) for fixed but arbitrary θ > 0. For a data sample (x1, . . . , xn), write

L(x |θ ) = f(x |θ ) =
θ
∑n

i=1 xi e−nθ∏n
i=1 xi!

, (52)

from which

K(x|θ) = θ

n∑
i=1

xi
e−nθ (53)

and R(x) = 1∏n
i=1 xi!

in (4). Note that for all fixed θ > 0 except θ = 1, there is an obvious one-to-one

function between T1(x) =
n∑

i=1
xi and (53). Hence, from Case 1, Ilost(x |K (x|θ)) = Ilost(x |T 1) ≈ 0.013 KB

from Theorem 3 for all θ > 0 except θ = 1. For θ = 1, K(x|θ) = e−n from (53) and is constant with
respect to any data sample x. Thus, Ireduced(x|1, K ) = 0 and Ilost(x |K (x|1 )) = Itotal(x|1, K ). It follows
that K(x|1 ) provides no information about X.

Case 3: Let T3(X) = L(X |θ ) for fixed but arbitrary θ > 0. We attempt to obtain Ilost(x |L (x |θ )) for
a data sample x = (x1, . . . , xn) by determining

∣∣∣AL(x|θ)

∣∣∣ and using (20). From (52), note that for all
fixed θ > 0 except θ = 1, y ∈ AL(x|θ) if and only if

θ
∑n

i=1 yi∏n
i=1 yi!

=
θ
∑n

i=1 xi∏n
i=1 xi!

. (54)
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Thus, for any fixedθ satisfyingθ > 0 and θ , 1, y ∈ AL(x|θ) if both
n∑

i=1
yi =

n∑
i=1

xi and
n∏

i=1
yi! =

n∏
i=1

xi!.

However, for some θ > 0 and θ , 1, it is possible that y ∈ AL(x|θ) when neither
n∑

i=1
yi =

n∑
i=1

xi nor

n∏
i=1

yi! =
n∏

i=1
xi!. For example, let θ = 2, x = (4, 1, 1, 0), and y = (3, 2, 0, 0). Then,

n∑
i=1

xi = 6,
n∑

i=1
yi =5,

n∏
i=1

xi! = 24, and
n∏

i=1
yi! = 12. However, (54) is satisfied.

This complication suggests that an efficient implicit enumeration of the y satisfying (54) would
be required to obtain

∣∣∣AL(x|θ)

∣∣∣ for calculating Ilost(x |L (x |θ )) from (20). Using such an algorithm,
a conventional computer could possibly compute Ilost(x |L (x |θ )) for the numerical data and value of θ
in Case 1, since there is now a 250 petabyte, 200 petaflop conventional computer [26]. Substantially
larger problems, if not already tractable, will likely be so in the foreseeable future on quantum
computers. Recently, the milestone of quantum supremacy was achieved where the various possible
combinations of a certain randomly generated output were obtained in 110 s, whereas this task would
have taken the above conventional supercomputer 10,000 years [27]. Regardless, for the data of Case 1,
we have the upper bound Ilost(x |L (x |θ )) ≤ 0.013 KB from (32).

Finally, we present some simple computational results to illustrate the relationships among
T1, T2, T3 with regard to the Poisson distribution. Table 1 below summarizes the results for sample data

(x1, x2, x3) with
3∑

i=1
xi ≤ 2. In particular, a complete enumeration of AL(x|θ) in (20) gives Ilost(x |L (x |θ )).

Example 2 (Binomial Distribution). Consider a random sample X = (X1, . . . , Xn) from a binomial random
variable X withparameters m and θ, where θ is the probability of success on any of the m Bernoulli trials
associated with the Xi, i = 1, . . . , n. Let m be fixed, so the only parameter is θ. Moreover, the sample space of the
underlying random variable X is now finite.

Case 1: T1(X) =
n∑

i=1
Xi. Again,

n∑
i=1

Xi is an SS for θ. From [21],
n∑

i=1
Xi has a binomial distribution

with parameter θ for fixed nm. Hence,

Pθ

 n∑
i=1

Xi =
n∑

i=1

xi

 = θ

n∑
i=1

xi
θ

mn−
n∑

i=1
xi
(

mn∑n
i=1 xi

)
(55)

and

Pθ[X = x] = θ

n∑
i=1

xi
θ

mn−
n∑

i=1
xi

n∏
i=1

(
m
xi

)
. (56)

From (1), dividing (56) by (55) gives

P

X = x

∣∣∣∣∣∣∣
n∑

i=1

Xi = t

 =
∏n

i=1

(
m
xi

)
(

mn
t

) . (57)

By taking the − log of (57), the lost information is given as

Ilost(x |T 1) = − log

∏n
i=1

(
m
xi

)
(

mn
t

) = −
n∑

i=1

log
(

m
xi

)
+ log

(
mn

t

)
. (58)
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Case 2: T2(X) = K(X|θ). In this case, we use (16) as in Example 1. Write

L(x |θ ) = f(x |θ ) = θ

n∑
i=1

xi
(1− θ)

mn−
n∑

i=1
xi

n∏
i=1

(
m
xi

)
, (59)

from which K(x|θ) = θ

n∑
i=1

xi
(1− θ)

mn−
n∑

i=1
xi

and R(x) =
n∏

i=1

(
m
xi

)
in (4). To factor the right side of (60)

as in (2), let g be the identity function and h(x) =
n∏

i=1

(
m
xi

)
. Hence,

Ilost(x |T 2) = − log

∏n
i=1

(
m
xi

)
∑

y∈AK(x|θ)

∏n
i=1

(
m
yi

) , (60)

and (60) gives

Ilost(x |T 2) = −
n∑

i=1

log
(

m
xi

)
+ log

∑
y∈AK(x|θ)

n∏
i=1

(
m
yi

)
, (61)

where

AK(x|θ) =

y ∈ Sn
|θ

n∑
i=1

yi
(1− θ)

mn−
n∑

i=1
yi
= θ

n∑
i=1

xi
(1− θ)

mn−
n∑

i=1
xi

. (62)

From (62), for any fixed θ satisfying 0 < θ < 1 and θ , 1/2, it can easily be shown that y ∈ AK(x|θ)

if and only if
n∑

i=1
yi =

n∑
i=1

xi. Thus, in general, for a given x and fixed θ, determining AK(x|θ) in Case 2

would require an enumeration of the y satisfying (62) to compute (61). We perform such an enumeration
below for a simple example.

Case 3: T3(X) = L(X|θ). For a data sample x = (x1, . . . , xn), we now have

L(x |θ ) = (
θ

1− θ
)

n∑
i=1

xi
(1− θ)mn

n∏
i=1

(
m
xi

)
(63)

with g being the identity function and h(x) = 1 in (2). For fixed θ satisfying 0 < θ < 1 and θ , 1/2,
from (63) we obtain that y ∈ AL(x|θ) if and only if

(
θ

1− θ
)

n∑
i=1

yi
n∏

i=1

(
m
yi

)
= (

θ

1− θ
)

n∑
i=1

xi n∏
i=1

(
m
xi

)
. (64)

As in Case 3 of Example 1, developing an algorithm to use (64) and determine
∣∣∣AL(x|θ)

∣∣∣ for
calculating Ilost(x |L (x |θ )) from (20) is beyond the scope of this paper.

As a simple example, consider the experiment of flipping a possibly biased coin twice (m = 2).
The total number of heads follows a binomial distribution with the parameter θ, which is the probability
of getting a head on any flip. By doing this experiment three times, we generate the random variables
X1, X2, X3 with possible values 0, 1, 2. Table 2 shows all the possibilities and the lost information
for the statistics. The small size of this example allows the computation of Ilost in Cases 2 and 3 via
total enumeration.
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Table 2. Binomial Example.

x = (x1,x2,x3) T1(x) Ilost(x|T1) T2(x) Ilost(x|T2) T3(x) Ilost(x|T3)

(0,0,0) 0 0 (1− θ)6 0 (1− θ)6 0

(0,0,1)
1 log 3 (1 −

θ)5θ1 log 3 2(1− θ)5
θ1 log 3

(0,1,0)

(1,0,0)

(1,1,0)
2 log 15

4 (1− θ)4
θ2 log 15

4 4(1− θ)4
θ2 log 3

(1,0,1)

(0,1,1)

(2,0,0)
2 log 15 (1− θ)4

θ2 log 15 (1− θ)4
θ2 log 3

(0,2,0)

(0,0,2)

(1,1,1) 3 log 5
2 (1− θ)3

θ3 log 5
2 8(1− θ)3

θ3 0

(2,1,0)

3 log 10 (1− θ)3
θ3 log 10 2(1− θ)3

θ3 log 6
(2,0,1)

(1,0,2)

(1,2,0)

(0,1,2)

(0,2,1)

(2,1,1)
4 log 15

4 (1− θ)2
θ4 log 15

4 4(1− θ)2
θ4 log 3

(1,2,1)

(1,1,2)

(2,2,0)
4 log 15 (1− θ)2

θ4 log 15 (1− θ)2
θ4 log 3

(2,0,2)

(0,2,2)

(2,2,1)
5 log 3 (1− θ)1

θ5 log 3 2(1− θ)1
θ5 log 3

(2,1,2)

(1,2,2)

(2,2,2) 6 0 θ6 0 θ6 0

Now, using (40), we give in Table 3 the entropic losses of Example 2 for T1, T2, T3. Note that
Hlost(X, T) is the same for the sum T1 and the likelihood kernel T2, which are related by a one-to-one
function. Hence, Result 5 is corroborated. In addition, observe that Hlost(X, T) is smallest for the
likelihood function T3.

Table 3. Entropic loss over different statistics for a binomial distribution.

Hlost(X,T1) Hlost(X,T2) Hlost(X,T3)

1.4722 1.4722 1.2095

Example 3 (Geometric Distribution). Consider a random sample X = (X1, . . . , Xn) with sample data
x = (x1, . . . , xn) from a geometric random variable X, where the parameter θ is the probability of success on
any of the series of independent Bernoulli trials for which X is the trial number on which the first success is
obtained. It readily follows from [5] that
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P[X = x] = θn(1− θ)

n∑
i=1

xi−n
. (65)

Case 1: T1(X) =
n∑

i=1
Xi. For fixed n,

n∑
i=1

Xi has a negative binomial distribution with parameter

θ [21]. Hence,

P

 n∑
i=1

Xi =
n∑

i=1

xi

 = ( ∑n
i=1 xi − 1
n− 1

)
θn(1− θ)

n∑
i=1

xi−n
. (66)

Thus T1(X) =
n∑

i=1
Xi is an SS for θ since it satisfies (2) with g[T1(x) |θ ] = θn(1− θ)T1(x)−n and

h(x1, . . . , xn) =

( ∑n
i=1 xi − 1
n− 1

)
. Moreover, substitution of (65) and (66) into (8) gives

P

X = x|
n∑

i=1

Xi =
n∑

i=1

xi

 = 1( ∑n
i=1 xi − 1
n− 1

) . (67)

Then from (14) and (67) we obtain that

Ilost(x |T 1) = log
( ∑n

i=1 xi − 1
n− 1

)
. (68)

Case 2: T2(X) = K(X
∣∣∣θ) . From (66), for all x ∈ Sn,R(x) = 1 and

K(x |θ ) = L(x |θ ) =
(

θ

1− θ

)n
(1− θ)

n∑
i=1

xi
. (69)

Thus, for 0 < θ < 1, there is an obvious one-to-one function between T1(x) =
n∑

i=1
xi and

T2(x) = K(x |θ ) in (69). Thus, from Theorem 3, Ilost(x |T 2(x)) = Ilost(x |T 1) as given in (68).
Case 3: T3(X) = L(X

∣∣∣θ) . Since K(X |θ ) = L(X
∣∣∣θ) from (69), then

Ilost(x |T 3) = log
( ∑n

i=1 xi − 1
n− 1

)
(70)

from (68). However, there is an alternate derivation of (70). For 0 < θ < 1 it follows from (69) that then
y ∈ AL(x|θ) if and only if

n∑
i=1

yi =
n∑

i=1

xi. (71)

But for fixed positive integers x1, . . . , xn we have from [28] that the number of solutions
∣∣∣AL(x|θ)

∣∣∣ to (71)
in positive integers y1, . . . , yn is ( ∑n

i=1 xi − 1
n− 1

)
. (72)

Thus, (70) follows for L(X |θ ) from (72) and (20), so Ilost(x |T 1) = Ilost(x |T 2) = Ilost(x |T 3) from
Theorem 3.

As a numerical illustration, let the random variable X denote the number of flips of a possibly
biased coin until a head is obtained. Then, X has a geometric distribution, where the parameter θ is
now the probability of getting a head on any flip. Suppose this experiment is performed three times
yielding the sample data x = (x1, x2, x3) shown in Table 4. Ilost(x |T ) is then calculated for each of
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the sufficient statistics for θ of Example 3. Observe that the individual statistics depend on θ while
the lost information does not. Moreover, Ilost(x |T 1) = Ilost(x |T 2) = Ilost(x |T 3) for all data samples,
as established above.

Table 4. Geometric Example.

x = (x1,x2,x3) T1(x) Ilost(x|T1) T2(x) Ilost(x|T2) T3(x) Ilost(x|T3)

(1,1,1) 3 0 θ3 0 θ3 0

(2,1,1)
4 log 3 θ3(1− θ) log 3 θ3(1− θ) log 3

(1,2,1)

(1,1,2)

(2,2,1)
5 log 6 θ3(1− θ)2 log 6 θ3(1− θ)2 log 6

(2,1,2)

(1,2,2)

(2,2,2) 6 log 10 θ3(1− θ)3 log 10 θ3(1− θ)3 log 10

6. Conclusions

In this paper, the Shannon information obtained for a random sample X taken from a discrete
random variable X with a single parameter θ was decomposed into two components: (i) the reduced
information associated with the value of a real-valued statistic T(X) evaluated at the data sample x, and
(ii) the information lost by using this value as a surrogate for x. Information is lost because multiple
data sets can give the same value of the statistic. In data analysis, the data uniquely determines the
value of a statistic, but typically the value of the statistic does not uniquely determine the data yielding
it. The lost information thus measures the knowledge unavailable about the data sample x when only
the reduced data summary T(x) is known, but not x itself. To eliminate the effect of θ, we focused on
sufficient statistics for θ such as the sample mean. We then answered the question: how much Shannon
information is lost to someone about a data sample x when only the value of T(x) is available but not
the data x itself? Our answer is independent of the parameter θ and does not require that θ be known.
Our method generalizes the approach of [2] for analyzing the information contained in a sequence of
Bernoulli trials.

More generally, we developed a metric associated with the value T(x) used to summarize,
represent, or characterize a given data set. Our approach and results are significant because such
statistics are often communicated without the original data. One could argue that Ilost(x |T ) should be
communicated along with T(x) in a manner similar to providing the margin of error associated with
the results of a poll. A small Ilost(x |T ) would signify that T(x) is more informative than if Ilost(x |T )

were large.
In addition, we defined the entropic loss associated with a sufficient statistic T under consideration

as the expected lost information over all possible samples, to give a value dependent only on T.
We noted but did not explore the possibility that entropic loss could be used as a metric to compare
different sufficient statistics. Moreover, if sufficient statistics were not required, entropic loss could
provide metrics on either θ or T if the other of these variables is fixed. Finally, numerical examples of
our results were presented and some computational issues noted.
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