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Abstract: Camera-based data collection and image analysis are integral methods in many research
disciplines. However, few studies are specifically dedicated to trends in these methods or opportunities
for interdisciplinary learning. In this systematic literature review, we analyze published sources
(n = 391) to synthesize camera use patterns and image collection and analysis techniques across
research disciplines. We frame this inquiry with interdisciplinary learning theory to identify
cross-disciplinary approaches and guiding principles. Within this, we explicitly focus on trends
within and applicability to environmental conservation social science (ECSS). We suggest six
guiding principles for standardized, collaborative approaches to camera usage and image analysis
in research. Our analysis suggests that ECSS may offer inspiration for novel combinations of data
collection, standardization tactics, and detailed presentations of findings and limitations. ECSS can
correspondingly incorporate more image analysis tactics from other disciplines, especially in regard
to automated image coding of pertinent attributes.

Keywords: automated image coding; data collection methods; interdisciplinary learning theory;
research methods; systematic literature review; visitor use management

1. Introduction

Camera usage is a valuable research tool, particularly due to the breadth of data collection and
analysis facilitated by camera technology and related software [1]. In the discipline of environmental
conservation social science (ECSS), cameras and associated image data are frequent methods in
collecting information on human interactions with the environment [2,3]. Cameras are well suited
to examine ECSS concepts and contexts, as image data and associated analyses can be wide ranging
and capture similarly broad information. However, camera usage often requires careful attention to
detail, a substantial timeframe, and significant researcher involvement, indicating opportunity for
more efficient implementation.

Inspiration for more efficient implementation may come from any of the many disciplines that
use cameras, yet camera usage and image analysis as a general method has yet to be systematically
explored for cross-disciplinary insight and advancement. In this regard, the lens on camera methods
remains smudgy. Because lessons from within and beyond ECSS could aid ECSS researchers in better
employing camera methods, we present a systematic literature review of camera use and image

Data 2020, 5, 51; doi:10.3390/data5020051 www.mdpi.com/journal/data

http://www.mdpi.com/journal/data
http://www.mdpi.com
https://orcid.org/0000-0002-3462-2962
https://orcid.org/0000-0002-7992-6345
https://orcid.org/0000-0003-1597-2833
http://dx.doi.org/10.3390/data5020051
http://www.mdpi.com/journal/data
https://www.mdpi.com/2306-5729/5/2/51?type=check_update&version=2


Data 2020, 5, 51 2 of 19

analysis, framed by the theory of interdisciplinary learning, to examine trends and extract guiding
principles for ECSS researchers.

2. Interdisciplinary Learning

There are substantial research benefits to looking beyond a particular discipline for context,
inspiration, and new advancements [4]. Examining cross-disciplinary approaches can advance
discipline-specific methods by identifying both singular methods and combinations of them applicable
to new contexts.

Interdisciplinary learning provides a framework for understanding how and why
cross-disciplinary knowledge can benefit a particular discipline [5,6]. The theory of interdisciplinary
learning states that combining similar aspects of differing disciplines to reflect ideas and approaches
both known and novel to a context is beneficial and effective for promoting rigorous intradisciplinary
advancements [6].

Many studies have examined the benefit of looking beyond a particular discipline for context
inspiration and new advancements [7–9]. Fewer have examined methods transferability across disciplines,
though ones that have done so have been transformative. One example is the work of Alden, Laxton,
Patzer, and Howard [10] on incorporating marketing methods into scientific research to better enact
scientific policy advancement. Even fewer have examined camera methods in a cross-disciplinary
or interdisciplinary manner, suggesting an area for further development. In ECSS in particular,
interdisciplinary knowledge about camera methods remain rather underdeveloped outside of the
general references to wildlife cameras being adapted and applied in visitor use management studies [11].
Therefore, we focus on synthesizing camera methods (data collection and resulting image analysis
techniques) beyond wildlife and fisheries studies across disciplines to foster interdisciplinary learning
in ECSS.

3. Camera Usage as a Research Method

Many types of cameras are used in research, such as handheld digital, field mounted, infrared,
underwater, LAN-based, CCTV security, motion-sensing, airplane-affixed, and satellite-based
cameras [12]. Analysis methods are correspondingly diverse, including manual coding, digital
coding, automated coding, feature detection, and time-lapse sequencing, depending on the research
aim [1]. There has been an increasing reliance on camera use as a research method in disciplines
including natural, social, and technology sciences [1]. Two themes of camera usage are prominent
across the literature: methodological similarities and differences across disciplines and time periods.

3.1. Methods Are Discipline Specific and Discipline Transcending

Camera-related research has both discipline-specific and discipline-transcending methodologies.
Specifically, while certain methods are considered reliable practices solely in a particular discipline,
others are considered reliable practices (with context-specific modifications) across several disciplines.
For example, marine geological research uses boat-mounted cameras to map seafloor features, but other
disciplines rarely report using these cameras [13]. However, the remote-sensing camera method of
LiDAR is a major component of many environmental subdisciplines, such as agriculture, land use,
and climate change research [14].

Discipline-transcending camera methods are typically those that have a longer history of use (an
indicator of their reliability), are able to function alongside newer technologies, and are amenable to
adaptations for specific contexts and questions [15]. Within ECSS, camera methods are both discipline
specific and discipline transcending [15,16]. For example, participant-worn cameras to examine
park-based recreation are unique to ECSS but camouflaging field cameras to examine park use has
been adapted from other disciplines [15,17,18]. Indeed, many applications of camera methods in ECSS
were originally adapted from studies centered on studying wildlife and other non-human animals [19].
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3.2. Methods Have Evolved in Diversity and Complexity

Cameras have evolved from centering on large equipment with film and hardcopy photographs
into small devices capable of digital images accessible by many computer-based interfaces [20]. As with
other technological advancements, the shift in cameras from manual to automated processes and related
capability to digitally capture, edit/enhance, and analyze images has increased the utility of cameras to
research [20,21]. Manual coding involves someone examining the image data and assigning codes
to attributes of interest, whereas automated coding uses analysis software and artificial intelligence
to code these attributes [22]. YOLO: Real-time Object Detection [23], WUEPIX [24], and Amazon
Rekognition [25] are a few examples of automated image analysis software.

Advancements in technology have had a noticeable impact on how cameras are used in
research [20,26]. Early camera usage in research focused on providing visuals to complement evidence
described in text format and not necessarily derived from the visual itself [27]. In recent decades,
camera usage has shifted to become a method itself [26]. Pre-1995, camera methods focused on
film [28] and manual coding [29]. Post-1995, the emphasis has shifted to digital images and automated
coding [21], as well as a proliferation of the types of cameras used (e.g., satellite, surveillance). Recent
advancements in computer technologies, such as cellular and satellite technologies, and automated
image analysis software have further extended the utility of cameras from a research method in small
case studies to a tool for big data investigations [30].

4. Research Questions

Despite the numerous research publications showcasing the diversity and complexity of camera
methods, and the method’s future applicability, there has not been a synthesis of this breadth and its
evolution to document patterns of novelty and commonality [31] to facilitate interdisciplinary learning
broadly or in ECSS in particular. It appears that inquiry into the subject has focused on a subset of the
broad methodology, such as reviewing techniques within facial recognition [32] or remote sensing [33],
analyses based on neural network segmentations [34] or classification systems [35], or medical database
retrieval accuracy for image data [36]. A review across techniques, analyses, and disciplines appears to
be lacking. We address this general need for camera method interdisciplinary learning and devote
particular attention to ECSS by focusing on four primary questions:

1. In what contexts have cameras been used in general?
2. In what contexts have cameras been used in ECSS?
3. What are common image collection techniques for image data?
4. What are common analysis techniques for image data?

In synthesizing general and ECSS-specific patterns, we aim to draw conclusions for interdisciplinary
learning and related recommendations [37,38].

5. Materials and Methods

We performed a systematic literature review [39], examining studies that used camera methods and
image analysis. Our review conformed to PRISMA guidelines [40], modified slightly for study-specific
aims (Figure 1). PRISMA guidelines list standard and transparent steps in the harvesting, analyzing,
and reporting of data. We followed all steps for the harvesting of data (Figure 1) and reporting on all
section/topics in the PRISMA checklist [40]. Modifications to the PRISMA process were in the analyzing
of these specific data, as we qualitatively coded a variety of sources and some features of PRISMA’s
primarily quantitative evaluations of randomized trials did not directly apply to this particular context
or framing (e.g., source bias, meta-regressions). This methodology yielded thousands of documents
that were systematically sifted to create a subset of documents relevant to our research questions.

The author team defined keyword criteria for inclusion. After gaining general content familiarity
through searches for publications, we refined the inquiry to four primary search terms using Boolean
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operators: “camera*” AND “image*” AND “image analysis*” AND “image data*”. To filter the general
results from this first broad search, we conducted a series of 15 additional searches, each with an added
keyword phrase to these four primary search terms, to focus the inquiry. The additional keyword
phrases (e.g., common image analysis software platforms) and key terms related to ECSS used in
conjunction with these four primary search terms were “Amazon Rekognition*”, “activit*”, “artificial
intelligence*”, “attribute*”, “cod*” [for coding-related terms], “distribution*”, “Google Vision”, “park”,
“protected area*”, “recreation*”, “timelapse*”, “use level*”, “visitor*”, “Wuepix*”, and “YOLO*”.

After an initial query into the utility of multiple databases, three were selected: Agricola, Google
Scholar, and Web of Science (Figure 1). These databases were purposefully selected to capture a
breadth of sources from peer-reviewed journals to theses/dissertations to management reports. We then
conducted the final literature search from November 2018 to January 2019.

Exclusion criteria were used to capture the breadth of sources and disciplines but retain parameters.
An overarching exclusion criterion was wildlife and fisheries discipline sources, as the high volume
of sources pertaining to camera traps in that discipline would have otherwise overshadowed the
sources pertaining to camera and image data in other disciplines. Furthermore, because cameras are a
well-established methodology in wildlife and fisheries, reviews of these techniques have already been
published [38,41–44]. Therefore, so as to not take away from the ECSS focus of this literature review,
102 sources screened but relating to wildlife and fisheries research were excluded from the final dataset.
Relatedly, we did not include “camera trap” or other wildlife-specific terminology in our search terms.
Beyond this general criterion, three additional exclusion criteria filtered the results from the remaining
relevant sources. Sources must be: (1) published in peer-reviewed journals, as theses/dissertations,
as conference proceedings, or as technical reports; (2) written in English; and (3) available to the
researchers via full-text online or through Interlibrary Loan.

The assessment of relevance detailed in Figure 1 refined the thousands of sources for study
inclusion to 391 (see Supplementary Materials). First, the title and abstract (or similar information
if an abstract was not provided) of 3318 keyword search results were examined for initial relevance
(i.e., does the title/abstract actually discuss issues germane to the keyword search?). A subset of the
author team methodically assessed which specific search terms and related phrasings best fit the scope
of the sources, determined the categorization of these sources, and employed consistent practices to
systematically assess relevance. Three criteria characterized this process for potential inclusion at
this stage: 1. each source had to mention both camera use in research and a corresponding image
analysis in its title and/or abstract; 2. each source had to describe research from an image dataset (i.e.,
no reviews or syntheses); and 3. each source had to consist of more than just a title and abstract (i.e.,
an actual source had to accompany the title/abstract). The majority of the sources returned via the
keyword searches did not contain all three of these characteristics (e.g., camera usage was merely a
subsection of a certain procedure outlined rather than a detailed explanation regarding the collection
and processing of camera data) and thus were excluded.

This first phase, plus removing duplicates, reduced the relevant sources to 655 for potential
inclusion. In the second phase, these sources were downloaded and read in full. The author team
divided reading these sources, assessing their relevance, and, if relevant, entering them into the
study database. Intercoder reliability measures were employed to minimize discrepancies among
data entries [45], with two members of the author team acting as the primary and secondary data
enterers, respectfully, and performing checks on the others’ work. This approach helped increase
standardization and decrease individual bias, ensuring that each coder was following a substantially
similar approach to entering sources into the database and eliminating non-relevant ones. It did not
fundamentally alter the number of sources inputted, but rather the consistent quality of metadata
entered about each source. Upon full review, 391 sources (62%) were deemed relevant and entered
in the study database. This database captured source metadata (e.g., citation information), camera(s)
details used in the research, image analysis technique(s), key study findings related to the topic, and key
study findings related to camera use and image analysis. The 264 sources omitted as irrelevant were
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excluded mainly because they only made tangential reference to cameras and their application, rather
than as a method for the study itself.

Following the team’s entry of the 391 relevant references into the database, the resulting dataset
was coded and analyzed. This analysis was led by the primary and secondary data enterers, as they
were most familiar with the data corpus, with assistance from the full team. Six attributes of database
entries were qualitatively coded into key themes within each attribute [45]: research discipline, country
and continent of study, camera type, camera placement, data collection method, and data analysis
method. Other database categories (e.g., publication year, number of image attributes examined) lent
themselves to purely quantitative analysis. Descriptive statistics were generated and comprise most of
our analysis.

The Supplementary Materials accompanying this manuscript lists the 391 sources analyzed in
this systematic literature review, including their citation information and permanent access links (e.g.,
DOI). Each source has a unique ID: S (for “source”) 001–391. Hereon, we reference examples of sources
by their unique IDs. This format highlights examples across the breadth of this large dataset while
constraining superfluous in-text citations. We encourage readers to examine the supplementary file for
citation information for a particular example or across the entire corpus of sources.
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6. Results

6.1. Contexts of Camera Use in General

Cameras have been used and discussed in a variety of contexts: research disciplines, years,
and continents (Table 1). The majority of the sources (74%) were peer-reviewed articles, followed
by dissertations and theses (20%), reports (5%), and conference proceedings (1%). Fifteen general
research disciplines were apparent, which are used as our main grouping criteria throughout this
study (Table 1). The four most prevalent were ECSS (21% of the sources), Engineering and Technology
(15%), Agriculture (11%), and Computer Science/Programming (10%). The other 11 each accounted for
<6% of the publications (Table 1). Examples of the more prevalent disciplines include an ECSS study
that used images from drones in England and Portugal to classify sections of protected areas by main
use (e.g., wildlife habitat, ecotourism, law enforcement) (S203) and an Engineering and Technology
study also using drones, but to test image quality software and facial recognition technology at varying
distances and lighting conditions (S140).

Camera use in research has increased substantially in the past 25 years. Publication distribution
over time (Figure 2) depicts this increase, especially in the past 10 years for ECSS, Engineering and
Technology, Agriculture, and Computer Science/Programming.

The locations for these studies span countries on six continents and some international
collaborations (Table 1). Study locations across research disciplines were most common in North
America (37%), particularly in the USA, followed by Europe (22%), Asia (19%), Australia and Oceania
(6%), multinational/cross-continental (4%), South America (4%), and Africa (3%).

Most of the sources (77%) focused on a sole attribute (e.g., counts or percentage cover of a
particular species or landscape formation, detection/recognition of human faces or a particular person).
The remainder focused on two (17%), three (2%), 4–10 (3%), or >10 (1%) attributes. The studies that
examined 2–10 attributes focused mainly on presence/absence or percent cover of these attributes
(e.g., categories of ecosystem services, frequency of chemical compositions). The five publications that
focused on >10 attributes mostly concerned different vegetation or land use classes. Although almost
all publications listed the year(s) in which these attributes were collected, only 25% listed specific
sampling times. These were mainly those in Botany/Plant Science examining vegetation with seasonal
foliage (e.g., S199) and those in ECSS examining peak visitor use times (e.g., S239, S362). The number
of attributes considered in camera-based studies is an important measure given the opportunities
and challenges associated with analysis strategies. The more attributes to characterize in an image,
the more difficult and time-consuming analysis becomes, whether manual or automated.
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Table 1. Source metrics by research discipline, source type, year published, and continent of study. Cells are listed as valid percentages (%) of the total sources for each
research discipline.

Agriculture Biology/
Microbiology

Botany/
Plant

Science

Computer
Science/

Programming

Engineering
and

Technology

Environmental
Biophysical

Sciences

Environmental
Conservation

Social
Science

Food
Science Forestry Geography Marine

Science

Medicine/
Health
Science

Other * Psychology Urban
Studies Total

Source Type
Article 96 100 84 58 68 69 72 100 80 32 40 79 89 100 60 75

Conference
Proceedings 0 0 0 0 0 0 4 0 0 0 0 0 0 0 20 1

Dissertation/Thesis 2 0 11 33 24 19 24 0 16 68 20 11 5 0 20 19
Report 2 0 5 10 8 12 0 0 4 0 40 11 5 0 0 5

Year
1985–1989 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0
1990–1994 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1995–1999 2 0 5 0 2 4 1 0 12 0 0 0 0 0 0 2
2000–2004 5 0 11 3 0 4 5 0 16 11 20 0 5 0 0 5
2005–2009 14 88 21 8 20 27 10 36 24 32 0 32 0 17 0 19
2010–2014 39 0 37 0 3 23 27 14 20 37 0 21 26 33 40 21
2015–2019 41 13 26 90 75 42 57 50 28 21 80 37 68 50 60 53
Continent

Africa 0 0 0 8 0 4 7 0 0 0 0 0 0 0 0 3
Asia 11 0 26 25 34 12 15 21 32 16 20 16 11 0 20 18

Australia/Oceania 4 0 11 0 8 8 11 7 4 0 20 5 5 0 0 7
Europe 33 38 11 28 22 19 22 7 24 5 0 21 32 17 0 21

North America 18 63 37 38 32 50 32 29 36 74 20 53 26 67 80 37
South America 7 0 0 0 2 0 5 36 0 0 0 0 5 0 0 4
International 7 0 0 3 0 4 7 0 0 5 40 0 5 17 0 4

Not Mentioned 20 0 16 0 2 4 1 0 4 0 0 5 16 0 0 5

* Other are research disciplines with ≤3 sources: Architecture, Astronomy, Chemistry, Climatology, Communications, Construction Science, Criminal Justice, Education, Graphic Design,
Marketing, and Textiles
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6.2. Contexts of Camera Use in ECSS

Environmental conservation social science sources were the most numerous by a few different
metrics. They were the most frequently represented across articles, conference proceedings,
and dissertations/theses (Table 1). The production rate of these publications has been pronounced,
especially in the last decade (Figure 2). For example, ECSS publications comprised 31% of the total
sources included from 2010–2014 and 23% since 2015. Of the 15 research disciplines represented,
ECSS was the only one to have publications concerning all six continents (Antarctica had no studies),
as well as international/multinational domains. It was also the most numerous across each continent
and context, except in South America where Food Science had one more publication. Almost a quarter
(23%) of all the ECSS publications focused on studies in the USA.

Categorical codes were applied to attributes within ECSS studies, to examine the major areas within
ECSS that are using camera image analysis. Ten categories emerged: park visitor use management
(24%), human–wildlife interactions (22%), recreation ecology (17%), general tourism (9%), public
participatory GIS-PPGIS (6%), recreational behavior (6%), sports tourism (including extractive sports,
e.g., hunting, fishing) (6%), urban tourism (6%), climate change (2%), and environmental education
(1%). Because ECSS is an inherently applied science, all of the categories also encompass a “planning”
aspect for managerial use (e.g., park managers, urban planners).

6.3. Common Data Collection Techniques

Almost all, 97% (n = 380), of the sources stated at least a general camera type (e.g., webcam,
two thermal cameras) and 49% of these detailed the specific camera make and model. For ECSS
publications in particular, 41% specified a camera make and model.

Words used to describe the quality of the images obtained in each study were indifferent to
positive (e.g., fair, average, decent, good, great, precise, high resolution), with 11% (n = 42) of those
with a description of image quality forgoing an adjective in favor of listing the pixel resolution.
ECSS publications were more apt to describe variability in the images. Whereas this was mostly absent
from descriptions in other disciplines, 16% of the ECSS sources with a description noted fuzziness,
shakiness, weather-related clarity issues, or, in the case of participatory research, variability according
to the user (e.g., S022, S148, S367).

Data were collected through a variety of camera placement techniques. Most of the publications,
92% (n = 361), mentioned the primary camera placement technique in their methods: mounted to
outdoor fixed location (32%), indoor lab equipment (20%), aircraft/drones (18%), computer (9%),
satellite (6%), participatory (participant used in-person or online) (5%), wearable (researcher worn)
(5%), watercraft (2%), or vehicle (2%). Of the 80 ECSS publications listing the primary camera placement,
60% were in outdoor fixed locations and 19% used aerial imagery. The aerial imagery for ECSS was
mainly obtained through drones (e.g., S137, S160), whereas aerial imagery across the whole dataset
was mainly obtained from aircraft-affixed cameras (e.g., S019, S065, S096, S255). ECSS also had the
most sources using participant-worn cameras (e.g., S082, S120, S345, S348).

While all placement techniques have generally increased over the past 25 years (Figure 3), increases
over the past 10 years are especially pronounced for outdoor fixed, aircraft/drones, and computer
mounted techniques. In some cases, data from multiple scales and placements were used. For example,
aerial or satellite imagery was paired with ground-truthed transect line images to examine: leafy spurge
in wildland areas (S040), proportions of live versus burned or cut vegetation across the western USA
(S146), and sources of impact (including recreation) to coral reefs in a marine protected area (S253).
Although many camera placement technique usage rates still occupy a relatively small proportion, the
general trend is that placement technique diversity is growing, with multiple data collection formats
represented. ECSS sources illustrate this trend (Figure 4), with diversity increasing over the past
decade even without indoor lab equipment or vehicle placement techniques represented.

The majority (78%; n = 304) of sources contained at least one recommendation related to
camera-based data collection. Across disciplines, the most common recommendations concerned best
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practices for using digital cameras when researchers were using fixed/mounted cameras (46%), with a
specific recommendation to standardize distance between the camera and object/phenomenon of interest
being paramount. Beyond this, specific camera features were noted. For example, an Engineering and
Technology paper on combustion behaviors in a coal furnace found that quality high-speed camera
features were crucial (S185). The second and third most common recommendations also concerned
digital cameras, but specifically those in fixed locations that took automated images outdoors publicly
(12%) and covertly (9%), respectfully. Recommendations for publicly located fixed cameras were
present in 11 disciplines, indicating interdisciplinary salience, whereas recommendations for covertly
located fixed cameras were only present in six disciplines and were especially concentrated (61%) in
ECSS. Common examples of recommendations for publicly located cameras included having capacity
for nighttime and infrared image capture (e.g., S226, S307), considering the stability of the mount’s
substrate (e.g., S237, S271), and embedding metadata including GPS location into each image captured
(e.g., S018).

An observed pattern in key recommendations by discipline is that some disciplines are highly
specialized in a subset of particular camera data collection methods whereas others are more dispersed.
We coded 46 different types of camera data collection recommendations. ECSS and Engineering
and Technology addressed at least half of these types. At the other end, Biology/Microbiology,
Geography, Psychology, Marine Science, and Urban Studies had sources addressing <20% of these
types. We collapsed these 46 types into six overarching categories: fixed/mounted (14 methods;
211 sources), held/worn (7 methods; 78 sources), alternate/modified image capture (8 methods;
42 sources), moving (9 methods; 91 sources), multiple (3 methods; 8 sources), and security/surveillance
(5 methods; 37 sources) (Table 2). As the distribution in each category suggests, some data collection
methods (e.g., multiple cameras) have many recommendations centralized on a few techniques and
others (e.g., fixed/mounted cameras) have more dispersed recommendations across many techniques.
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Table 2. Source metrics by camera placement method and data collection and analysis recommendations. Cells are listed as valid percentages (%) of the total sources
for each research discipline.

Agriculture Biology/
Microbiology

Botany/
Plant

Science

Computer
Science/

Programming

Engineering
and

Technology

Environmental
Biophysical

Sciences

Environmental
Conservation
Social Science

Food
Science Forestry Geography Marine

Science

Medicine/
Health
Science

Other * Psychology Urban
Studies Total

Camera Placement
Aircraft 38 13 27 5 16 21 19 14 29 38 0 0 12 0 0 18

Computer 3 0 7 25 23 8 3 7 0 0 0 6 6 0 0 8
Indoor lab
equipment 16 75 33 13 30 4 0 43 14 0 0 78 35 33 0 20

Outdoor fixed 38 13 33 35 14 29 60 29 48 6 50 0 12 17 0 34
Participatory 0 0 0 15 2 8 5 0 5 0 0 0 18 17 25 5

Satellite 0 0 0 0 2 21 3 0 5 56 25 0 6 0 75 6
Vehicle 3 0 0 5 7 4 0 0 0 0 0 6 0 0 0 2

Watercraft 0 0 0 0 0 4 6 0 0 0 25 0 0 0 0 2
Wearable 3 0 0 3 7 0 5 7 0 0 0 11 12 33 0 4

Camera Data Collection Recommendations
Alternate/Modified 6 21 19 2 14 3 5 29 11 8 0 8 10 0 0 9

Fixed/Mounted 45 57 48 59 36 43 50 43 36 23 67 50 29 60 0 46
Held/Worn 6 14 5 17 26 13 15 19 18 0 0 19 33 20 0 17

Moving 27 0 14 7 17 33 22 10 29 69 33 8 14 0 100 19
Multiple 3 0 5 2 0 0 2 0 4 0 0 4 5 0 0 2

Security/Surveillance 12 7 10 14 7 7 6 0 4 0 0 12 10 20 0 7
Camera Data Analysis Recommendations

Automated 22 0 0 55 55 0 10 29 17 57 33 25 29 50 0 32
Geospatial 22 0 33 5 9 50 27 0 33 43 67 0 0 0 71 20

LiDAR 11 0 0 5 0 0 3 0 0 0 0 0 0 0 0 3
Manual 22 0 33 10 18 50 50 57 33 0 0 75 29 50 14 29

Mixed methods 22 0 33 25 18 0 10 14 17 0 0 0 43 0 14 16

* Other are research disciplines with ≤3 sources: Architecture, Astronomy, Chemistry, Climatology, Communications, Construction Science, Criminal Justice, Education, Graphic Design,
Marketing, and Textiles.
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6.4. Common Image Analysis Techniques

Only 142 sources (36%) offered data analysis recommendations (Table 2). We coded these
recommendations into 44 different analysis procedures, grouped within five more general categories:
automated (23 techniques; 46 sources), geospatial (2 techniques; 29 sources), LiDAR (1 technique;
3 sources), manual (12 techniques; 41 sources), and mixed-methods (6 techniques; 23 sources) analyses.
Automated techniques included analyses with customizable software such as YOLO, Google Vision,
Amazon Rekognition, and eCognition. An example of this is combining a new method of active
learning in YOLO with an incremental learning scheme to accurately code vehicle-mounted video
camera images (S185). Geospatial techniques focused on particular spatial data attributes, such as
types and resolutions of satellite imagery that adequately captured forested, urban, and benthic
features (e.g., S014, S035, S129). LiDAR highlights the utility of remote sensing in monitoring long-term
impacts of natural processes like the time-lapsed mapping of vegetation growth in forest habitats using
LiDAR surveying methods (S280). Manual analysis was concentrated in the labor-intensive process of
human coding of primary and secondary (e.g., social media images) data. Although labor-intensive,
many sources cited the increased accuracy of the manual coding as preferable over current, accessible
automated techniques (e.g., S130, S351) and some offered novel ways for coding large datasets, such as
utilizing citizen scientists (e.g., S335). Finally, mixed-methods analyses combined automated and
manual techniques, a “human-in-the-loop” approach, to validate automated methods with a sample of
human-coded images from the same dataset. A common example used human-in-the-loop approaches
to test whether facial recognition software could accurately recognize people, human features, and/or
emotions (e.g., S024, S113, S162, S275, S349). As the distribution of techniques and sources across
categories implies, some analysis techniques (e.g., geospatial) have many recommendations centralized
on a few procedures and others (e.g., automated) are more dispersed across procedures.

The majority of disciplines exhibited concentration of analyses within particular methods.
Ten disciplines had at least half of their sources within one category of analysis. Medicine/Health
Science was most concentrated, with 75% of its recommendations concerning manual analysis. Many
disciplines were concentrated within two analysis categories: Environmental Biophysical Sciences
(50% geospatial, 50% manual), Geography (57% automated, 43% geospatial), Marine Science (33%
automated, 67% geospatial), Medicine/Health Science (25% automated, 75% manual), and Psychology
(50% automated, 50% manual). Agriculture, Computer Science/Programming, and ECSS had all five
analysis categories represented. In ECSS, half of the sources had manual coding recommendations
(relatively high for the dataset) and only 10% had automated coding recommendations (relatively low
for the dataset).

7. Discussion

Our systematic review indicates an increase in the use of camera methods over the past
20 years, and a related proliferation in types of image analyses. However, camera data collection
and image analysis techniques have largely developed within disciplines, limiting the ability for
collaboration and interdisciplinary learning. Framed by interdisciplinary learning theory, the following
synthesizes patterns in camera usage and image analysis, as well as overall best practices and
ECSS-specific recommendations.

Although discipline and study-specific contexts will require adaptations, standardized data
collection methods and automated analyses can assist in interdisciplinary learning. Technological
advancements have facilitated increased camera use and complexity of analyses. Manual coding is
more time consuming but requires less sophisticated knowledge of complex software and computer
scripts. Several disciplines are utilizing automated analyses and researchers in these disciplines could
provide cross-disciplinary guidance for further usage of these analyses. As ECSS uses camera-based
data collection but rarely uses automated analysis methods, this discipline in particular could benefit
from interdisciplinary collaborations on types of automation and relative benefits and costs.
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8. Camera Usage

Few sources make recommendations about camera usage. Those that do tend to focus on
standardization techniques for manually taken images. Beyond this specific type of recommendation,
our review suggests three areas for best practices: (1) harness the capability of digital datasets to
examine multiple locations and attributes, which may be across disciplines; (2) be intentional and
specific about documenting study and camera details for other researchers; and (3) examine camera
research outside of your own discipline for inspiration.

Although the purposes for image use and study contexts vary across and within disciplines,
studies tended to focus on a single attribute obtained from outdoor mounted cameras and in locations
concentrated in Europe and North America. Within ECSS, studies most commonly focused on park
visitor use management, human–wildlife interactions, and recreation ecology. These patterns suggest
an opportunity to expand in geographic settings and to harness automated analysis methods to
code beyond a sole attribute. LiDAR and satellite-based camera technology have gained prominence
and may offer a means to collect data from more locations without the associated researcher costs
of geographic expansions. These techniques also suggest opportunity for researchers in different
disciplines to share a common dataset while focusing on attributes of discipline-specific interest.
For example, satellite-based image data covering a designated cultural landscape could provide
information pertinent to Agriculture and ECSS.

Camera usage should be detailed further to enhance replicability. This could be through additions
as simple as stating the specific camera model used and specific data collection timeframe. Metadata
could detail image quality beyond simple adjectives, so that other researchers could assess method
utility to their contexts. Few papers detailed specific image quality aspects, indicating that a baseline
for comparison across camera types might be warranted for standardization (e.g., defined scales
and notations).

Some disciplines are more specialist, and some are more generalist. This provides an opportunity
to examine novel designs. For example, although ECSS uses the largest diversity of camera placement
methods, these tend to be concentrated in fixed and mounted designs. Other disciplines may offer
inspiration for using other combinations of methods and placements. Differential LiDAR use across
disciplines provides a specific instance of interdisciplinary learning for ECSS. LiDAR is mostly applied
in large landscape contexts to classify vegetation growth for natural resources and agricultural studies.
Although ECSS has the fastest growth rate of camera method use compared to other disciplines
(Figure 2), it has yet to incorporate LiDAR. To date, ECSS largely uses cameras for counting attributes
within an image (e.g., visitors, vehicles, boats) to understand types and frequencies of human
behaviors in an environment. ECSS also uses cameras to understand place-based experiences through
participatory camera methods. Both applications tend to occur on the site, rather than landscape, scale.
Sub-disciplines within ECSS, such as recreation ecology, might benefit from using LiDAR to detect
landscape level differences in ground cover over recreational uses and longer temporal scales.

9. Image Analysis

Sources used a range of image analysis techniques within automated, geospatial, manual, LiDAR,
and mixed methods but only approximately one-third (35%) offered recommendations for image
analysis. We offer three fundamental practices for researchers to enhance interdisciplinary learning
opportunities: (1) list and provide critical analysis of image analysis methods; (2) examine image
analysis techniques beyond those typically utilized in a particular discipline; and (3) standardize
guidelines for certain analysis techniques, particularly ones that are discipline specific but may have
applicability across disciplines.

Disciplines favor particular categories of image analysis. This concentration implies disciplinary
expertise but also areas for more creative interdisciplinary insight. Several disciplines continue to
rely on manual coding techniques (e.g., ECSS, Medicine/Healthcare), while others have developed
automated processes (e.g., Agriculture). This discrepancy reflects a lack of interdisciplinary sharing
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and but also a necessary emphasis on case study approaches. For example, many ECSS studies that
use outdoor fixed cameras to estimate visitor use would benefit from automated analyses of image
attributes across these large datasets, while other ECSS studies that use participant-worn cameras
to gain in-depth visitor experience information would be better off manually coding their images.
Although these differences depend on the study purpose and approach, software to facilitate automated
coding and guidelines for manual coding of image data are both needed.

Just as multiple disciplines have benefited from guidelines for qualitative data coding and
statistical analysis software use, guidelines for both manual and automated image coding would
provide interdisciplinary standards and efficiencies. ECSS is still primarily dependent on manual
coding. Although there have been attempts within ECSS to codify guidelines for manual image
coding [46,47], these sources have yet to be cited regularly within ECSS or at all in other disciplines.
Examining methods of automated image analysis and forming partnerships with those who have
employed such methods or understand the technology behind them could open up further relevant
inquiries on ECSS image datasets. The diversity of automated analysis techniques captured in this
study suggests another area for interdisciplinary collaboration, guidelines development, and standards
definition, so that researchers can more easily recognize which techniques are best suited for study
purposes. This again underscores the importance of interdisciplinary learning, where examining
multiple means of image analysis may lend creative insight into how one discipline could learn
techniques from another.

10. Limitations

Keyword searches were crafted by this team of ECSS researchers and criteria for source inclusion in
this review may reflect biases that would not be apparent if conducted by other researchers. However,
we took steps to minimize subjectivity such as using an established method for systematic literature
reviews and validating reliability among the research team. Discipline-specific camera usage and
analysis jargon and knowledge may have been inadvertently omitted on account of the ECSS researchers’
unfamiliarity with these technical terms and thus led to an underrepresentation of particular areas in
our findings. Again, we have attempted to lessen this concern through a standardized keyword search
using basic, non-technical terms that transcend disciplines and by examining sources for multiple
points of relevance.

11. Future Research

The findings of this review highlight four pertinent avenues of future research in general and
within ECSS. First, a streamlined method for calculating and reporting the distance between a camera
and the attributes of interest would be an interdisciplinary contribution to standardization. Second,
ECSS researchers using cameras in studies could test the applicability of LiDAR to questions and
contexts within the ECSS discipline. Third, a review of analysis strategies for images posted on online
platforms (e.g., social media) could also be conducted and more reliable analysis strategies, particularly
the development of a program that would reduce the burden of manual analysis and allow for more
images to be included in the analysis, could be developed. Thus far, studies centered on social media
images mostly involved geo-tagged images or captions rather than actual image content. Fourth,
participant-generated image data should be examined independently, as this data collection technique
is uniquely and intentionally less under researcher control.

12. Conclusions

This study assessed a large dataset of sources for enhanced methods pertaining to camera usage
and image analysis in general and in ECSS in particular. Using a systematic literature review and
interdisciplinary learning theory, this study identified areas of disparity and areas for enhanced
collaboration. Six best practices for camera usage and image analysis emerged: examining multiple
attributes/phenomena, being intentionally specific in documenting camera details and placement,
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sourcing methods beyond a specific discipline for novel approaches, critiquing image analysis methods
used, examining possibilities for interdisciplinary analysis techniques, and standardizing analysis
methods at least within disciplines. The ECSS focus of the study revealed that the discipline is well
positioned to be a center of standardization in some regards (e.g., manual coding guidelines) but could
benefit from interdisciplinary collaborations (e.g., use of LiDAR). This review provides a snapshot of
the wide lens of camera-based methods in research and underscores the need for assessing the diversity
of this method, especially as it continues to diversify and proliferate across disciplines and contexts.
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