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Abstract: Hydrologic soil groups play an important role in the determination of surface runoff,
which, in turn, is crucial for soil and water conservation efforts. Traditionally, placement of soil
into appropriate hydrologic groups is based on the judgement of soil scientists, primarily relying on
their interpretation of guidelines published by regional or national agencies. As a result, large-scale
mapping of hydrologic soil groups results in widespread inconsistencies and inaccuracies. This paper
presents an application of machine learning for classification of soil into hydrologic groups. Based on
features such as percentages of sand, silt and clay, and the value of saturated hydraulic conductivity,
machine learning models were trained to classify soil into four hydrologic groups. The results of the
classification obtained using algorithms such as k-Nearest Neighbors, Support Vector Machine with
Gaussian Kernel, Decision Trees, Classification Bagged Ensembles and TreeBagger (Random Forest)
were compared to those obtained using estimation based on soil texture. The performance of these
models was compared and evaluated using per-class metrics and micro- and macro-averages. Overall,
performance metrics related to kNN, Decision Tree and TreeBagger exceeded those for SVM-Gaussian
Kernel and Classification Bagged Ensemble. Among the four hydrologic groups, it was noticed that
group B had the highest rate of false positives.

Keywords: multi-class classification; soil texture calculator; k-Nearest Neighbors; support vector
machines; decision trees; ensemble learning

1. Introduction

Soils play a crucial role in the global hydrologic cycle by governing the rates of infiltration and
transmission of rainfall, and surface runoff, i.e., precipitation that does not infiltrate into the soil
and runs across the land surface into water bodies, such as streams, rivers and lakes. Runoff occurs
when rainfall exceeds the infiltration capacity of soils, and it is based on the physical nature of soils,
land cover, hillslope, vegetation and storm properties such as rainfall duration, amount and intensity.
The rainfall-runoff process serves as a catalyst for the transport of sediments and contaminants, such
as fertilizers, pesticides, chemicals and organic matter, negatively impacting the morphology and
biodiversity of receiving water bodies [1,2]. Flooding and erosion caused by uncontrolled runoff,
particularly downstream, results in damage to agricultural lands and manmade structures [1]. Hence,
modeling surface runoff is an essential part of soil and water conservation efforts, including but not
limited to, forecasting floods and soil erosion and monitoring water and soil quality.

The U.S. Department of Agriculture’s (USDA) agency for Natural Resources Conservation Service
(NRCS), formerly known as the Soil Conservation Service (SCS), developed a parameter called Curve
Number (CN) to estimate the amount of surface runoff. Furthermore, soils are classified into Hydrologic
Soil Groups (HSGs) based on surface conditions (infiltration rate) and soil profiles (transmission rate).
Combinations of HSGs and land use and treatment classes form hydrologic soil-cover complexes,
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each of which is assigned a CN [3]. A higher CN indicates a higher runoff potential. Consequently,
accurate classification of HSGs is critical for the calculation of CNs that provide a meaningful prediction
of runoff.

In the United States, more than 19,000 soil series have been identified and aggregated into map
unit components with similar physical and runoff characteristics, and assigned to one of four HSGs:
A, B, C or D. The original assignments were based on measured rainfall, runoff and infiltrometer
data [4]. Since then, assignments have been based on the judgement of soil scientists, primarily relying
on their interpretation of criteria published in the National Engineering Handbook (NEH) Part 630,
Hydrology [5]. As with any subjective interpretation, the placement of soils into appropriate hydrologic
groups have been non-uniform and inconsistent over time and across geographical locations. Soils with
similar runoff characteristics were placed in the same hydrologic group, under the assumption
that soils found within a climatic region with similar depth, permeability and texture will have
similar runoff responses. Conventional soil mapping techniques extrapolate these classifications and
geo-reference them with GPS (Global Positioning Systems) and digital elevation models visualized in a
GIS (Geographic Information Systems) [6,7]. However, in addition to the inconsistent classification
of soil profiles, the varying definition of mapping units introduces a certain degree of subjectivity.
Over the past two decades, Pedology research has witnessed an evolution from traditional soil
mapping techniques to methods for ‘the creation and population of spatial soil information systems by
numerical models inferring the spatial and temporal variations or soil types and soil properties from
soil observation and knowledge and from related environmental variables’ [8], also known as Digital
Soil Mapping (DSM) [9–11].

Considering the advances in modern computing and the vastly expanding soil databases, NRCS
and the Agricultural Research Service (ARS) formed a joint working group in 1990 to address
shortcomings attributed to guidelines stated in NEH reference documents [12]. Two among the several
goals identified by the group were to standardize the procedure for the calculation of CNs from
rainfall-runoff data and to reconsider the HSG classifications. A fuzzy model that was developed
using the National Soil Information System (NASIS) soil interpretation subsystem was applied to
1828 unique soils using data from Kansas, South Dakota, Missouri, Iowa, Wyoming and Colorado.
Correlation between the soil’s assigned and modeled HSG was analyzed, and the overall HSG frequency
coincidence exceeded 54 percent [13]. It was observed that the correlation frequencies for soils from
groups A and D were higher than those for groups B and C. These correlation inconsistencies were
attributed to: (1) boundary conditions that occur when soils exhibit properties that do not fit entirely
into a single hydrologic group. The effects of this are more profound for groups B and C considering that
they are each bounded by two groups (2) fuzzy modeling of the subjective HSG criteria. To address the
inconsistencies due to boundary conditions, an improved method that developed an automated system
based on detailed soil attribute data was proposed by Li, R et al. [14]. This work aimed to mitigate
the aggregation effect of HSGs on soil information, and eventually the CNs, due to the assignment of
similar soils into different HSGs (exaggerating small differences between them) or different soils to
the same HSG (omitting differences between them). Furthermore, this work successfully identified
improper placement of HSGs. However, this work used a significantly smaller sample size of 67 soil
types in the Lake Fork watershed in Texas.

Machine learning, a branch of Artificial Intelligence, is an inherently interdisciplinary field that is
built on concepts such as probability and statistics, information theory, game theory and optimization,
among many others. In 1959, Arthur Samuel, one of the pioneers of machine learning, defined
machine learning as a “field of study that gives computers the ability to learn without being explicitly
programmed” [15]. A more recent and widely accepted definition can be attributed to Tom Mitchell:
“A computer program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with experience
E” [16]. Based on the approach used, type of input and output data, and nature of the problem being
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addressed, machine learning techniques can be classified into four main categories: (1) supervised
learning; (2) unsupervised learning; (3) semi-supervised learning; and (4) reinforcement learning.

In supervised learning, the goal is to infer a function or mapping from training data that is labeled.
The training data consist of an input vector X and an output vector Y that is labeled based on available
prior experience. Regression and classification are two categories of algorithms that are based on
supervised learning. Unsupervised learning, on the other hand, deals with unlabeled data, with the
goal of finding a hidden structure or pattern in this data. Clustering is one of the most widely used
unsupervised learning methods. In semi-supervised learning, a combination of labeled and unlabeled
data is used to generate an appropriate model for the classification of data. The reinforcement learning
method uses observations gathered from the interaction with the environment to make a sequence
of decisions that would maximize the reward or minimize the risk. Q-learning is an example of a
reinforcement learning algorithm.

The application of machine learning techniques in soil sciences ranges from the prediction of
soil classes using DSM [17,18] to the classification of sub-soil layers using segmentation and feature
extraction [19]. The predictive ability of machine learning models has been leveraged for agricultural
planning and mass crop yield, the prediction of natural hazards, including, but not limited to, landslides,
floods, drought and forest fires and monitoring the effects of climate change on the physical and
chemical properties of soil [20,21]. Based on high spatial resolution satellite data, terrain/climatic data,
and laboratory soil samples, the spatial distribution of six soil properties including sand, silt, and
clay were mapped in an agricultural watershed in West Africa [22]. Of the four statistical prediction
models tested and compared, i.e., Multiple Linear Regression (MLR), Random Forest Regression (RFR),
Support Vector Machine (SVM) and Stochastic Gradient Boosting (SGB), machine learning algorithms
performed generally better than MLR for the prediction of soil properties at unsampled locations.
In a similar study for a steep-slope watershed in southeastern Brazil [23], the performance of three
algorithms: Multinomial Logistic Regression (MLR), C5-decision tree (C5-DT) and Random Forest (RF)
was evaluated and compared based on performance metrices of overall accuracy, standard error, and
kappa index. It was observed that the RF model consistently outperformed the other models, while
the MLR model had the lowest overall accuracy and kappa index. In the context of DSM applications,
complex models such as RF are found to be better classifiers than generalized linear models such as
MLR. While machine learning offers the added advantage of identifying trends and patterns with
continuous improvement over time, these models are only as good as the quality of the data collected.
An unbiased and inclusive dataset, along with the right choice of model, parameters, cross-validation
method, and performance metrices is necessary to achieve meaningful results.

In this work, we investigated the application of four machine learning methods: kNN,
SVM-Gaussian Kernel, Decision Trees and Ensemble Learning towards the classification of soil into
hydrologic groups. The results of these algorithms are compared to those obtained using estimation
based on soil texture.

2. Background

Soils are composed of mineral solids derived from geologic weathering, organic matter solids
consisting of plant or animal residue in various stages of decomposition, and air and water that fill
the pore space when soil is dry and wet, respectively. The mineral solid fraction of soil is composed
of sand, silt and clay, relative percentages of which determine the soil texture in accordance with the
USDA system of particle-size classification. Sand, being the larger of the three, feels gritty, and ranges
in size from 0.05 to 2.00 mm. Sandy soils have poor water-holding capacity that can result in leaching
loss of nutrients. Silt, being moderate in size, has a smooth or floury texture, and ranges from 0.002
to 0.05 mm. Clay, being the smallest of the three, feels sticky, and is made up of particles smaller
than 0.002 mm in diameter. In general, the higher the percentage of silt and clay particles in soil, the
higher is its water-holding capacity. Particles larger than 2.0 mm are referred to as rock fragments
and are not considered in determining soil texture, although they can influence both soil structure
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and soil–water relationships. The ease with which pores in a saturated soil transmit water is known
as saturated hydraulic conductivity (Ksat), and it is expressed in terms of micrometers per second
(or inches per hour). Pedotransfer functions (PTFs) are commonly used to estimate Ksat in terms of
readily available soil properties such as particle size distribution, bulk density, and organic matter
content [24,25]. Machine Learning-based PTFs have been developed to understand the relationship
between soil hydraulic properties and soil physical variables [26].

Hydrologic Soil Groups

Soils are classified into HSGs based on the minimum rate of infiltration obtained for bare soil after
prolonged wetting [5]. The four hydrologic soil groups (HSGs) are described as follows:

Group A—Soils in this group are characterized by low runoff potential and high infiltration rates when
thoroughly wet. They typically have less than 10 percent clay and more than 90 percent sand or gravel.
The saturated hydraulic conductivity of all soil layers exceeds 40.0 micrometers per second.
Group B—Soils in this group have moderately low runoff potential and moderate infiltration rates
when thoroughly wet. They typically have between 10 and 20 percent clay and 50 to 90 percent sand.
The saturated hydraulic conductivity ranges from 10.0 to 40.0 micrometers per second.
Group C—Soils in this group have moderately high runoff potential and low infiltration rates when
thoroughly wet. They typically have between 20 and 40 percent clay and less than 50 percent sand.
The saturated hydraulic conductivity ranges from 1.0 to 10.0 micrometers per second.
Group D—Soils in this group are characterized by high runoff potential and very low infiltration rates
when thoroughly wet. They typically have greater than 40 percent clay and less than 50 percent sand.
The saturated hydraulic conductivity is less than or equal to 1.0 micrometers per second.
Dual hydrologic soil groups—Certain wet soils are placed in group D based solely on the presence of a
high water table. Once adequately drained, they are assigned to dual hydrologic soil groups (A/D,
B/D and C/D) based on their saturated hydraulic conductivity. The first letter applies to the drained
condition and the second to the undrained condition.

3. Methods

3.1. Soil Survey Data

The dataset used for this work was obtained from USDA’s NRCS Web Soil Survey (WSS), the
largest public-facing natural resource database in the world [27]. The Soil Survey Geographic Database
(SSURGO) developed by the National Cooperative Soil Survey was used to identify Areas of Interests
(AOI) in the State of Washington the Idaho Panhandle National Forest. Tabular data corresponding to
Physical Soil Properties and Revised Universal Soil Loss Equation, Version 2 (RUSLE2) related attributes
for various AOIs were retrieved from the Microsoft Access database and compiled into Microsoft
Excel spreadsheets. Features of interest include the map symbol and soil name, its corresponding
hydrologic group, percentages of sand, silt and clay, depth in inches and Ksat in micrometers per
second. The initial dataset comprised of 4468 unique soil types.

As with most survey-based datasets, there were incomplete or missing data, inconsistencies in
formatting and undesired data entries. The compiled dataset was preprocessed to remove samples
corresponding to: missing data points, dual hydrologic groups (A/D, B/D and C/D), and soil layers
beyond a water impermeable depth range of 20 to 40 inches. This reduced the dataset to 2107 unique
soil types. MATLAB® programming environment was used for all data preparation and processing.

3.2. Estimation Based on Soil Texture

Based on the percentages of sand, silt, and clay, soils can be grouped into one of the four major
textural classes: (1) sands; (2) silts; (3) loams; and (4) clays. The soil textural triangle shown in
Figure 1 illustrates twelve textural classes as defined by the USDA [28]: sand, loamy sand, sandy
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loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and
clay. These classifications are typically named after the primary constituent particle size, e.g., “sand”,
or a combination of the most abundant particles sizes, e.g., “sandy clay”. One side of the triangle
represents percent sand, the second side represents percent clay, and the third side represents percent
silt. Given the percentages of sand, silt and clay in the soil sample, the corresponding textural class can
be read from the triangle. Alternately, the NRCS soil texture calculator [28] can be used to determine
textural class based on specific relationships between sand, silt and clay percentages as shown in
Table 1. In this work, the method used to assign HSGs based on soil texture was adopted from Hong
and Adler (2008) [29], which was modified from the USDA handbook [30] and National Engineering
Handbook Section 4 [5]. MATLAB® was used to assign HSGs based on soil texture calculations.
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Table 1. Soil texture calculations and mapping to hydrologic soil groups [28,29].

Relationship between Sand, Silt and Clay Percentages Textural Class Hydrologic Soil Group

((silt + 1.5 * clay) < 15) SAND A

((silt + 1.5 * clay ≥ 15) AND (silt + 2 * clay < 30)) LOAMY SAND A

((clay ≥ 7 && clay < 20) AND (sand > 52) AND ((silt + 2 * clay) ≥ 30) OR
(clay < 7 && silt < 50 AND (silt + 2 * clay) ≥ 30)) SANDY LOAM A

((clay ≥ 7 AND clay < 27) AND (silt ≥ 28 AND silt < 50) AND (sand ≤ 52)) LOAM B

((silt ≥ 50 AND (clay ≥ 12 AND clay < 27)) OR ((silt ≥ 50 AND silt < 80)
AND clay < 12)) SILT LOAM B

(silt ≥ 80 AND clay < 12) SILT B

((clay ≥ 20 AND clay < 35) AND (silt < 28) AND (sand > 45)) SANDY CLAY
LOAM C

((clay ≥ 27 AND clay < 40) AND (sand > 20 AND sand ≤ 45)) CLAY LOAM D

((clay ≥ 27 AND clay < 40) AND (sand ≤ 20)) SILTY CLAY LOAM D

(clay ≥ 35 AND sand > 45) SANDY CLAY D

(clay ≥ 40 AND silt ≥ 40) SILTY CLAY D

clay ≥40 AND sand ≤ 45 AND silt < 40 CLAY D
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3.3. Machine Learning Algorithms

A common problem encountered in machine learning and data science is that of overfitting, where
the model does not generalize well from training data to unseen data. Cross validation techniques are
generally used to assess the generalization ability of a predictive model, thus avoiding the problem
of overfitting. In this work, a Monte Carlo Cross-Validation (MCCV) method [31] was used by
randomly splitting the dataset into equal-sized training and test subsets, training the model, predicting
classification and repeating the process 100 times. The overall prediction accuracy (or other performance
metrics) is the average over all iterations.

A machine learning algorithm can be classified as either parametric or non-parametric. Parametric
methods assume a finite and fixed set of parameters, independent of the number of training examples.
In non-parametric methods, also called instance-based or memory-based learning, the number of
parameters is determined in part by the data, i.e., the number of parameters grows with the size
of the training set. Due to the availability of a large dataset with labeled data, in this work, we
considered four non-parametric supervised learning algorithms: (1) kNN (2) SVM Gaussian Kernel (3)
Decision Trees (4) Random Forest. A qualitative introduction to these algorithms is presented in the
following subsections.

3.3.1. k-Nearest Neighbors (kNN) Algorithm

kNN algorithm, an instance-based method of learning, is based on the principle that instances
within a dataset will generally exist in close proximity to other instances that have similar properties.
If the instances are tagged with a classification label, then the value of the label of an unclassified
instance can be predicted based on the labels of its nearest neighbors.

The Statistics and Machine Learning Toolbox from MATLAB® was used to create a Classification
kNN model using function ‘fitcknn’, followed by the function ‘predict’ to predict classification for
test data.

knn_model = fitcknn (features, labels, ‘NumNeighbors’, k)
predict_HSG = predict (knn_model, features_test)

where features is a numeric matrix that contains percent sand, percent silt, percent clay and Ksat;
label is a cell array of character vectors that contain the corresponding HSGs; and k represents the
number of neighbors.

3.3.2. Support Vector Machines (SVMs) with Gaussian Kernel

Support Vector Machines are non-parametric, supervised learning models that are motivated by a
geometric idea of what makes a classifier “good” [32]. For linearly separable data points, the objective
of the SVM algorithm is to find an optimal hyperplane (or a decision boundary) in an N-dimensional
space (where N is the number of features) that distinctly classifies data points. Support vectors are the
data points that lie closest to the hyperplane. The SVM algorithm aims to maximize the margin around
the separating hyperplane, essentially making it a constrained optimization problem.

For data points that are not linearly separable, which is true of most real-world data, the features
can be mapped into a higher-dimensional space in such a way that the classes become more easily
separated than in the original feature space. A technique commonly referred to as the ‘kernel trick’,
uses a kernel function that defines the inner product of the mapping functions in the transformed
space. One of the most popular kernels are the Radial Basis Functions (RBFs), of which, the Gaussian
kernel is a special case.

The Statistics and Machine Learning Toolbox from MATLAB® was used to create a template for
SVM binary classification based on a Gaussian kernel function using function ‘templateSVM’, followed
by the function ‘fitcecoc’ that trains an Error-Correcting Output Codes (ECOC) model based on the
features and labels provided. t is specified as a binary learner for an ECOC multiclass model. Finally,
the function ‘predict’ is used to predict classification for test data.
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t = templateSVM (‘KernelFunction’, ‘gaussian’)
SVM_gaussian_model = fitcecoc (features, labels, ‘Learners’, t);
predict_HSG = predict (SVM_gaussian_model, features_test)

3.3.3. Decision Trees

Decision Trees are hierarchical models for supervised learning in which the learned function is
represented by a decision tree [16,33]. The model classifies instances by querying them down the tree
from the root to a leaf node, where each node represents a test over an attribute, each branch denotes its
outcomes and each leaf node represents one class. Based on the measure used to select input variables
and the type of splits at each node, decision trees can be implemented using statistical algorithms such
as CART (Classification And Regression Tree), ID3 (Iterative Dichotomiser 3) and C4.5 (successor of
ID3), among many others.

The Statistics and Machine Learning Toolbox from MATLAB® was used to grow a fitted binary
classification decision tree based on the features and labels using function ‘fitctree’, followed by the
function ‘predict’ to predict classification for test data. Function ‘fitctree’ uses the standard CART
algorithm to grow decision trees.

decisiontree_model = fitctree (features, labels);
predict_HSG = predict (decisiontree_model, features_test)

3.3.4. Ensemble Learning

While decision trees are a popular choice for predictive modeling due to their inherent simplicity
and intuitiveness, they are often characterized by high variance. Consequently, decision trees can be
unstable because small variations in the data might result in a completely different tree and hence, a
different prediction. Ensemble learning methods that combine and average over multiple decision
trees have been used to improve predictive performance [32]. Bagging (or bootstrap aggregation) is a
technique that is used to generate new datasets with approximately the same (unknown) sampling
distribution as any given dataset. Random forests, an extension of the bagging method, also selects
a random subset of features. In other words, random forests can be considered as a combination of
‘bootstrapping’ and ‘feature bagging’.

The Statistics and Machine Learning Toolbox from MATLAB® was used to grow an ensemble
of learners for classification using function ‘fitcensemble’’, followed by the function ‘predict’ to predict
classification for test data.

ensemble_model = fitcensemble (features, labels);
predict_HSG = predict (ensemble_model, features_test);

The function ‘TreeBagger’ bags an ensemble of decision trees for classification using the Random
Forest algorithm, followed by the function ‘predict’ to predict classification for test data. Decision trees
in the ensemble are grown using bootstrap samples of the data, with a random subset of features to
use at each decision split.

treebagger_model = TreeBagger (50, features, labels, ‘OOBPrediction’, ‘On’, ‘OOBPredictorImportance’, ‘On’);
predicted_HSG = predict (treebagger_model, features_test);

‘OOBPrediction’ and ‘OOBPredictorImportance’ are set to ‘on’ to store information on what
observations are out of bag for each tree and to store out-of-bag estimates of feature importance in the
ensemble, respectively.
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4. Performance Metrics

A Confusion matrix is commonly used to visualize the performance of a classification algorithm.
Figure 2 illustrates the confusion matrix for a multi-class model with N classes [34]. Observations on
correct and incorrect classifications are collected into the confusion matrix C

(
ci j

)
, where ci j represents

the frequency of class i being identified as class j. In general, the confusion matrix provides four types
of classification results with respect to one classification target k:

• True Positive (TP)—correct prediction of the positive class (ck,k)
• True Negative (TN)—correct prediction of the negative class (

∑
i, j∈N\{k}

ci j)

• False Positive (FP)—incorrect prediction of the positive class (
∑

i∈N\{k}
cik)

• False Negative (FN)—incorrect prediction of the negative class (
∑

i∈N\{k}
cki)
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Several performance metrics can be derived from these four outcomes. The ones of interest to us
are listed below, for per-class classifications:

• Accuracy: This metric simply measures how often the classifier makes a correct prediction.

Overall Accuracy =

∑N
i=1 ci,i∑N

i=1
∑N

j=1 ci, j
(1)

• Recall (Sensitivity or True Positive Rate): This metric denotes the classifier’s ability to predict a
correct class

Recallclass =
TPclass

TPclass + FNclass
(2)

• Precision: This metric represents the classifier’s certainty of correctly predicting a given class

Precisionclass =
TPclass

TPclass + FPclass
(3)

• False Positive Rate (FPR): This metric represents the number of incorrect positive predictions out
of the total true negatives

FPRclass =
FPclass

FPclass + TNclass
(4)
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• True Negative Rate (TNR or Specificity): This metric represents the number of correct negative
predictions out of the total true negatives

TNRclass =
TNclass

FPclass + TNclass
(5)

• F1-Score: This metric is a harmonic mean of precision and recall. Although the F1-score is not as
intuitive as accuracy, it is useful in measuring how precise and robust the classifier is.

F1− Scoreclass =
2 ∗ TPclass

2 ∗ TPclass + FNclass + FPclass
(6)

• Matthews Correlation Coefficient (MCC): For binary classification, MCC summarizes into a single
value the confusion matrix. This is easily generalizable to multi-class problems as well.

MCCclass =
TPclass ∗ TNclass − FPclass ∗ FNclass√

(TPclass + FPclass) ∗ (TPclass + FNclass) ∗ (FPclass + TNclass) ∗ (FNclass + TNclass)
(7)

• Cohen’s Kappa (κ): This metric compares an Observed Accuracy with an Expected Accuracy
(random chance)

κclass =
po − pe

1− pe
(8)

where po represents the accuracy and pe represents a factor that is based on normalized
marginal probabilities.

For multi-class classification problems, averaging per-class metric results can provide an overall
measure of the model’s performance. There are two widely used averaging techniques: macro-averaging
and micro-averaging.

• Macro-average: Macro-averaging reduces the multi-class predictions down to multiple sets of
binary predictions. The desired metric for each of the binary cases are calculated and then averaged
resulting in the macro-average for the metric over all classes. For example, the macro-average for
Recall is calculated as shown below:

Recallmacro =

∑N
i=1 Recalli

N
(9)

• Micro-average: Micro-averaging uses individual true positives, true negatives, false positives and
false negatives from all classes to calculate the micro-average. For example, the micro-average for
Recall is calculated as shown below:

Recallmicro =

∑N
i=1 TPclass∑N

i=1 TPclass +
∑N

i=1 FNclass
(10)

Macro-averaging assigns equal weight to each class, whereas micro-averaging assigns equal
weight to each observation. Micro-averages provide a measure of effectiveness on classes with
large observations, whereas macro-averages provide a measure of effectiveness on classes with
small observations.

5. Results and Discussions

Following data preparation and pre-processing in MATLAB®, soil data samples were classified
into one of the four hydrologic groups using soil texture calculations, followed by classifications using
the following algorithms: (a) k-Nearest Neighbor (kNN), (b) SVM Gaussian Kernel, (c) Decision Tree,
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(d) Classification Bagged Ensemble, and (e) TreeBagger. A Monte Carlo Cross-Validation (MCCV)
method was used to avoid the problem of overfitting [31]. A measure of overall accuracy was first
computed to compare all five algorithms with the soil texture-based classification. Table 2 shows
that overall accuracy for the latter is significantly lower than those for the machine learning-based
classification algorithms. In fact, none of the HSG C occurrences were correctly classified using soil
texture calculations. The TreeBagger (Random Forest) algorithm has the highest overall accuracy
of 84.70 percent, closely followed by the Decision Tree and kNN algorithms with 83.12 percent and
80.66 percent, respectively. Although applied for an entirely different dataset, the fuzzy system
hydrologic grouping model [13] results in an overall correlation frequency of 60.5 percent for HSGs A,
B, C and D, with higher correlation between assigned and modeled results for HSGs A and D.

Table 2. Comparison of overall accuracy.

Method Overall Accuracy

Soil Texture Calculator 0.54
k-Nearest Neighbor (kNN) 0.81

SVM Gaussian Kernel 0.72
Decision Tree 0.83

Classification Bagged Ensemble 0.79
TreeBagger 0.85

For datasets in which the classes are not represented equally (also known as imbalanced classes),
accuracy is typically not a good measure of performance. Out of the 2107 unique soil samples in the
observed group, 337 belong to HSG A, 1142 to HSG B, 511 to HSG C and 117 to HSG D. Given that
our dataset is relatively imbalanced, we further evaluate the performance of all five algorithms based
on metrics of Recall, Precision, FPR, TNR, F1-Score, MCC and Kappa. It is important to account for
chance agreement when dealing with highly imbalanced classes since a high classification accuracy
could result from classifying all observations as the largest class [35,36]. Table 3 lists per-class results
and macro- and micro-averages of these metrics for classification using kNN, SVM and Decision Trees.
Table 4 presents the same for two Ensemble Learning algorithms. A graphical comparison of individual
classes (HSGs) for each metric is shown in Figure 3.

Table 3. Comparison of performance metrics for classification using k-Nearest Neighbors (kNN),
Support Vector Machine (SVM) and decision trees.

k-Nearest Neighbor (kNN); k = 4

Recall Precision FPR TNR F1 Score MCC Kappa

HSG A 0.84 0.86 0.03 0.97 0.84 0.82 0.69
HSG B 0.85 0.84 0.20 0.80 0.84 0.65 0.08
HSG C 0.72 0.73 0.09 0.91 0.72 0.63 0.56
HSG D 0.73 0.83 0.01 0.99 0.77 0.76 0.89

Macro Average 0.78 0.81 0.08 0.92 0.79 0.72 0.56
Micro Average 0.80 0.80 0.07 0.93 0.80 0.73 0.73

Support Vector Machines (SVM) Gaussian Kernel

HSG A 0.90 0.79 0.05 0.95 0.84 0.81 0.67
HSG B 0.86 0.71 0.42 0.58 0.77 0.46 0.09
HSG C 0.35 0.65 0.06 0.94 0.45 0.36 0.66
HSG D 0.54 0.98 0.00 1.00 0.69 0.72 0.91

Macro Average 0.66 0.78 0.13 0.87 0.69 0.59 0.58
Micro Average 0.74 0.74 0.09 0.91 0.74 0.65 0.65

Decision Tree

HSG A 0.88 0.84 0.03 0.97 0.86 0.83 0.68
HSG B 0.91 0.83 0.22 0.78 0.87 0.70 0.03
HSG C 0.67 0.82 0.05 0.95 0.74 0.67 0.59
HSG D 0.66 0.85 0.01 0.99 0.74 0.73 0.90

Macro Average 0.78 0.84 0.08 0.92 0.80 0.73 0.55
Micro Average 0.79 0.79 0.07 0.93 0.79 0.72 0.72
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Table 4. Comparison of performance metrics for classification using ensemble learning algorithms.

Classification Bagged Ensemble

Recall Precision FPR TNR F1 Score MCC Kappa

HSG A 0.89 0.79 0.05 0.95 0.83 0.80 0.67
HSG B 0.91 0.77 0.32 0.68 0.83 0.61 0.04
HSG C 0.49 0.82 0.04 0.96 0.61 0.55 0.64
HSG D 0.59 0.96 0.00 1.00 0.73 0.74 0.91

Macro Average 0.72 0.83 0.10 0.90 0.75 0.68 0.57
Micro Average 0.79 0.79 0.07 0.93 0.79 0.73 0.73

TreeBagger; N = 50

HSG A 0.89 0.85 0.03 0.97 0.87 0.85 0.68
HSG B 0.93 0.84 0.21 0.79 0.88 0.73 0.02
HSG C 0.69 0.86 0.04 0.96 0.76 0.71 0.59
HSG D 0.65 0.87 0.01 0.99 0.74 0.74 0.90

Macro Average 0.79 0.86 0.07 0.93 0.81 0.76 0.55
Micro Average 0.78 0.78 0.08 0.92 0.78 0.70 0.70

It should be noted that micro-averages for Recall, Precision and F1-Sscore are equal, as expected
in multi-class classification problems. Moreover, micro-averages for MCC and Kappa are equal. It can
be observed that for all five algorithms, the ability of the classifiers to correctly predict (Recall) HSGs A
and B are relatively higher when compared to HSGs C and D. This is in line with results obtained for
three-class and seven-class classification of soil types using Decision Trees and SVM in [19], wherein
sandy soils had higher classification accuracy. On the other hand, the certainty with which the
classifiers predict correct classes (Precision) is relatively higher for HSG D in our work. A comparison
of macro- and micro-averages of F1-Scores among the five classifiers shows that kNN, Decision Tree and
TreeBagger have scores close to 0.8, while SVM-Gaussian Kernel lags with a score close to 0.7. Among
the four soil groups, HSG B has the highest rate of False Positives, with the highest being 57.8 percent
for SVM-Gaussian Kernel and lowest being 19.83 percent for kNN. The fact that HSG B is the largest
class in the dataset, and bordered by two other groups, explains the high FPR. A comparison of macro-
and micro-averages of MCCs among the five classifiers shows comparable results (~0.72) for kNN,
Decision Tree and TreeBagger. Yet again, SVM-Gaussian kernel has the lowest score (~0.6). The results
of Cohen’s Kappa coefficient for HSG B shows some discrepancy that is consistent across all five
classifiers. This may be related to the corresponding high FPRs. Regardless, the micro-average Kappa
value is consistent with that of MCC, possibly accounting for any class imbalance. An interesting
observation is that the micro- and macro-averages of Kappa coefficients for all five classifiers are similar
in value. The macro-averages range from 0.55 (RF and DT) to 0.58 (SVM) and micro-averages range
from 0.65 (SVM) to 0.73 (kNN and CBE), all within the moderate to substantial agreement range [37].
This similarity is observed in studies related to machine learning techniques for DSM, suggesting
that the quality and robustness of datasets is of greater importance than the classifier itself [38,39].
In the context of predicting soil map units on tropical hillslopes in Brazil, an RF model yielded an
overall accuracy of 78.8 percent and a Kappa index of 0.76, while a Decision Tree model had an overall
accuracy of 70.2 percent and a Kappa value of 0.66 [39]. In contrast, for classification based on soil
taxonomic units in British Columbia, Canada, kNN and SVM resulted in the highest accuracy of
72 percent; however, models such as CART with bagging and RF were preferred due to the speed of
parameterization and the interpretability of the results, while resulting in similar accuracies ranging
from 65 to 70 percent [40].



Data 2020, 5, 2 12 of 14

Data 2020, 5, 2 12 of 15 

 

moderate to substantial agreement range [37]. This similarity is observed in studies related to 
machine learning techniques for DSM, suggesting that the quality and robustness of datasets is of 
greater importance than the classifier itself [38,39]. In the context of predicting soil map units on 
tropical hillslopes in Brazil, an RF model yielded an overall accuracy of 78.8 percent and a Kappa 
index of 0.76, while a Decision Tree model had an overall accuracy of 70.2 percent and a Kappa value 
of 0.66 [39]. In contrast, for classification based on soil taxonomic units in British Columbia, Canada, 
kNN and SVM resulted in the highest accuracy of 72 percent; however, models such as CART with 
bagging and RF were preferred due to the speed of parameterization and the interpretability of the 
results, while resulting in similar accuracies ranging from 65 to 70 percent [40]. 

 
Figure 3. A graphical representation of per-class performance metrics for kNN, SVM-Gaussian 
Kernel, Decision Trees and Ensemble Learning Algorithms (CBE and TB). 

  

Figure 3. A graphical representation of per-class performance metrics for kNN, SVM-Gaussian Kernel,
Decision Trees and Ensemble Learning Algorithms (CBE and TB).

6. Conclusions

This work presents the application of machine learning towards classification of soil into hydrologic
groups. The machine learning models tested were kNN, SVM-Gaussian Kernel, Decision Trees and
Ensemble Learning (Classification Bagged Ensemble and Random Forest). It was observed that for all
five classifiers, Recall for HSGs A and B were relatively higher when compared to HSGs C and D, but
precision was relatively higher for HSG D. Overall, performance metrics related to kNN, Decision Tree
and TreeBagger exceeded those for SVM-Gaussian Kernel and Classification Bagged Ensemble.

As part of future work, the effects of class imbalance will be investigated by comparing datasets
with varying degrees of imbalance and using various cross-validation techniques with proportional
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stratified random sampling. Deep learning methods that address this classification problem will also
be explored.
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